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Probabilistic Methods in Cancer Biology
M. Vidyasagar

Abstract— Recent advances in experimental techniques have
made it possible to generate an enormous amount of ‘raw’
biological data, with cancer biology being no exception. The
main challenge faced by cancer biologists now is the generation
of plausible hypotheses that can be evaluated against available
data and/or validated through further experimentation. For
persons trained in control theory, there is now a significant
opportunity to work with biologists to create a virtuous cycle
of hypothesis generation and experimental validation. Given the
large number of uncertain factors in any biological experiment,
probabilistic methods are a natural in this setting. In this paper,
we discuss four specific problems in cancer biology that are
amenable to study using probabilistic methods, namely: Reverse
engineering gene regulatory networks, constructing context-
specific gene regulatory networks, analyzing the significance
of expression levels for collections of genes, and discriminating
between drivers (mutations that cause cancer) and passengers
(mutations that are caused by cancer or have no impact).
Some research problems that merit the attention of the controls
community are also suggested.

I. INTRODUCTION

A. Scope of the Paper

The interplay between mathematical modeling and exper-
imental biology dates back several decades, and ‘theoretical
biology’ has been a well-accepted discipline for a very long
time (even if the name of the area keeps ‘mutating’). In
recent years, many persons whose primary training was in
the systems & control area have moved into biology and
have made many significant contributions, and continue to
do so. This is illustrated by the fact that in recent years there
have been two special issues within the controls community
that are devoted to systems biology [1], [2]. Apart from this,
several persons with a control or system theory background
publish regularly in the ‘mainstream’ biology literature. It
would be impossible to create a comprehensive description
of all these contributions, and in any case, that is not the
focus of the paper. Rather, the objective of this overview
paper is to present a snapshot of some research problems
in cancer biology to which methods from probability and
statistics may be fruitfully applied. In that sense, the scope
of the paper is voluntarily limited.

Biology is a vast subject and cancer biology is a very
large part of this vast subject. Moreover, our understanding
of this topic is constantly shifting, and there are very few

Cecil & Ida Green Endowed Chair, Erik Jonsson School of Engineering &
Computer Science, University of Texas at Dallas, 800 W. Campbell Road,
EC38, Richardson, TX 75080, USA; email: M.Vidyasagar@utdallas.edu.
This research was supported by National Science Foundation Award
#1001643.

Fig. 1. The Ebers Papyrus [4]

‘settled’ theories.1 Hence the choice of the specific topics
discussed here is dictated by the fact of their presenting
some reasonably deep challenges in probability theory and
statistics, and of course by the author’s personal tastes. The
hope is that the paper would at least serve to present the
flavor of this subject, and thus motivate interested readers
to explore the literature further. In particular, there is no
pretense that the article is comprehensive; rather, it should
be thought of as an introduction to the topic.

B. Some Facts & Figures About Cancer

Cancer is one of the oldest diseases known to man. A
papyrus popularly known as the ‘Ebers papyrus’ [4], dating
to around 1500 BCE, recounts a ‘tumor against the God
Xenus’ and suggests ‘Do thou nothing there against’. The
Ebers papyrus is reproduced in Figure 1.

The currently used cancer-related terms come from both
Greek and Latin. In ancient times, the Greek word ‘karkinos’,
meaning ‘crab’, was used to refer to the crab nebula as well
as the associated zodiac sign. Supposedly Hippocrates in
c.420 BCE used the word ‘karkinos’ to describe the disease,
and ‘karkinoma’ to describe a cancerous tumor. One can
surmise that he was influenced by the crab-like appearance of

1For a very readable and yet scientifically accurate description of how
theories about the onset and treatment of cancer have evolved over the past
hundred years or so, see [3].
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a cancerous tumor, with a hard and elevated central core and
lines radiating from the core. Subsequently the name for the
disease was changed to the Latin word ‘cancer’ which also
meant ‘crab’, while the name for the tumor was transliterated
into the Roman alphabet as ‘carcinoma.’ In recent times, the
pronunciation of the second ‘c’ got ‘mutated’ to the ‘s’ sound
instead of the ‘k’ sound.

Today cancer is the second leading cause of death world-
wide, after heart failure, and accounts for roughly 13% of all
deaths. Contrary to what one may suppose, cancer occupies
the second place even in developing countries. In the USA,
about 1.5 million persons will be diagnosed with cancer in
a year, while around 570,000 will die from it.

Over the years, quite substantial success has been realized
in the treatment of some forms of cancer. This can be
quantified by using the so-called five-year relative survival
rate (RSR), which is defined as the ratio of the fraction of
those with the disease condition that survive for five years,
divided by the same number for the general population. To
illustrate, suppose we start with a cohort of 1,000 persons.
Assuming a mortality rate of 2% per year for the general
population, after five years 900 of the original population will
survive (rounding off the numbers for illustrative purposes).
Now suppose that amongst a cohort of 1,000 persons with
a particular form of cancer, only 360 survive for five years.
Then the five-year RSR is 360/900 = 40 per cent.

The table below shows the RSR for various forms of
cancer, in 1954 and in 2006. This and other information can
be found on the web sites of the National Cancer Institute,
specifically [5].

Primary Site 5-Year RSR 5-Year RSR
1950–1954 1999–2006

All sites 35 69.1
Childhood 20 82.9
Leukemia 10 56.2
Hodgkin lymphoma 30 87.7
Breast 60 91.2
Prostate 43 99.9
Pancreas 1 5.8
Liver 1 13.7
Lung 6 16.8

Table 1. Relative Survival Rates Over the Years

From this table, it can be seen that significant progress has
been made in some forms of cancer. For instance, the RSR in
Leukemia has gone up from a mere 10% to more than 50%.
Prostate cancer is virtually a non-disease, as the RSR is close
to 100%. On the other hand, in some forms of cancer, such
as pancreas, liver, and lung, the RSR figures have remained
stubbornly stuck at very low levels. Not surprisingly, these
diseases form a primary focus of cancer studies.

C. Advances in Data Generation

In recent years, rapid advances in experimental methods
have enabled the biologist community to amass truly vast
amounts of data of various types. This data can be divided
into two broad categories, namely molecular and clinical.

Some of these data types that are most relevant to the present
discussion are described next.

• DNA Sequencing: DNA stands for Deoxyribonucleic
acid, and is the fundamental building block of life.
For present purposes, one can think of the DNA of
an organism (including humans) as just an enormously
long string over the four-symbol alphabet {A,C,G, T},
where the letters represent the bases of the four nu-
cleotides: A for Adenine, C for Cytosine, G for Guanine
and T for Thymine. Thus the genome of an organism is
its ‘digital’ description at the most basic level. Genes are
the ‘operative’ part of the DNA that produce proteins
and thus sustain life. When the first ‘complete’ human
genome, consisting of nearly 3.3 billion base pairs2

was published in 2001 [6], [7], it cost more than $3
billion and took several years; on top of that, it was
only a ‘draft’ in that its error rate was roughly 2%.
Today there are commercial companies that promise
to sequence a complete human genome, or sell the
equipment to do so, at a cost of $1,000 or so per
genome. Even allowing for the ever-present hype in the
biotechnology industry, this is an impressive reduction
of several orders of magnitude in both the cost and
the time needed. Quite apart from sequencing entire
genomes, it is now feasible to sequence literally tens of
thousands of cancer tissues that are available at various
research laboratories. The National Institutes of Health
(NIH) has embarked upon a very ambitious project
called TCGA (The Cancer Genome Atlas) whose ul-
timate aim is to publish the DNA sequence of every
cancerous tissue that is available to it [8]. By comparing
(wherever possible) the DNA sequence of the normal
tissue of the same individual, it is possible to isolate
many mutations (referred to as polymorphisms) that
accompany the onset and growth of cancer. By studying
the consequences (phenotypes) of these polymorphisms,
one could in principle be able to formulate predictive
models for cancer growth.

• Gene Expression Profiling: This refers to measuring
the activity level of various genes under specified exper-
imental conditions. The experiment consists of measur-
ing the quantum of gene product produced, where the
gene products could be ‘final’ products such as proteins,
or ‘intermediate’ products such as mRNA (messenger
RNA), RNAi (RNA interference), etc. Often the genes
are subjected to external influences (see the next two
items) and the objective of the study is to quantify the
effect of these influences. In general, it is very difficult
to replicate these experiments, as conditions are variable
from one experiment to another. Thus gene expression
profiling experiments almost always have some ‘con-
trol’ genes whose expression levels are expected to
remain constant across experiments; these values are
then used to normalize the rest of the measured quanti-

2The phrase ‘base pair’ refers to the fact that DNA consists of two
strands running in opposite directions, and that the two strands have ‘reverse
complementarity’ – A occurs opposite T and C occurs opposite G.
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ties. Moreover, actually taking measurements is a highly
invasive activity and usually results in the termimnation
of the experiment.3 This is in sharp contrast to the
situation in engineering systems, where most of the time
it is possible to perform noninvasive measurements. As
a consequence, ‘temporal gene expression profiles’ are
in reality a set of ostensibly identical experimets, that
are terminated in a staggered fashion at different points
in time. In the author’s view, since no two experiments
are ever identical or close to it, it is rather problematical
to treat the outcome of ‘temporal gene expression
profiles’ as a time series and fit ODE models to the
data. However, this does not prevent some researchers
from doing it anyway.

• siRNA Experimentation: When cells reproduce, DNA
gets converted to RNA (Ribonucleic acid) which in
turn produces any of the roughly 100,000 proteins
that sustain life. Unlike DNA which is a chemically
stable molecule, RNA is somewhat unstable and can
be thought of as an intermediary stage. The conversion
of DNA to RNA (transcription) and of RNA to proteins
(translation) is usually referred to as the ‘central dogma’
of biology. siRNA stands for ‘small interfering RNA’
(the expansion ‘silencing RNA’ is also used). siRNAs
are small double-stranded RNA molecules, just 20-25
nucleotides long, that play a variety of roles in biology.
For our purposes, the most important role is that each
siRNA gets involved in the RNAi (RNA interference)
pathway, and interferes with the expression of a specific
gene. While originally siRNAs were naturally occur-
ring, nowadays there are more than 21,000 siRNA
molecules, many of them synthetically created, each
of which silences the functioning of one specific gene.
Thus, for example, one can take a cancerous cell line
that is kept alive in a laboratory (‘immortalized’), apply
a specific siRNA, and see whether or not the application
of the siRNA causes the cell line to die out. If the
answer is ‘yes’, then we conclude that the gene which
is silenced by that specific siRNA plays a key role in
the reproduction of the cancerous cell.

• Micro-RNA Experimentation: Micro-RNAs are rel-
atively short RNA molecules, roughly 20 nucleotides
long, that bind to messenger RNA and inhibit some
part of the translation aspect. At present there are
about known 1,500 micro-RNAs. As a gross over-
simplification, it can be said that each micro-RNA
inhibits the functioning of more than one gene, while
each gene is inhibited by more than one micro-RNA. A
description of micro-RNAs and their functioning can be
found in [10], [11], [12], [13]. An attempt to quantify
the impact of each micro-RNA on the functioning of
various genes is found in the program ‘Targetscan’,
which is described in [14].

3It should be noted in passing that several attempts have been made to
overcome this problem, e.g. to use green fluorescent protein as a marker for
gene expression [9].

D. Ways in Which Controls Community Can Contribute

In this subsection we present a broad philosophical discus-
sion of how the controls community can contribute to cancer
research. A more mathematical discussion can be found in
the concluding section.

It is a truism that biology is in some sense far more
complex than engineering. In engineering, one first designs
a system that performs satisfactorily, and then improves the
design to be optimal (or nearly so), and finally, replicates
the designed system as accurately as possible. In contrast,
in biology, there is no standardization. Each of the 7 billion
humans differ from each other in quite significant ways –
clearly we are not mass-produced from a common template.
Even if we focus on components of the human body and try
to understand how they work together for a common pur-
pose, there are difficulties. In designing complex engineering
systems, each subsystem is designed separately, often by a
dedicated design team. Then the subsystems are connected
through appropriate isolators that ensure that, even after
the various subsystems are interconnected, each subsystem
still behaves as it was designed to. In contrast, in biology,
it is very difficult if not impossible to isolate individual
subsystems and analyze their behavior. Even if one could
succeed in understanding how a particular subsystem would
behave in isolation, the behavior of the same subsystem gets
altered significantly when it is a part of a larger system.
Isolation amongst subsystems is not a common feature of
biology.

Because of these considerations, it is difficult for control
theorists to make an impact on biology unless they work very
closely with experimental biologists. In a well-established
subject like aerodynamics (to pick one), the fundamental
principles are known, and captured by the Navier-Stokes
equation. Thus it is possible for an engineer to ‘predict’ how
an airframe would behave to a very high degree of accuracy
before metal is ever cut. In the author’s view, given the
lack of foundational principles for the most part, in biology
control theorists must settle for a more modest role, namely
‘generating plausible hypotheses’ as opposed to ‘making
predictions’. These plausible hypotheses are then validated
or invalidated by experimentation. Learning is inductive:
If a hypothesis is invalidated through experiment, then the
modeling paradigm used to arrive at that hypothesis must be
discarded; however, a confirmation of the hypothesis through
experiment can serve only to increase one’s confidence in the
modeling paradigm.

In order to describe specific ways in which the controls
community can contribute to cancer therapy, we begin with
a very high-level of how cancer treatment is approached
today. Because of the need to explain to a non-specialist
readership, over-simplification is unavoidable, and the reader
is cautioned that the description below is only ‘probably
approximately correct’. Those desirous of getting a more
accurate picture should study the biology literature.

In the human body, cells die and are born all the time,
and a rough parity is maintained between the two processes.
Occasionally, in response to external stimuli, one or the other
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process gains the upper hand for a short period of time, and
in a localized manner. For instance, if one gets a wound, then
a scab forms to protect the wound, and then the scab itself
falls off when its function is completed. In the process of
cell division and DNA replication, errors do occur. However,
there is a fairly robust DNA repair process that corrects the
errors made during replication. In spite of this, it is possible
that some mutations that occurred during DNA replication
do not get corrected, but instead get passed on to the next
generation and the next after that; these are called somatic
mutations. If these mutated cells replicate at a faster rate than
normal cells, then it is possible (though not inevitable) that
eventually the mutated cells overwhelm the normal cells by
grabbing the resources needed for replication. At this point
the cell growth, or tumor, has gone from being benign to
being malignant. If the products of the mutated DNA enter
the blood stream, or the lymph system, then the mutations
can then be replicated at locations that are far-removed from
the site of the original mutation; this is known as metastasis.

One of the complicating factors of cancer is that, in con-
trast to other diseases, every manifestation of the disease is in
some sense unique.4 Hence some sort of ‘personal medicine’
is not only desirable, but is in some sense mandatory. Fortu-
nately, thanks to all the advances cited in Section I-C, there is
now a tremendous opportunity for cancer therapy to aspire to
precisely this. Specifically, by analyzing the vast amount of
molecular and clinical data that is becoming available, cancer
therapists can aspire to provide prognostic information and a
selection of therapies that would most benefit that particular
patient. The flip side is that the availability of enormous
amounts of data poses its own challenges. While there are
many possible ways to exploit the flood of data, in this paper
we begin focusing on approaches based on identifying the
genetic regulatory networks (GRNs)5 that would have gone
awry to cause the cancer. Then we discuss two other topics.

In this GRN-based approach, cancer therapists would
proceed roughly as follows:

• Identify either a ‘consensus’ GRN describes a cross-
section of the population, or a ‘personal’ GRN that
describes the particular patient under normal conditions.
Then, compare the GRN that governs the cancerous
tissue, and see how it differs from the normal (consensus
or personal) GRN.

• Take a large number of cancer patients that are afflicted
by a particular condition, then group them in such a
way that the variation of GRNs within each group is a
minimum, while at the same time the variation between
groups is maxium.

• Using a combination of machine-learning (or statistical)
and experimental methods, predict which treatment reg-
imen is likely to be most effective for a particular group
of patients.

So what can the controls community contribute within this

4One could paraphrase the opening sentence of Leo Tolstoy’s Anna
Karenina and say that ‘Normal cells are all alike; every malignant cell
is malignant in its own way’.

5This term is defined precisely later on.

broad framework? In one phrase, hypothesis generation and
validation. Specifically, the community can
• Integrate available data in a rational manner that would

permit the generation of all possible hypotheses about
therapeutic interventions.

• When the biologists come up with some hypotheses,
exclude those hypotheses that are inconsistent with the
data, and rank those that are consistent in terms of their
statistical significance.

• In a suo motu fashion, generate hypotheses that are
suggested by the data, which the biologists can then
validate.

• As experiments are performed to test various hypothe-
ses, it is inevitable that there will be mismatches be-
tween the statistical predictions and the actual exper-
imental outcomes. When this happens, the statistical
models must be recalibrated to take into account the
new data.

In short, by entering into a partnership with the biologists’
community, the controls community can create a ‘virtuous
cycle’ that would benefit both groups.

E. Organization of the Paper

Four specific problems are discussed here, namely:
• Reverse engineering gene regulatory networks (GRNs)
• Constructing context-specific gene regulatory networks
• Analyzing the significance of variations from gene

expression studies
• Discriminating between drivers (mutations that cause

cancer) and passengers (mutations that are caused by
cancer or have no impact).

Out of these four topics, the first three use a fairly homoge-
nous set of ideas from probability and statistics, such as
Markov chains, graphical models, goodness of fit tests etc.
The fourth topic involves only clustering, which, though it
has some probabilistic foundations, is less ‘deep’ than the
first three. It is included here for a very good reason. The
discussion on the first three topics is slightly futuristic in the
sense that, while some successes have been claimed in the
literature, these are only suggestive of future applicability to
cancer biology, and not definitive indications. In contrast, in
the case of the fourth topic, some success has already been
realized in the sense that several genes that were identified
as possible drivers of colorectal cancer have already been
found to play a role in other forms of cancer. The fact that
these genes were identified only by clustering the so-called
‘developmental gene expression profile’ suggests a possible
connection between this profile and the role of that gene
(if any) in being a driver of cancer. Since our ultimate aim
is to assist cancer biologists to address the challenges they
face, this small ‘success story’ has been considered worth
reporting even if the underlying theory is not very difficult.

II. INFERRING GENETIC REGULATORY NETWORKS

A. Problem Formulation

A gene regulatory network (GRN) is defined as a col-
lection of genes or gene products in a cell that interact
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with each other. The problem of inferring a GRN is that
of reconstructing (or at least making a good model of) the
GRN from experimental data. One of the main motivations
for inferring GRNs from data is very nicely spelled out in
the perspective paper [15]:

“In the end, a good model of biological networks
should be able to predict the behavior of the net-
work under different conditions and perturbations
and, ideally, even help us to engineer a desired
response. For example, where in the molecular
network of a tumor should we perturb with drug
to reduce tumor proliferation or metastasis? Such
a global understanding of networks can have trans-
formative value, allowing biologists to dissect out
the pathways that go awry in disease and then iden-
tify optimal therapeutic strategies for controlling
them.”

One can divide GRN models into two classes: static
and dynamic. Dynamic GRN models usually consist of
a system of ordinary differential equations (ODEs). See
[16] and the references therein for exemplars of such an
approach. Obviously, in order to generate such models, the
experimental data must itself be temporally labeled. As
stated earlier, ‘temporal’ gene expression data is in reality
a collection of ostensibly identical experiments terminated
in a staggered fashion at different points of time. In the
author’s opinion, such data is often not reliable enough
to permit the construction of accurate temporal models,
unless the models are particularly simple. For this reason,
the discussion below is focused on static GRNs, where all
quantities are in the steady-state. The paper [15] presents a
set of three ‘principles’ and six ‘strategies’ for developing
network models in cancer. The paper is well worth reading
in its entirety. However, we note that Principle 1 is ‘Molec-
ular influences generate statistical relations in data’, while
Strategy 3 is ‘Statistical identification of dysregulated genes
and their regulators’. Given the scope of the present paper,
the discussion below is guided by these two observations.

By far the most popular models of (static) GRNs are
graphical, where the nodes represent individual genes or
individual gene products. There are only two kinds of
edges, referred to as unmediated interactions and mediated
interactions respectively, as shown below.

A B A B

C

Unmediated Interaction Mediated Interaction

The above diagram shows only one single edge within a
GRN. A complete GRN is usually extremely complicated,
with possibly tens of thousands of nodes, and millions of
edges, often resembling a ‘spider’s web’. Figure 2 shows a
part of the GRN corresponding to B lymphocytes, showing
all the nearest neighbors of the proto-oncogene MYC, to-
gether with some (not all) of the neighbors of the neighbors
of MYC; the figure corresponds to [17, Figure 4]. We shall
return to this example later.

Fig. 2. The MYC Subnetwork [17, Figure 4]

GRNs have some very typical ‘small world’ features. For
instance, simple arithmetic shows that with tens of thousands
of nodes and millions of edges, the average connectivity of
each node is in the double digit range. In reality however, the
vast majority of nodes have connectivities in the single digit
range, while a few nodes act as hubs and have connectivities
in the high hundreds and possibly in the low thousands.

The problem at hand therefore is the reconstruction of
a GRN on the basis of gene expression data, some (or
most) of which could come from a public source such
as the Gene Expression Omnibus (GEO) [18]. Even when
the data has been painstakingly generated by personnel in
some laboratory, the data is then immediately placed in
GEO or another such publicly accessible source, so that the
results can be verified by other research groups. The data
would consist of expression levels of various gene products,
obtained across multiple cell lines by various research teams
(and all the lack of standardization that implies).6 The data
can be analyzed to study multiple genes or gene products in
one cell line (lateral study), the same set of genes or gene
products across multiple cell lines (longitudinal study), or
both. In such studies, the number of gene products is often
in the tens of thousands. However, the number of distinct
cell lines rarely exceeds a few dozen, or a few hundred if
one is extremely fortunate. Thus any statistical methodology
must address this mismatch in dimension.

Another important aspect of the problem is that one rarely
uses the ‘raw’ data coming out of experiments. As mentioned
earlier, since biological experiments are not reproducible,
every experiment includes some ‘control’ genes whose ex-
pression levels should be constant across experiments. Then
the raw data from the various sets of experiments is nor-
malized in such a way that the expression levels of the
control genes is the same in all experiments. And then all
the data is aggregated. Once this is done, the data for the
remaining genes is ‘smoothened’ by centering, rescaling,
linear to logarithmic transformation etc. The key point to
note here is that each of these transformation is one-to-

6Note that the data for a single cell line could itself be a compendium of
data obtained through multiple experiments carried out at different times.
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one and therefore invertible. Often the transformation is also
monotone, in that it preserves the linear ordering of real
numbers. The smoothened data then forms the input to the
inference problem described next.

In order to use statistical methods, let us think of the
expression levels of the various genes or gene products
as random variables X1, . . . , Xn, and the available data
as consisting of samples xij , i = 1, . . . , n, j = 1, . . . ,m.
With this biological background, one can formally state the
problem at hand.

Problem: Given n random variables X1, . . . , Xn and
samples xij , i = 1, . . . , n, j = 1, . . . ,m, where m � n,
compute the joint distribution function of the n random
variables on the basis of the available data. Moreover, any
technique used must have the feature of ‘invariance under
invertible transformations’. In other words, for any set of
invertible functions ηi : R → R, i = 1, . . . , n, the technique
applied to the data set {ηi(xij)} should produce the same
result as applied to the data set {xij}.

The number of random variables n is far larger than the
number of samples m and is likely to remain so for the
foreseeable future. Thus, in any reasonable statistical sense,
it is clearly impossible to infer the joint distribution of all
n random variables, unless one imposes some assumptions
on the nature of the joint distribution. The two specific
techniques described below, namely the Markov random
field approach and the Bayesian network approach, are
distinguished by the assumptions they impose. It must be
emphasized that the assumptions are imposed not so much
because they are justified by biological realism, and more
because they facilitate statistical analysis.

Irrespective of the assumptions made and the techniques
used, the ultimate objective of statistical methods for in-
ferring GRNs is to unearth dependences amongst various
random variables. To put it another way, the aim is not so
much to find a very precise formula for the joint distribution
of the n random variables, but rather to identify whether one
random variable Xi is influenced by another Xj . Let us now
attempt to make precise this notion of ‘being influenced’. At
a very basic level, one could say that Xi is influenced by Xj

if the two random variables Xi and Xj are not independent.
But this is a very crude definition, so let us attempt to refine
it. Suppose Xi is indeed influenced by Xj in the sense that
Xi and Xj are not independent. The next level question one
can ask is whether the influence is direct or indirect. In other
words, is it the case that

Pr{Xi|Xk, k 6= i} = Pr{Xi|Xk, k 6= i, k 6= j}? (II.1)

The above equation means that the conditional distribution of
Xi given all other random variables Xk, k 6= i, is exactly the
same as the conditional distribution of Xi given all random
variables Xk other than Xj . So if the above equation holds,
then it means that, while Xj does indeed influence Xi, the
influence is indirect. For instance, suppose k is some index
and that Xi, Xj are conditionally independent given Xk.
Then Xj influences Xk which in turn influences Xi, but
Xj does not ‘directly’ influence Xi. On the other hand, if
(II.1) does not hold, then one can claim that Xj ‘directly’

influences Xi. These kinds of hypotheses can then be tested
in experiments (and validated or invalidated).

B. Methods Based on Mutual Information

One way to approach the issue of whether Xj influences
Xi is to compute their mutual information. Let us switch
notation and suppose that X,Y are random variables assum-
ing values in finite sets A,B respectively. Let µ,ν,θ denote
the distribution of X , the distribution of Y , and the joint
distribution of X and Y , respectively. Then the quantity

H(X) = H(µ) = −
∑
i∈A

µi logµi

is called the Shannon entropy of X or µ,7 while

I(X,Y ) = H(X) +H(Y )−H(X,Y )

is called the mutual information between X and Y . An
equivalent formula is

I(X,Y ) =
∑
i∈A

∑
j∈B

θij log
θij
µiνj

.

Note that mutual information is symmetric: I(X,Y ) =
I(Y,X). Also, I(X,Y ) = 0 if and only if X,Y are indepen-
dent random variables. Finally, if f : A→ A′, g : B→ B′ are
one-to-one and onto maps then I(f(X), g(Y )) = I(X,Y ).
Thus in particular, monotone maps of random variables leave
the entropy and mutual information invariant.

One of the first attempts to use mutual information to
construct GRNs is in [19], which introduces ‘influence
networks.’ In this approach, given m samples each for n
random variables X1 through Xn, one first computes the
pairwise mutual information I(Xi, Xj) for all i, j, j 6= i,
that is, n(n − 1)/2 pairwise mutual informations. Then Xi

and Xj are said to influence each other if the computed
I(Xi, Xj) exceeds a certain threshold. Note that, since mu-
tual information is symmetric, in case I(Xi, Xj) does exceed
the threshold, all one can say is that Xj influences Xi, or vice
versa, or perhaps both. In other words, it is not possible to
infer any ‘directionality’ to the influence if one uses mutual
information (or for that matter any other symmetric quantity)
to infer dependence. Another detail is note is that in fact
one cannot compute the ‘true’ mutual information because
one does not know the true joint distributions of Xi, Xj .
Instead, one has to compute an ‘empirical’ approximation
to I(Xi, Xj) on the basis of the samples. In [19], this is
done by grouping the observed expression levels into ten
histograms, thus effectively quantizing each random variable
into one of ten bins. This was possible in [19] because they
were fortunate enough to have 79 samples. In cases where
the number of samples is smaller, one would obviously have
to use fewer bins.

The major drawback of the influence networks approach
proposed in [19] is that it is not able to discriminate between
direct and indirect influence. As a result, the influence

7We make no distinction between the entropy of a probability distribution
µ and the entropy of a random variable X having the probability distribution
µ.
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network constructed using mutual information fails to have
an edge between nodes i and j if and only if Xi and
Xj are independent (or if one uses empirically computed
estimates for the mutual information and a threshold, nearly
independent). To get more meaningful results, it is necessary
to prune this first-cut influence network by deleting an edge
between nodes i and j if the influence is indirect, that is, if
(II.1) holds.

To achieve this objective, an algorithm called ARACNE
is proposed in [20]. The basis of this algorithm is the
assumption that the joint probability distribution of all n
variables factors into a product of terms involving at most
two variables at a time. This special feature makes it possible
to invoke a bound known as the data processing inequality
to prune the first-cut influence network.

Now we describe the ARACNE algorithm.8 To make the
ideas clear, let us suppose that the random variable Xi

assumes values in a finite alphabet Ai, which can depend
on i. Define A =

∏n
i=1 Ai, and let x denote the n-tuple

(x1, . . . , xn) ∈ A. Similarly let X denote (X1, . . . , Xn).
Then the joint distribution of all n random variables is the
function φ : A→ [0, 1] defined by

φ(x) = Pr{X = x}. (II.2)

Now let N = {1, . . . , n}, and let

D = {(i, j) : 1 ≤ i < j ≤ n}.

Then the assumption that underlies the ARACNE algorithm
is that the function φ has the form

φ(x) =
1

Z

∏
i∈N

ψi(xi) ·
∏

(i,j)∈D

φij(xi, xj), (II.3)

where

Z =
∑
x∈A

∏
i∈N

ψi(xi) ·
∏

(i,j)∈D

φij(xi, xj)


is a normalizing constant. Note that in the statistical me-
chanics terminology employed in [20], the quantity log φ(·)
is called the ‘Hamitonian,’ and the assumption is that the
Hamiltonian is the sum of terms involving only individual
xi, or pairs (xi, xj), but no higher order terms.

Suppose we associate an undirected graph with the distri-
bution in (II.3) by inserting an edge9 between nodes i and
j if the function φij is not identically zero. In the worst
case, if every such function is not identically zero, we would
wind up with a complete graph with n nodes, where every
node is connected to every other node. This is clearly not
desirable. So the authors of [20] set out to find a simpler
representation of the data than a complete graph. In doing
so, they build upon the work of [21], where the objective is
to find the best possible approximation to a given probability
distribution φ(·) (not necessarily of the form (II.3)) in terms
of a distribution of the form (II.3) where φij 6≡ 0 for exactly

8Note that language used here is not identical to that in [20] but is
mathematically equivalent.

9Note that since the graph is undirected, it is not necessary to specify the
direction.

n − 1 pairs. The criterion used to define ‘best possible’ is
the relative entropy or the Kullback-Leibler divergence [22,
p. 19]. Specifically, if φ is the original distribution and θ is
its approximation, then the quantity to be minimized is

H(φ‖θ) =
∑
x

φ(x) log
φ(x)

θ(x)
.

This problem has a very elegant solution, as shown in [21].
Starting with the given distribution φ, first compute all
n(n − 1)/2 pairwise mutual informations I(Xi, Xj), j 6= i.
Then sort them in decreasing order. Suppose I(Xi1 , Xi2)
is the largest; then place an edge between nodes i1 and
i2. Suppose I(Xi3 , Xi4) is the next largest. Then create an
edge between nodes i3 and i4. In general, at step k, suppose
I(Xi2k−1

, Xi2k) is the k-th largest mutual information. Then
create an edge between nodes i2k−1 and i2k, unless doing
so would create a loop; in the latter case, go on to the next
largest mutual information. Do this precisely n − 1 times.
The result is a graph with n nodes, n − 1 edges, and no
cycles – in other words, a tree.

The authors of [20] build upon this approach by invoking
the following result. If Xi, Xj are conditionally independent
given Xk, then the so-called ‘data processing inequality’ [22,
p. 35] states that

I(Xi, Xj) ≤ min{I(Xi, Xk), I(Xj , Xk)}. (II.4)

Accordingly, the ARACNE algorithm initially constructs
an influence network as in [19]. Then for each triplet
(i, j, k) of pairwise distinct indices, the three quantities
I(Xi, Xj), I(Xi, Xk), I(Xj , Xk) are compared; the smallest
among the three is deemed to arise from an indirect interac-
tion, and the corresponding edge is deleted.

From the above description, it is easy to deduce the fol-
lowing fact: A network produced by the ARACNE algorithm
will never contain a complete subgraph with three nodes. In
other words, if there exist edges between nodes i and j, and
between nodes j and k, then there will never be an edge
between nodes i and k. From the standpoint of biology, this
means that if gene i influences (or is influenced by) two
other genes j and k, then perforce genes j and k must be
conditionally independent given the activity level of gene i.

Note that the network that results from applying the
ARACNE algorithm does not depend on where we start
the pruning. To illustrate, consider a very simple-minded
network with four nodes as shown below.

X1

X2

X3

X4

Suppose that

I(X1, X3) ≤ min{I(X1, X2), I(X2, X3)}.
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In accordance with the algorithm, the link from X1 to X3 is
discarded (and thus shown as a dashed line). Now suppose
in addition that

I(X3, X4) ≤ min{I(X1, X3), I(X1, X4)}.

Then the edge from X3 to X4 is also deleted. It is easy to
verify that if we had examined the triplets in the opposite
order we would still end with the same final graph.

The ARACNE algorithm has been applied to the problem
of reverse-engineering regulatory networks of human B cells
in [17]. A total of 336 gene expression profiles for 9,563
genes were used. Only about 6,000 genes had sufficient
variation in expression levels to permit the computation of
mutual information. To illustrate the network that results
from applying the algorithm, the authors depict how it looks
in the vicinity of the proto-oncogene MYC.10 The ARACNE
algorithm showed that MYC had 56 nearest neighbors, and
thes 56 neighbors had 2,007 other genes that were not
neighbors of MYC. Thus at a distance of two steps, MYC
contained more than 2,000 of the roughly 6,000 genes in the
network. The overall network had about 129,000 interactions
(edges), or about 20 per node on average. However, just 5%
of the 6,000 nodes accounted for 50,000 edges, or about 40%
of the total, thus demonstrating the ‘small world’ nature of
the GRN that results from the algorithm. Figure 2 shows
the 56 neighbors and another 444 most significant second
neighbors of MYC.

Thus far the methods described generate GRNs with only
unmediated edges. To construct GRNs with mediated edges,
one follows the same approach as in ARACNE, except
that instead of using the mutual information I(Xi, Xj), one
uses the conditional mutual information I(Xi|Xl, Xj |Xl).
Since the conditional mutual information also satisfies a data
processing inequality of the form (II.4), the same reasoning
can be applied to prune an initially overly dense network.
This algorithm, based on conditional mutual information, is
referred to as MINDy and is proposed in [24]. An essentially
similar algorithm is proposed in [25].

In either ARACNE or MINDy, it is obvious that the
most time-consuming step is the computation of all pairwise
mutual informations. In [20], the authors take the given
samples, and then fit them with a two-dimensional Gausian
kernel for each pair of random variables. Then a copula
transform is applied so that the sample space is the unit
square, and the marginal probability distribution of each
random variable is the uniform distribution.11 In [28], a
window-based approach is presented for computing pairwise
mutual information that is claimed to result in roughly an
order of magnitude reduction in the computational effort.
For instance, for the B lymphocyte network studied in [17],
the original ARACNE computation is claimed to take 142

10Medterms [23] defines a proto-oncogene as “A normal gene which,
when altered by mutation, becomes an oncogene that can contribute to
cancer,” and an oncogene as “A gene that played a normal role in the cell
as a proto-oncogene and that has been altered by mutation and now may
contribute to the growth of a tumor.”

11The notion of a copula was introduced in [26]. See [27] for an excellent
introduction to the topic.

hours of computation, while the method proposed in [28] is
claimed to take only 23 hours.12

C. Methods Based on Bayesian Networks

In this section we discuss the Bayesian network-based
approach to inferring GRNs. Bayesian networks have been
used in artificial intelligence for many decades, and [30]
is the classic reference for that particular application. The
Bayesian approach to inferring GRNs appears to have been
pioneered in [31]. This was followed up by other work [32]
and a survey is given in [33].

As before, the problem is to infer the joint distribution of
n random variables X1, . . . , Xn, based on m independent
samples of each random variable. For any set of random
variables, it is possible to write their joint distribution as
a product of conditional distributions. For two variables
X1, X2, we can write

Pr{X1, X2} = Pr{X1} · Pr{X2|X1},

and we can also write

Pr{X1, X2} = Pr{X2} · Pr{X1|X2}.

If there are n random variables X1, . . . , Xn, then we can
write

Pr{X} =

n∏
i=1

Pr{Xi|Xj , 1 ≤ j ≤ i− 1},

where X denotes (X1, . . . , Xn). More generally, let π be
any permutation on {1, . . . , n}. Then we can also write

Pr{X} =

n∏
i=1

Pr{Xπ(i)|Xπ(1),...,π(i−1)}. (II.5)

Since the above expression is valid for every permutation
π, we should choose to order the variables in such a way
that the various conditional probabilities become as simple
as possible. In essence, this is the basic idea behind Bayesian
networks.

Suppose now that G is an acyclic directed graph with
n vertices. Note the total contrast with the assumptions in
methods based on mutual information. In that setting, G is
an undirected graph, so that edges can be thought of as
being bidirectional. In the present setting, not only are edges
unidirectional, but no cycles are permitted. In other words,
both the situations shown below are ruled out in the Bayesian
network paradigm.

A B

A B Cmany

nodes

12It is interesting to note that in a preprint version of [28], their method
is claimed to take only 1.6 hours.
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Let us think of an edge (i, j) as being from node i to
node j, and let E denote the set of edges in G. Since
the graph is assumed to be acyclic, with each node i we
can unambiguously associate its ancestor set A(i) and its
successor set S(i) defined by

A(i) = {k : (k, i) ∈ E}, S(i) = {j : (i, j) ∈ E}. (II.6)

Since the graph is both directed as well as acyclic, it is
obvious that A(i) and/or S(i) may be empty for some indices
i. In some circles, a node i is referred to as a ‘source’ if A(i)
is empty, and as a ‘sink’ if S(i) is empty. Let us also adopt
the notation Xi ⊥ Xj if Xi and Xj are independent, and
the notation (Xi ⊥ Xj)|Xk if Xi and Xj are conditionally
independent given Xk.

Definition 1: A set of random variables X1, . . . , Xn is
said to be a Bayesian network with respect to a directed
acyclic graph G if

(Xi ⊥ Xj)|{Xk, k ∈ A(i)}, ∀j 6∈ S(i). (II.7)
In words, a set of random variables X1, . . . , Xn is a

Bayesian network with respect to G if, for a fixed index
i, the associated r.v. Xi is conditionally independent of Xj

for all nonsuccessors Xj , given the values of Xk for all
successors k of i. It is easy to see that if the set of random
variables X1, . . . , Xn forms a Bayesian network with respect
to the directed acyclic graph G, then the joint probability
distribution factors as follows:

Pr{X} =

n∏
i=1

Pr{Xi|{Xk, k ∈ A(i)}}, (II.8)

where the conditional probability of Xi is taken to be the
unconditional probability if the set A(i) is empty. Compare
(II.7) with (II.5).

The formula (II.8) demonstrates one of the main attrac-
tions of the Bayesian network model. For each source node
i, the unconditional probability of Xi can be computed
directly from the data. (It is obvious that if i, j are both
source nodes, then Xi ⊥ Xj .) Then, using (II.8), the
conditional probability computation of any intermediate Xi

can be propagated along the graph. This is the feature that
makes Bayesian networks so popular in AI circles.

The problem of modeling a set of expression data using a
Bayesian network can be divided into two questions. First,
what is the graph G that is used to model the data (i.e., the
dependence structure among the random variables)? Second,
once the graph G has been chosen, how can one find the best
possible fit to the expression data by a suitable choice of
the various conditional probabilities in (II.8)? In answering
the second question, one again needs to make a distinction
between parametric models, where the various conditional
probabilities are specified as known functions of an unknown
parameter θ ∈ Θ where Θ is specified ahead of time,
and nonparametric models in which case no such form is
assumed. Strictly speaking, the classical Bayesian paradigm
applies to the use of parametric models with the dependence
structure specified beforehand. In such a case, it is assumed
that the parameter θ has a known prior distribution, and that
the data set, call it D, is generated using some unknown

probability distribution. Then the parameter θ is chosen
so as to maximize the posterior probability Pr{θ|D}. The
Bayesian approach consists of observing that

Pr{θ|D} =
Pr{D|θ} · Pr{θ}

Pr{D}
.

Hence

log Pr{θ|D} = logPr{D|θ}+ log Pr{θ} − log Pr{D}.

In the above equation, Pr{D} can be treated as a constant,
since it does not depend on θ. In principle, the same approach
can also be extended to answer the first question as well,
namely the choice of the directed graph G that is used
to model the data. However, since the number of possible
directed acyclic graphs in n nodes increases far too quickly
with n, this approach may not be feasible, unless one restricts
attention to a very small subset of all possible directed
acyclic graphs on n nodes.

D. A Unified Interpretation

The two approaches described above can be put into
some sort of common framework. Suppose X1, . . . , Xn are
random variables assuming values in finite sets A1, . . . ,An
respectively. Let X denote (X1, . . . , Xn), and let A denote∏n
i=1 Ai. Finally, let x ∈ A denote a value that X can

assume, and let, as before,

φ(x) = Pr{X = x}

denote the joint probability distribution. Then one can ask
two specific questions: First, if φ(x) has certain product
form, does this imply any kind of dependence structure on
the random variables? Second, and conversely, if the random
variables have some kind of dependence structure, does this
imply that the joint distribution has a specific form? It turns
out that the first question is very easy to answer, while the
second one is more difficult.

Accordingly, suppose first that G is a graph with n
nodes. For the moment we neither assume that the graph
is symmetric nor that it is acyclic. It is a directed graph
(unlike in ARACNE) and may contain cycles (unlike in the
case of Bayesian networks). Let N denote {1, . . . , n}, the
set of nodes in the graph, and let C1, . . . , Ck are subsets of
N that together cover N . In other words,

k⋃
l=1

Cl = N .

Besides the covering property, no other assumptions are
made about the nature of the Cl. For each Cl, define

XCl = {Xj , j ∈ Cl),ACl =
∏
j∈Cl

Aj .

The possible value xCl ∈ ACl is defined analogously. Next,
define

D(i) =
⋃
{Cl : i ∈ Cl}, S(i) = D(i) \ {i}.

Thus D(i) consists of the union of all Cl that contain i.
Note that, due to the covering property of the sets Cl, there
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is at least one Cl that contains i, whence D(i) is nonempty
and contains i. Thus S(i) is well-defined, though it could be
empty. With these definitions, the following result is quite
easy to prove.

Theorem 1: Suppose there exist functions φl, l = 1, . . . , k
such that

φ(x) =
1

Z

k∏
l=1

φl(xCl), (II.9)

where

Z =
∑
x∈A

k∏
l=1

φl(xCl)

is a normalizing constant. Then

Pr{Xi|Xj , j 6= i} = Pr{Xi|Xj , j ∈ S(i)}. (II.10)
An equivalent way of stating the theorem, which makes

it resemble the definition of a Bayesian network is this:
Suppose the joint distribution φ(x) can be factored as in
Theorem 1. Then (II.7) is satisfied, with S(i) now defined
as above. Indeed the theorem is more or less a restatement
of (II.5).

With suitable conventions, both the Bayesian network and
the undirected graph can be put into the above dependence
structure. However, the converse of the above theorem is
false in general. Even if (II.10) holds, it does not readily
follow that the joint distribution factors in the form (II.9).
To obtain a proper converse, we introduce the notion of a
Markov random field and present the Hammersley-Clifford
theorem. Suppose as before that X1, . . . , Xn are random
variables assuming values in their respective finite alphabets
(which need not be the same), and that G is an undirected
graph with n nodes.13 For each node i, let N(i) denote the
set of neighbors of i; thus N(i) consists of all nodes j such
that there is an edge between nodes i and j.

Definition 2: A set of random variables X1, . . . , Xn is
said to be a Markov random field with respect to a graph
G with n nodes if

Pr{Xi|Xj , j 6= i} = Pr{Xi|Xk, k ∈ N(i)}, ∀i. (II.11)
In words, a set of random variables X1, . . . , Xn is a

Markov random field with respect to G if and only if the
conditional distribution of each random variable Xi depends
only on its neighbors Xk, k ∈ N(i).

A closely related notion is that of a Gibbs distribution. To
define this notion, let us recall that a clique of an undirected
graph is a maximal completely connected subgraph.

Definition 3: Suppose X1, . . . , Xn are random variables
and that G is an undirected graph with n nodes. Let
C1, . . . , Ck denote the cliques of G. Then the random vari-
ables X1, . . . , Xn are said to have a Gibbs distribution with
respect to the graph G if their joint distribution φ satisfies

φ(x1, . . . , xn) =

k∏
l=1

φl(xj , j ∈ Cl). (II.12)

In words, the random variables X1, . . . , Xn have a Gibbs
distribution with respect to G if the joint distribution of all n

13Now it is assumed that the graph is undirected.

variables factors as a product of simpler joint distributions,
one for each clique of G.

A fundamental result known as the Hammersley-Clifford
theorem connects the two concepts.

Theorem 2: Suppose the joint distribution φ(x1, . . . , xm)
of a set of random variables is always strictly positive. Then
they form a Markov random field if and only if the joint
distribution is a Gibbs distribution.

Though this theorem is credited to Hammersley and Clif-
ford, their original manuscript is somewhat inaccessible. A
proof of this theorem can be found in [29] as well as several
textbooks. Note that the proof in one direction is easy: If
the joint distribution is Gibbs, then the random variables
form a Markov random field, and one does not require the
assumption that the joint distribution is positive in order to
prove this. Therefore the real import of the theorem is in
the opposite direction. To prove it in this direction, the strict
positivity of the joint distribution as well as the finiteness of
the alphabets in which each random variable assumes values
are both essential requirements.

E. Evaluation and Validation of Competing Approaches

Given that the computational biology literature is full of
various approaches for reverse-engineering GRNs, there is
a lot of interest in assessing the relative performance of all
the competing approaches. In the area of protein structure
prediction based on the primary structure (i.e., the sequence
of amino acids that constitute the protein), there is a well-
established biennial competition known as CASP (Critical
Assessment of Structure Prediction). In this competition,
the organizers first determine the 3-D structure of a protein
using x-ray crystallography or some other method, but do
not share it with the community at large. Instead the com-
munity is challenged to ‘predict’ the structure, and the ones
who come closest to the true structure are recognized as
such. Perhaps drawing inspiration from this, the research
community working in the area of inferring GRNs has a
competition called DREAM (Dialog for Reverse Engineering
Assessment and Methods). In the personal opinion of the
author, the DREAM competition lacks the authenticity of
the CASP competition, simply because in CASP there is an
unambiguous, objective truth that everyone is striving to find,
and against which any and all predictions can be compared.
This is definitely not the case in DREAM. Rather, in the
case of DREAM, synthetic data is generated using some
model or combination of models. It should be clear that,
given two algorithms, one can always generate data sets on
which one algorithm outperforms the other, and other data
sets on which the performance is reversed. Until and unless
our knowledge of GRNs proceeds to a stage where at least a
few GRNs are completely identified to constitute ‘the truth’
(as in CASP and protein structures), there is a danger that
such competitions actually serve to confuse rather than to
clarify. Again, this is the author’s personal opinion.
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III. CONTEXT-SPECIFIC GENOMIC NETWORKS

A. An Approach to Personal Medicine

As pointed out earlier, cancer is a highly individualized
disease. It is not merely that mutations in some part of
the DNA cause cancer. It is also the case that mutations
in other parts of the DNA have a huge impact on the
responsiveness to a therapeutic regimen. Identifying which
mutations cause/have caused cancer, which mutations may
affect the efficacy of treatment, and tailoring the treatment
appropriately, is the essence of personal medicine.

Out of the dozens of known instances, we cite just
one by way of illustration [35]. The drug cetuximab is a
monoclonal antibody directed against the epidermal growth
factor receptor (EGFR), one of the more popular gene targets
for cancer therapy. This drug is widely used as a treatment
for advanced colorectal cancer, often after other forms of
chemotherapy have failed. In the paper [35], the authors
analyzed 394 samples of colorectal cancer to see whether
they contained a mutation of the gene KRAS, which is often
found to be mutated in various forms of cancer. Amongst the
samples tested, 42.3% had at least one mutation in KRAS,
while the rest were ‘wild type’.14 To paraphrase the findings
of [35],
• Amongst the patients who were given best supportive

care alone (i.e., no cetuximab), there was no significant
difference between the survival of patients who had a
KRAS mutation and those who did not.

• Amongst patients with wild-type KRAS tumors (mean-
ing, no mutation in the KRAS gene), there was substan-
tial improvement after treatment with cetuximab.

• Amongst patients with a KRAS mutation, there was no
significant benefit to treatment with cetuximab.

To summarize quickly, a KRAS mutation does not affect
survival prospects if colorectal cancer is left untreated. If
a patient has a KRAS mutation, then cetuximab therapy is
of no beneift, whereas a patient without a KRAS mutation
derives significant benefit from a cetuximab treatment.

In the paper cited, the authors had a very specific hy-
pothesis in mind, namely that KRAS mutations affected the
response to cetuximab treatment. However, often the role of
the computational biologists is to generate such hypotheses
using the data at hand. This would entail examining the data
at hand to examine not just one mutation (in this case KRAS)
but multiple mutations, and assessing the significance of each
possible combination of mutations. It is easy to see that if
one examines k genes then there are 2k possible states of
mutations to be examined. With 400 patients (a large number
in such studies), if one wishes to have an average of, say,
10 samples per state, then it is possible to examine at most
k = blog2(400/10)c = 5 different genes at a time. When one
undertakes very large studies involving siRNA knockdowns
for example, it is not uncommon to have just a handful of
samples, often in the single digits. Accordingly, the emphasis
in this section is on methods that permit ‘context-specific’
genomic networks, one for each sample, that can perhaps be

14This means that the gene is not mutated.

used to draw useful conclusions even when there are very
few samples at hand.

B. Identification of Genomic Machines

The problem discussed in the previous section, namely
inferring GRNs from gene expression data, presupposes
that there is no prior knowledge about the structure of the
GRN.15 In order to achieve some kind of accuracy in reverse-
engineering the GRN, one is forced to aggregate a very large
number of gene expression profiles that provide the input
data set to whatever algorithm is being used. The output of
the algorithm applied to an agglomeration of multiple data
sets can perhaps be referred to as a ‘consensus’ GRN.

However, such an ab initio approach is not always war-
ranted. In reality the biology literature is full of experimental
results that report the influence of one entity on another,
or the presence of interactions between some biological
entities (such as genes and gene products). Granted, this
information is scattered throughout the literature, and each
individual publication usually reveals just a very tiny bit of
the overall GRN. However, there are commercial vendors
who ‘curate’ the published literature and ‘integrate’ all
the reported interactions into one or more giant pathway
databases. Diligent researchers can add value to the com-
mercial products, either by integrating several commercial
databases and/or adding proprietary in-house data. Hence
it is not unreasonable to suppose that there is available at
least a first-cut approximation to the GRN. More interesting,
at least to the present author, is the fact that unlike the
networks studied in the earlier section, which are forced
either to be undirected or acyclic (both quite unrealistic
assumptions), the graphical representations of commercially
available databases incorporate both directional edges and
cycles. In this respect, they can perhaps be deemed to be
more faithful representations of reality. Accordingly, in this
section we examine a different problem to the one earlier,
namely: Suppose one has available a graphical representation
of which genes or gene products interact, and how; however,
the strengths of the interactions are not always known. Now
suppose some data is available in the form of gene expression
data; how can one couple this additional information with the
known (or at least, hypothesized) graphical representation to
derive further insights? Since the graphical representation
itself remains unchanged, and only the expression data
changes, such networks are usually referred to as ‘context-
specific’ genomic networks.

Accordingly, suppose one is given a directed graph G
with n nodes, where each node corresponds to a gene
or a gene product, and the edges represent some kind of
consensus about which pairs of nodes interact, and if so in
which direction. There is no restriction that the graph should
be acyclic, but self-loops are not allowed. The network is
modeled as a random walk on G, that is, as a Markov process
on a set of cardinality n. To describe the random walk

15other than the simplifying statistical assumptions of Markov random
field, Bayesian network structure or the like, which are made for statistical
convenience than biological realism
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or Markov process, it is necessary to specify the transition
probability fij defined as

fij = Pr{Xt+1 = j|Xt = i},

where {Xt} is the Markov process. The matrix F is row-
stochastic in the sense that Fen = en, where e denotes
a column vector of all 1’s, and the subscript denotes its
dimension.

We shall define F in stages by first defining another
row-stochastic matrix P . In the absence of experimental
data, one uses only the interaction pattern to determine the
activity levels of a node. This is done by mimicking the
well-known page rank algorithm [36]. In this algorithm, the
nodes represent individual pages on the worldwide web, and
each node is assigned a weight equal to the contribution
from other nodes that point into it. In turn, the weight of
each node is assumed to be distributed equally amongst all
outgoing edges. It is easy to see that these two criteria result
in the statement that the weight vector of all the nodes is
the stationary distribution of a Markov chain where the state
space is the set of nodes, and the transition probability pij
is assumed to be equal along all outgoing edges. Thus

pij =

{
1/|S(i)| if j ∈ S(i),
0 if j 6∈ S(i)

. (III.1)

The ultimate objective is to determine the stationary distribu-
tion of the Markov chain with transition matrix F , denoted
by π. The higher the value of πi, the more active that node
is taken to be.

However, if we directly set F = P then two things can
happen. First, the graph as a whole may not be connected.
Second, there can be some nodes that do not have outgoing
edges (so-called ‘dangling’ edges). In the first case, there
may be more than one stationary distribution. In the second
case, all the dangling nodes will become essential nodes
while the rest will become inessential (see [37] for definitions
of these terms, as well as for theorems about stationary
distributions). In such a case, it is well-known [37] that any
and all stationary distributions will be supported on only the
set of essential, or dangling, nodes. To alleviate this difficulty,
in [36] the original matrix P is augmented by a rank one
matrix, in the following manner:

F = (1− q)P + (q/n)ene
T
n , (III.2)

where q ∈ (0, 1) is some arbitrarily chosen parameter. It
is easy to verify that, since P is row-stochastic, so is F .
In [36], the rank one correction is justified on the grounds
that a person browsing a certain web page may ‘jump’ to an
entirely unrelated web page, even if there is no direct link
to that page. For instance, a person browsing a travel web
site may suddenly jump to his/her bank’s web site to see
how much the bank balance is, to compare against the air
fare. Unstated in this correction is the implicit assumption
is that a ‘jump’ between any two pairs of nodes i and j is
equally likely; we shall see shortly that this assumption is
not justified in the case of biological networks. With this
additional term, the matrix F is strictly positive, so that it
has a unique strictly positive probability vector π such that

π = πF . In the page rank algorithm, q is taken as 0.15,
suggesting that a person browsing the web has roughly a
15% likelihood of jumping to an unconnected site.

In [38], the authors build on this idea, but with some
differences. Unlike in the page rank algorithm, where the
quantity of interest is the weight of a node (taken as πi
where π is the stationary distribution of the Markov chain),
the emphasis in [38] is in identifying so-called ‘genomic
machines.’ For the purposes of biology, a genomic machine is
defined as a set of genes or gene products that work together
to achieve a common purpose, even (or perhaps especially)
if one does not know what this purpose might be. To make
this qualitative statement precise, one first sets up a matrix
P as in (III.1), and then the adjusted matrix F as in (III.2).
Then one computes first the stationary distribution π, and
then the n2-dimensional ‘flow’ vector µ where

µij = πifij .

It is easy to see that in fact µ is just the ‘doublet frequency’,
or

µij = Pr{(Xt, Xt+1) = (i, j)},

under steady state conditions. Now suppose a gene ex-
pression experiment takes place, in which node i has an
expression value of wi. Then the ‘raw’ transition probability
pij is modified to

p
(r)
ij =

{
wj/si if j ∈ S(i),
0 if j 6∈ S(i)

,

where
si =

∑
j∈S(i)

wj .

It is easy to verify that the matrix P (r) is row-stochastic.
The interpretation is that the probability of moving from
node i to node j is proportional to the weight of node j,
and the division by si serves to normalize the transitional
probabilities so that they add up to one. As before, to cope
with the possibility of dangling edges, the raw transition
probability matrix P (r) is perturbed to

F (r) = (1− q)P (r) + (q/n)ene
T
n .

For this new Markov chain, one again computes the station-
ary distribution π(r) and doublet frequency distribution µ(r).
Note that if all expression weights wi are equal, then P (r)

and F (r) reduce respectively to P and F respectively.
The next step is to see which nodes are seen to be more

active as a result of the gene expression experiment. For this
purpose, a ‘figure of merit’ rij is defined for each edge as

rij = log
µ
(r)
ij

µij
. (III.3)

Thus rij > 0 if the flow along an edge is increased as a
consequence of the gene expression experiment. Next, if one
can find a cycle {i0, i1, . . . , ik = i0} such that rijij+1

> 0
for all j = 0, . . . , k − 1, then this set of nodes is thought of
as having a common purpose – in other words, a genomic
machine. Similarly, if another cycle can be found where the
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figure of merit for each edge is less than one, then that set
of nodes can also be thought of as a genomic machine. On
the other hand, cycles consisting of edges where the figure
of merit is sometimes positive and at other times negative
are thought not to have any significance in this approach.
As a result of this exercise, from the set of notes {1, . . . , n}
one will be able to identify several subsets S1, . . . ,SK of
genes that work together in a concerted fashion and are
thus genomic machines. Note that these gene sets are not
necessarily disjoint. Indeed it would be natural for certain
key genes to participate in multiple genomic machines.

One of the advantages of the above approach is that it is
not limited to just one set of gene expression data. Suppose,
as often happens, that one has a very small number cell
lines, all belonging to the same form of cancer, and that
gene expression studies have been carried out all of these.
Then the available data consists of a set of weights {wli, i =
1, . . . , n, l = 1, . . . , k}, where n is the number of nodes in
the graph, which is typically 20,000 to 30,000 genes or gene
products, and k is the number of cell lines, often of the order
of a dozen or so. Now, using the accepted interactions among
the nodes as captured by the graph G, one can construct
the initial flow vector µij . The next step is to average the
expression data among all cell lines to arrive at a ‘consensus’
set of weights for the overall expression study. This set
of weights can be used to construct a consensus context-
specific genomic network, together with its associated set
of flows µ(c)

ij , where the superscript denotes ‘consensus.’ By
constructing the figure of merit r(c)ij as in (III.3) by using
the consensus weights, one can determine genomic machines
S1, . . . ,SK as described earlier, for the entire set of cell
lines. Next, one can further carry out a longitudinal study
within the cell line population by computing the edge flows
µlij for cell line l using the individual cell line weights, and
computing a figure of merit similar to (III.3), namely

rij = log
µlij
µij

,

where as before µij is the edge flow associated with the
unweighted graph. In this way, one can examine each of the
consensus genomic machines S1, . . . ,SK and test whether
the machine remains intact (in the sense that the sign of
the figure of merit is the same on all edges) for a specific
cell lines. To repeat, the two-step process consists of first
identifying genomic machines that are specific to the disease,
and then examining whether a particular genomic machine
still functions as such for each cell line.

C. Randomized Algorithms

From the above description, it is clear that the most time-
consuming step in the construction of context-specific ge-
nomic networks is the computation of the stationary distribu-
tion π and the doublet frequency vector µ for several graphs,
all of them having the same topology but different sets of
weights for the nodes. The baseline computation assigns
the weight to each node to be its in-degree, and presumes
that outbound transitions on each edge are equally likely.

Further refinements are then made on the basis of actual
gene expression measurements. The baseline computation is
precisely that used in the page rank algorithm. In the original
version of this algorithm, the stationary distribution π is
computed using the ‘power method.’ Since the matrix F has
all positive entries, the Perron theorm implies that F l → enπ
as l→∞. In other words, F l converges to a rank one matrix,
whose rows are all equal. Consequently, for every probability
vector v, the iterated product vF l converges to π (since
ven = 1). In the case of the worldwide web, n is around
eight billion and growing rapidly, so a direct implementation
of the power method is not always practicable. The computer
science community has developed various parallel algorithms
for doing this computation. In contrast, in [39] a randomized
approach is proposed for computing π. The method in
[39] actually pays a lot of attention to things like ensuring
synchrony of updating, communication costs etc., but we
ignore these factors here. Instead we point out that, unlike in
the case of the page rank algorithm and the worldwide web,
the precise values of the components of π and µ are not
directly relevant in biology. Rather, the relevant quantities
are the figures of merit rij defined (III.3), and whether the
figure of merit is positive or negative for a particular edge.
Therefore a very germane problem in a biological context is
the development of randomized algorithms for approximate
computation of the stationary distribution and doublet fre-
quency. The computation should be sufficiently accurate to
determine the sign of the figure of merit for each edge (and
whether its absolute value exceeds some threshold). But more
is not needed, because the objects of ultimate interest are the
cycles where the edges all have the same sign, as explained
earlier. Since a typical biologist would want to run the above-
described kinds of consensus as well as longitudinal studies
on cell lines many times a day, and on simple desktops and
not dedicated computing hardware, the key objective to strive
for in the development of a randomized algorithm is the
reduction of the computational burden.

IV. ANALYZING STATISTICAL SIGNIFICANCE

In this section we will review some popular methods for
estimating the statistical significance of various conclusions
that can be drawn from gene expression data. As before,
the data is assumed to consist of m samples each of n
gene products. Thus the data set consists of real numbers
{xij}, i = 1, . . . , n, j = 1, . . .m. Moreover, it is often the
case that the data is labeled. Thus the m samples are grouped
into K classes, where class k consists of mk samples (and
obviously

∑K
k=1mk = m). Usually there is a biological

basis for this grouping. For instance, K could equal two, and
class 1 consists tissue from patients without cancer, while
class 2 consists of tumor tissue from cancer patients. Then a
new (m+ 1)-st sample is generated for all n genes, and we
would like to classify this new vector as belonging to one of
the K classes. In order to do so, the type of questions that
can be asked are the following:
• Suppose we divide the sample set into two classes con-

sisting of m1 and m2 elements each, which without loss
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of generality can be renumbered asM1 = {1, . . . ,m1}
and M2 = {m1 + 1, . . . ,m1 +m2} where m1 +m2 =
m. For a specific gene (i.e., a specific index i), is it
the case that the expression level of gene i for class
1 differs at a statistically significant level from that of
class 2? How can this idea be extended to more than
two classes?

• In biology it often happens that, in a collection of genes
S (referred to as a genomic machine in Section III), no
single gene is over-expressed in class 1 compared to
class 2; however, taken together they are over-expressed.
Can this notion be made mathematically precise and
tested?

• Suppose some sort of classifier has been developed,
which achieves a statistically significant separation be-
tween the various labeled classes. Now suppose, as
before, that an (m + 1)-st data vector consisting of
n expression level measurements becomes available.
Usually any classifier makes use of all n components
of the data vector. Is it possible to identify a subset of
{1, . . . , n} and a reduced-dimension classifier that more
or less reproduces the classification abilities of a full-
dimension classifier that uses all n components of the
data?

In this section we will address each of these questions. In-
deed Sections IV-B through IV-D correspond quite precisely
to the three questions described above. We begin by present-
ing, in Section IV-A, some standard results from statistics
and probability theory that will provide the underpinnings
of the analysis.

A. Basic Statistical Tests
In this subsection, we describe two basic tests, namely the

‘student’ t distribution and the Kolmogorov-Smirnov test for
goodness of fit.

The student t distribution can be used to test the null
hypothesis that the means of two sets of samples are equal,
under the assumption that the variance of the two sample
sets is the same. Strictly speaking the t distribution is derived
for the case where the samples follow a normal distribution.
However, it can be shown that the distribution applies to
a wide variety of situations, even without the normality
assumption.

Suppose we have two classes of samplesM1,M2, of sizes
m1,m2 respectively. Thus the data consists of x1, . . . , xm1

belonging to the classM1, and xm1+1, . . . , xm1+m2 belong-
ing to the classM2. Let x̄1, x̄2 denote the means of the two
sample classes, and let S1, S2 denote the unbiased estimates
of the standard deviations, that is,

S2
i =

1

mi − 1

∑
j∈Mj

(xj − x̄i)2, i = 1, 2.

Now define the ‘pooled’ standard deviation S12 by

S2
12 =

(m1 − 1)S2
1 + (m2 − 1)S2

2

m1 +m2 − 2

=
1

m1 +m2 − 2

2∑
i=1

∑
j∈Mj

(xj − x̄i)2.

In other words, the pooled variance is just a weighted average
of the two unbiased variance estimates of each class. Then
the quantity

dt =
x̄1 − x̄2

S12

√
(1/m1) + (1/m2)

(IV.1)

satisfies the t distribution with m1 + m2 − 2 degrees of
freedom. Note that as the number of degrees of freedom
approaches infinity, the t distribution approaches the normal
distribution. In practice, the t distribution is virtually indis-
tinguishable from the normal distribution when the number
of degrees of freedom becomes 20 or larger. Explicit but
complicated formulae are available in the literature for the
probability density and cumulative distribution function of
the t distribution.

The t test is applied as follows: Given the two sets of
samples the null hypothesis is that their means are the same.
Then the test statistic dt is computed from (IV.1) for the
actual samples. Using the standard tables, the likelihood that
a random variable X with the t distribution exceeds dt (if
dt > 0) or is less than dt (if dt < 0) is computed. If this
likelihood is smaller than some prespecified level δ, then the
null hypothesis is rejected at the level δ. In other words, it can
be concluded with confidence 1− δ that the null hypothesis
is false.

Next we describe the Kolmogorov-Smirnov test for good-
ness of fit. Suppose X is a real-valued random variable (r.v.).
Then its cumulative distribution function (cdf), denoted by
ΦX(·), is defined by

ΦX(u) = Pr{X ≤ u}.

The cdf of any r.v. has a property usually described as
‘cadlag’, which is an acronym formed from the French
phrase ‘continu à droite, limité à gauche’. In other words,
the cdf is right-continuous in the sense that

lim
u→u+

0

ΦX(u) = ΦX(u0),

and it has left limits in the sense that the limit

lim
u→u−

0

ΦX(u) =: Φ−X(u0)

exists and satisfies Φ−X(u0) ≤ ΦX(u0) for all real u0.
Suppose x = {xt}t≥1 are independent samples of X .

Based on the first l samples, we can construct an ‘empirical
cdf’ of X , as follows:

Φ̂l(u) :=
1

l

l∑
i=1

I{xi≤u}, (IV.2)

where I is the indicator function; thus I equals one if the
condition stated in the subscript is true, and equals 0 if the
condition stated in the subscript is false. To put it another
way, Φ̂l(u) is just the fraction of the first l samples that are
less than or equal to u. The quantity

Dl := sup
u
|Φ̂l(u)− ΦX(u)|

gives a measure of just how well the empirical cdf ap-
proximates the true cdf. The well-known Glivenko-Cantelli
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lemma states that, viewed as a function of x, the stochastic
process {Dl} converges almost surely to zero as l→∞. The
Kolmogorov theorem and the Kolmogorov-Smirnov statistic
quantify the convergence, thereby leading to a test for
goodness of fit. Specifically, let us think of Dl as a real-
valued random variable, and let ΦDl denote the cdf of Dl.
Then the K-S statistic states that

√
lΦDl → ΦK as l→∞,

where the convergence is in the distributional sense, and ΦK
is the K-S cdf, introduced a little later. But before we proceed
to that, let us recall that a sequence of random variables {Yl}
converges to another random variable Z in the distributional
sense if

sup
u
|ΦYl(u)− ΦZ(u)| → 0 as l→∞.

Thus the contribution of K-S lies in determining the exact
limit distribution of the empirical cdf.

The K-S test is used to validate the null hypothesis that
a given set of samples x1, . . . , xl are generated in an i.i.d.
fashion from a specified cdf F (·). To apply the test, we first
construct the empirical cdf Φ̂l as in (IV.2), and then compute
the goodness of fit statistic

dl = sup
u
|Φ̂l(u)− F (u)|.

Then the null hypothesis is rejected at level δ (that is, with
confidence ≥ 1− δ) if

√
ldl > (Φ̄K)−1(δ),

where
Φ̄K(u) = 1− ΦK(u)

is the so-called complementary distribution function. This is
the so-called one-sample K-S test.

It is also possible to have a two-sample K-S test. Suppose
x1, . . . , xl and y1, . . . , ym are two sets of samples, possibly
of different lengths. The null hypothesis is that both sets
of samples are generated from a common, but unspecified,
cdf. To test this hypothesis, we form two empirical cdfs, call
them Φ̂l based on the xi samples, and Ψ̂m based on the
yj samples, in analogy with (IV.2). The test statistic in this
instance is

dl,m = sup
u
|Φ̂l(u)− Ψ̂m(u)|.

The null hypothesis is rejected at level δ if√
lm

l +m
dl,m > (Φ̄K)−1(δ).

Now that we have seen how the K-S cdf can be used, let
us specify what it is. It can be shown that

ΦK(u) = 1− 2

∞∑
k=1

(−1)k+1 exp(−2k2u2),

Φ̄K(u) = 2

∞∑
k=1

(−1)k+1 exp(−2k2u2).

As it stands, though the above formula is explicit, it is
very difficult to compute (Φ̄K)−1(δ) for a given number δ.
However, if we are willing to forgo a little precision, a simple
estimate can be derived. Observe that Φ̄K(u) is defined by
an alternating series; as a result Φ̄K(u) is bracketed by any
two successive partial sums. In particular, we have that

Φ̄K(u) ≤ 2 exp(−2u2) =: Φ̄M (u), ∀u.

Therefore it follows that

(Φ̄K)−1(δ) ≤ (Φ̄M )−1(δ), ∀δ.

So to apply the one-sample K-S test, we reject the null
hypothesis at level δ if
√
ldl > (Φ̄M )−1(δ) ⇐⇒ Φ̄M (

√
ldl) < δ

⇐⇒ 2 exp(−2ld2l ) < δ

⇐⇒ dl >

[
1

2l
log

2

δ

]1/2
.

Let us define

θM (l, δ) :=

[
1

2l
log

2

δ

]1/2
(IV.3)

to be the K-S threshold as a function of the number of
samples l and the level δ. With this notation, the null
hypothesis is rejected at level δ if dl exceeds this threshold.

Now we digress briefly to discuss how the above kind
of test can be applied in more general contexts. As stated,
the K-S test applies strictly to real-valued random variables.
Extending it even to r.v.s assuming values in Rd when d ≥ 2
is not straight-forward; see [41] for one of the few results in
this direction. The objective of this digression is to point out
that, if one were to use recent results in statistical learning,
then K-S-like tests are abundant in quite general settings. A
good reference for the discussion below is [42].

We begin with the observation that the ‘modern’ way
to prove the Glivenko-Cantelli lemma is to apply Vapnik-
Chervonenkis, or VC theory, and sketch the main results of
the theory next. Suppose X is some set (which need not be
a subset of a Euclidean space such as Rd), and that P is a
probability measure on X . Suppose i.i.d. samples {xt}t≥1
are generated from X according to the law P . Let A denote
some collection of subsets of X .16 For each set A ∈ A, we
compute an empirical probability

P̂l(A) =
1

l

l∑
t=1

I{xi∈A}.

In other words, P̂l(A) is just the fraction of the l samples that
belong to the set A. Finally, in analogy with earlier notation,
define

Dl := sup
A∈A
|P̂l(A)− P (A)|.

The collection of sets A has the property of ‘uniform
convergence of empirical means’ if Dl → 0 almost surely
as l→∞.

16Strictly speaking, we should first define a σ-algebra S of subsets of
X and assume that A ⊆ S. Such details are glossed over here but the
treatment in [42] is quite precise.
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Recent developments in statistical learning theory, specif-
ically VC theory, consist of associating with each collection
of sets A a positive integer d, called the VC-dimension of
A. One of the main results of this theory as described in [42,
Theorem 7.4] states that if d is finite, then the collection does
indeed has the uniform convergence property. Moreover, if
Φ̄Dl denotes the complementary df of the random variable
Dl, then it can be stated with confidence 1− δ that

Φ̄Dl(u) ≤ 4

(
2el

d

)d
exp(−lu2/8), (IV.4)

where e denotes the base of the natural logarithm. In particu-
lar, the collection of semi-infinite intervals {(−∞, u], u ∈ R}
has VC-dimension one, so that for the standard K-S setting,
we can state with confidence 1− δ that

Φ̄Dl(u) ≤ 8el exp(−lu2/8).

In higher dimensions, say in Rd, the collection of sets

A = {
d∏
i=1

(−∞, ui], ui ∈ R ∀i}

has VC-dimension equal to d, so that (IV.4) holds.
To apply this bound in a general setting, suppose P is

some probability measure on X , and that x1, . . . , xl are
elements of X . The null hypothesis is that these samples
have been generated as independent samples according to
the law P . To test this hypothesis, choose any collection of
subsets A of X with finite VC-dimension d, and form the
test statistic

dl = sup
A∈A
|P (A)− P̂l(A)|.

If it is the case that Φ̄Dl(dl) > δ, then the null hypothesis is
rejected the level δ. Now we don’t know Φ̄Dl(dl) but we do
have an upper bound in the form of (IV.4). Let Φ̄V C denote
the right side of (IV.4). Then we reject the null hypothesis at
level δ if Φ̄V C(dl) > δ. This can be turned into an explicit
threshold formula by simple algebra. It is easy to show that

Φ̄V C(dl) > δ ⇐⇒ dl ≥
[

8

l

(
log

4

δ
+ d log

2el

d

)]1/2
.

Let us denote the right side as a new threshold function,
namely

θV C(l, δ; d) :=

[
8

l

(
log

4

δ
+ d log

2el

d

)]1/2
. (IV.5)

Then we reject the null hypothesis if dl > θV C(l, δ; d).
If we compare the thresholds from K-S theory and VC

theory, we see from (IV.3) and (IV.5) that for fixed confidence
level δ the K-S threshold is O(l−1/2) whereas the VC
threshold is O(l−1/2 log l). But the VC threshold is far more
general. So the slightly more conservative bound is definitely
worthwhile. For fixed sample length l, both thresholds are
O(log(1/δ)) so there is no difference.

B. Significance Analysis for Microarrays

In this subsection we discuss a widely use method called
Significance Analysis for Microarrays (SAM), introduced in
[43]. The reader is directed to that paper for discussion of
earlier work in this area.

The problem considered is the following: Suppose as
before that we have a gene expression data set {xij}, i =
1, . . . , n, j = 1, . . . ,m, where n is the number of genes
and m is the number of samples. Suppose further that the
data is labeled and divided into two classes. Without loss of
generality, suppose the first m1 samples belong to class 1,
and the remaining m2 = m−m1 belong to class 2. We would
like to assess which amongst the n genes show significant
variation between the two classes.

As a first-cut, we could treat each of the n genes sep-
arately, and for each index i, construct a two-sample K-S
test statistic between the samples {xij , j = 1, . . . ,m1} and
{xij , j = m1 + 1,m1 +m2}. Specifically, for each index i,
let x̄i1, x̄i2 denote the average values of the samples in the
two classes, and the pooled standard deviation si by

s2i =
1

m− 2

m1∑
j=1

(xij − x̄i1)2 +

m∑
j=m1+1

(xij − xi2)2

 .
Now it can happen that some genes exhibit so little variation
within each class that si is very small, with the consequence
that any quantity divided by si automatically becomes large.
To guard against this possibility, a constant s0 is chosen to
be the same for all indices i. Next, for each index i, we
define the test statistic

αi0 =
x̄i1 − x̄i2

(si + s0)[(1/m1) + (1/m2)]1/2
.

By examining the significance of αi0 using the t-distribution
and the two-sample K-S test, we might be able to determine
whether gene i exhibits a substantial variation between the
two classes.

However, this alone might not give a true picture. It often
happens in the case of biological data that the inherent varia-
tion of expression levels changes enormously from one gene
to another. For instance, the expression level of one gene may
show barely 10% variation across experiments, whereas that
of another gene may show an order of magnitude vairation.
If we were to apply the K-S test blindly, we would conclude
that the second gene is far more significant than the first one.
But this is potentially misleading. In biology it is often the
case that the downstream consequences of variations in gene
expression are also widely different for different genes.

To normalize against this possibility, in [43], the authors
introduce an additional criterion. Given the integers m1,m2,
choose an integer k roughly equal to 0.5 min{m1,m2}. Let
π1, . . . , πL be permutations of {1, . . . ,m} into itself such
that precisely k elements from class 1 are shifted to class 2
and vice versa. In the original paper [43], m1 = m2 = 4
so that k = 2, and there are 62 = 36 such permutations; so
they consider all of them. However, if the integers m1,m2

are sufficiently large, the number of such permutations will
be huge, in which case one chooses, at random, a prespecified
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number L of such permutations. For each permutation πl, the
first m1 elements are labeled as 1 and the rest are labeled as
2. In other words, the elements πl(1), . . . , πl(m1) are given
the label 1 while the rest are given the label 2. For each
labeling corresponding to the permutation πl, let us compute
a two-sample K-S test statistic, which we may denote by αil.
This is done for each of the n genes. Next, let us define

αE(i) =
1

L

L∑
l=1

αil

to be the value of the test statistic averaged across all L
permutations. Let αi0 denote the test statistic corresponding
to the identity permutation, that is, the original labeling. For
most genes (i.e., for most indices i), the test statistic αi0
corresponding to the original labeling will not differ much
from the averaged value αE(i). Those genes for which the
difference is significant, in either direction, are the genes
that one should examine. To implement this criterion, an
absolute constant ∆ is chosen, and only those genes for
which |αi0 − αE(i)| ≥ ∆ are studied further. One could
of course argue that the threshold should be in terms of the
ratio αi0/αE(i) and that too would be a valid viewpoint. In
[43], using this approach only 46 out of an original set of
6,800 genes are found to be worth examining further – a
reduction of more than two orders of magnitude. What this
means is that, for all except these 46 genes, the test statistic
corresponding to the original labeling is not very different
from what would result from a purely random assignment of
labels. These short-listed genes are then examined whether
indeed there is substantial variation between the two classes
(which it may be noted is a different question from whether
a randomly assigned label would result in a different value
for the test statistic). A gene belonging to this shorter list
is deemed to exhibit significant variation between classes 1
and 2 if

max

{
x̄i1
x̄i2

,
x̄i2
x̄i1

}
> R,

where R is another threshold. This thresholding results in a
final set of genes with two attributes: (i) The test statistic
corresponding to the original labeling differs substantially
from that corresponding to a random assignment of labels,
and (ii) there is substantial difference between the mean val-
ues of the two classes. This is the desired list of genes. Note
that we could have just as easily compared | log(x̄i1/x̄i2)|
against a threshold. We could also apply the K-S test and
choose those genes for which the difference is statistically
significant at a prespecified level.

C. Gene Set Enhancement Analysis

As in the previous subsection, suppose have a gene ex-
pression data set {xij}, i = 1, . . . , n, j = 1, . . . ,m, where
n is the number of genes and m is the number of samples.
Further, the data is labeled and divided into two samples.
Suppose M = {1, . . . ,m} and that M1,M2 is a partition
of M. Further, suppose |Mi| = mi for i = 1, 2. For
example, the samples in class 1 may come from healthy
tissue while those in class 2 may come from cancerous

tissue. In the previous subsection, we studied the problem
of identifying individual genes within the set of n genes
that show statistically significant variation between the two
classes. For this purpose, for each gene i we compared the
t-statistic between the two classes against what would be
obtained by randomly assigning labels to the of m samples
associated with that gene. In this section, we carry the
discussion to a greater level of generality. Specifically, it
can happen in biological experiments that, while no single
gene may show statistically a significant difference between
the two classes, a collection of genes acting in concert
may exhibit such statistically significant difference between
the two classes. Accordingly, suppose a subset S of N =
{1, . . . , n} is specified beforehand as a set of genes that we
expect might collectively exhibit different expression levels
between the two classes. Note that the set S is specified on
the basis of biological considerations, and not deduced post
facto from the data under study. For instance, S could be one
of the ‘genomic machines’ identified through the Netwalk
algorithm of Section III-B.

The discussion below is essentially taken from [45] which
describes an algorithm that those authors call GSA (Gene Set
Analysis). In turn [45] builds on an earlier algorithm called
GSEA (Gene Set Enhancement Analysis) from [44]. Along
the way, the authors of [45] also relate their GSA algorithm
to several earlier algorithms. In the interests of conserving
space, we do not reference nor discuss all the earlier work,
and the interested reader is directed to the bibliography of
[45].

The main idea of the GSA algorithm is the following: In
SAM (Significance Analysis for Microarrays) discussed in
Section IV-B, for each index i denoting the gene, we did the
following: First we computed the t-statistic of the difference
between the means of the two classes. Then we assigned
random labels to the m samples associated with gene i,
ensuring that mi are placed in class i, and for each random
labeling, we computed the same t-statistic. That is fine so far
as testing a single gene goes. To test whether a prespecified
set of genes shows significant difference between the two
classes, it is necessary to perform an additional step, as
described next. Let k = |S|. Then, in addition to permuting
the labels of the m columns associated with each gene in the
set N , we should also do the same to a randomly selected
set of k genes from the collection N . In [45], assigning
the class labels at random is referred to as ‘permuation’
while choosing a random set of k genes from N is referred
to as ‘randomization’. An additional complication in the
randomization step is that, while the expression levels of
k randomly selected genes from N can be thought of as
being uncorrelated, the expression levels of the k genes in
the specified set S are quite likely to be correlated (due
to their having a common biological function etc.). Hence
the randomized data will in general have different statistical
behavior from that of the genes in the set S. The GSA
algorithm attempts to correct for this feature.

The details of the algorithm are as follows: For each gene
i in N , form a two-sample t-statistic, call it di. Then di is
distributed according to the t-distribution with m−2 degrees
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of freedom. The quantity di is transformed into another value
zi that has a normal distribution, by the rule

zi = Φ−1Nor(Φt,m−2(di)),

where ΦNor denotes the cdf of a normal r.v. and Φt,m−2
denotes the cdf of a t-distributed r.v. Note that if the number
of samples m is sufficiently large, then the t-distribution is
virtually identical to the normal distribution, so this step can
be omitted. Now suppose S : R→ R is a scoring function.17

In [44], the scoring function S(z) equals |z|. For each gene
i, let si be a shorthand for s(zi). For the gene set S, compute
the score

S =
1

k

∑
i∈S

si. (IV.6)

The question under study is: Is the score S sufficiently
significant?

Now compute the mean µ0 and standard deviation σ0 of
the raw samples in the familiar manner, namely:

µ0 =
1

n

∑
i∈N

si, σ
2 =

1

n− 1

∑
i∈N

(si − µ0)2.

Next, choose at random several subsets of N of cardinality
k, compute the counterpart of the score S for each such
randomly chosen gene set, and compute the mean and
standard deviation of all of these scores (over all the ran-
domly selected sets of cardinality k). Denote these by µ†, σ†

respectively. If all the samples si within a set of cardinality k
are independent, then we would have µ† = µ0, σ

† = σ/
√
k.

But this need not be the case in general.
Next, choose a large number of permutations π1, . . . , πL

of M into itself. For each permutation πl, assign the label
i to the samples in the image πl(Mi), for i = 1, 2. This
will generate, for each gene i, a test statistic zπl,i and score
sπl,i. Let µP , σP sdenote the mean and standard deviation
of these nL numbers, where the subscript P is to remind us
of ‘permutation’.

The next step is called ‘restandardization’. For each per-
mutation πl, let Sπl denote the score resulting from the
labeling as per the permutation πl. Then the renormalized
score corresponding to πl is defined as

SR,πl = µ† +
σ†

σP
(Sπl − µP ).

Then a test statistic is given by the quantity

pS =
1

L

L∑
l=1

I{SR,πl>S},

which is the fraction of the restandardized scores that exceed
the nominal score S. Clearly the smaller pS is, the more
significant is the score S. In GSEA, the cdf of the samples
{zi, i ∈ S} is compared to the cdf of the samples {zi, i 6∈ S}.
This more or less corresponds to the choice s(z) = |z|.

17We mostly follow the notation in [45], in which the letter S in various
fonts is used to denote various quantities. The reader is therefore urged to
pay careful attention.

Finally, in [45] another statistic is introduced, known as
the max-mean statistic. Define

(z)+ = max{z, 0}, (z)− = −min{z, 0},

and observe that (z)− is positive if z is negative, somewhat
contrary to the usual convention. Now define

s+ =
1

k

∑
i∈S

(si)+, s
− =

1

k

∑
i∈S

(si)−, smax = max{s+, s−}.

D. Pattern Analysis for Microarrays

In this subsection we discuss a method for simplifying the
application of nearest neighbor clustering in the context of
gene expression studies. This method is known as Pattern
Analysis for Microarrays (PAM) [46]. The similarity of the
acronyms SAM and PAM is not coincidental, because as we
shall see, the two approaches have a lot in common.

As always, suppose we are given a set of gene expression
data {xij , i = 1, . . . , n, j = 1, . . . ,m}. Suppose further
that the set M = {1, . . . ,m} of samples is divided into
K classes, which are denoted here as Mk, k = 1, . . . ,K.
Thus the collection {M1, . . . ,MK} is a partition of M.
Let denote |Mk| by mk. Now suppose a new data vector
y ∈ Rn arrives from a fresh study. We would like to classify
y as belonging to one of the K classes. How should we go
about it?

One of the most commonly used method is that of nearest
neighbor classification. As before, let us define the mean
values of the expression level of gene i in class k, and the
overall mean value, by

x̄ik :=
1

mk

∑
j∈Mk

xij , k = 1, . . . ,K,

x̄i =
1

m

K∑
k=1

∑
j∈Mk

xij =

K∑
k=1

mk

m
x̄ik.

Thus x̄k ∈ Rn is the centroid of class k while x ∈ Rn is the
overall centroid. To classify the vector y, we compute the
Euclidean distance to each of the K centroids, and classify
it into the class whose centroid is the closest. Applying this
classification method requires the computation of

‖y − x̄k‖2 =

n∑
i=1

(yi − x̄ik)2 (IV.7)

for each k. If, as is often the case, n is of the order of
thousands if not tens of thousands, the above computation
can be quite expensive. The objective of PAM is to determine
a subset N1 of N = {1, . . . , n} with |N1| � n such that, if
the summation is taken only over those i ∈ N1, the resulting
nearest neighbor classification would be more or less the
same.

The basic idea behind PAM is as follows: In [46], PAM
is also referred to as the ‘method of shrunken centroids’.
Suppose that for some index i, it is the case that x̄ik is the
same for all values of k. In other words, suppose that the i-th
component of the centroid x̄k is the same for all k. Then it is
obvious that the index i can be dropped from the summation
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in (IV.7) because the term (yi − x̄ik)2 makes an equal
contribution for all k. So the method of shrunken centroids
consists of shrinking the spread amongst {xi1, . . . , xiK} to
zero for as many indices i as possible, by replacing the true
centroid by a synthetic centroid.

In analogy with earlier reasoning, define the pooled within
class standard deviation of gene i by

s2i =
1

m− k

K∑
k=1

∑
j∈Mk

(xij − x̄ik)2.

Next, as before, a small constant s0 (independent of i) is
added to each si to avoid division by very small numbers.
Now define a test statistic dik that tests for the null hypoth-
esis that the data in class k differs significantly from the
overall data, namely

dik =
x̄ik − x̄i

(si + s0)[(1/mk) + (1/m)]1/2
=:

x̄ik − x̄i
lk(si + s0)

,

where

lk =

[
1

mk
+

1

m

]1/2
.

Note that it would perhaps be more accurate to compare x̄ik
with the ‘leave one out’ mean of all the remaining m−mk

entries, as opposed to the overall mean x̄i. But this would
involve considerably more computation with relatively little
benefit.

Now rewrite the above relationship as

x̄ik = x̄i + lk(si + s0)dik.

If we could somehow justify replacing the actual dik by zero,
then it would follow that x̄ik = x̄i for all k, and we could
therefore ignore the i-th term in the summation (IV.7). This
is achieved by soft thresholding. Specifically, a fixed constant
∆, independent of both i and k, is selected, Then we define

d′ik = sign(dik)(|dik| −∆)+,

where as usual (x)+ = max{x, 0}. An equivalent definition
of d′ik is

d′ik =

 dik −∆, if dik > ∆,
dik + ∆, if dik < −∆,
0, if |dik| ≤ ∆.

Then the centroids are ‘shrunk’ by replacing dik by d′ik,
namely

x̄ik = x̄i + lk(si + s0)d′ik. (IV.8)

Note that if d′ik = 0 for all k for a fixed i, then that term
can be dropped from the summation in (IV.7).

The higher the value of ∆, the more thresholds that will
be set to zero. At the same time, the higher the value of ∆,
the more the likelihood of misclassification by the simplified
summation. In [46], the constant ∆ is chosen through ten-
fold cross validation. The data set is divided vertically (in
terms of the index j) into ten more or less equal-sized
data sets. 90% of the data is used as training data and the
remaining 10% is used to test the resulting reduced-sum
classifier; this exercise is repeated by shifting the testing data

through each subset of the data. The constant ∆ is adjusted
up or down until the cross-validation produces satisfactory
results. In [46], the original data set consists of expression
levels of 2,308 genes, 63 samples, classified into four forms
of cancer. Thus n = 2308,m = 63 and K = 4. By using
the soft thresholding technique, a subset of a mere 43 ‘most
useful genes’ are identified out of the original 2,308 – a
reduction of about 98% in the computational burden.

V. SEPARATING DRIVERS FROM PASSENGERS

Until now we have discussed various topics that involve
the use of fairly advanced methods in probability and statis-
tics. In this section, we present some preliminary results
on the problem of distinguishing drivers of cancer from
passengers. As will be seen, the method used is fairly
elementary, namely simple k-means clustering. However, it is
included here because this approach has already led to some
predictions about which genes have a role in colorectal can-
cer (CRC), and the existing biology literature indicates that
some of these genes are already known to play a role in other
forms of cancer. Thus the message of this section is two-fold:
First, it is not always necessary to use very advanced methods
to make interesting predictions. Second, however ‘pretty’ the
underlying mathematics might be, unless the methods lead
to hypotheses that are subsequently verified, they are not of
any use.

As mentioned earlier, at present there is a massive public
effort known as TCGA (The Cancer Genome Atlas) directed
at sequencing every available cancerous tumor. Mutations in
specific genes lead to disruptions in the associated regula-
tory networks, often referred to as ‘lesions’. Sequencing of
tumorous tissues and cells has thrown up and will continue to
throw up a bewildering variety of mutations, some of which
cause cancer (referred to as ‘drivers’ or ‘causal mutations’)
while other mutations are caused by cancer (referred to as
‘passengers’ or ‘coincidental mutations’). Simply detecting
the frequency with which a particular gene is found to be
mutated in cancerous tissue is not sufficient to distinguish
the drivers of cancers from the passengers. Some additional
indications need to be used to discriminate further amongst
highly mutated genes. In this subsection, some preliminary
results are presented to support the hypothesis that a seven-
dimensional feature vector, called the ‘developmental gene
expression profile,’ can be used to achieve such discrimina-
tion.

We begin as usual with some background. The paper [47]
presents a ‘landscape’ of human breast and colorectal cancer
by identifying every gene that has been found in a mutated
state in 11 tumor tissues of colorectal and cancer and 11
tumor tissues of breast cancer. This paper builds on an earlier
work, Sjöblom et al. [48], in which 13,023 genes in 11 breast
and 11 colorectal cancer tissues are analyzed. In [47], A total
of 18,191 genes analyzed, out of which 1,718 were found
to have at least one nonsilent mutation in either a breast or
a colorectal cancer.18 Amongst these, a total of 280 genes

18A nonsilent mutation is a mutation that causes a change in the amino
acid sequence (primary structure) of the protein(s) produced by a gene.
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were identified as ‘CAN-genes’, that is, potentially drivers
of cancer, if they had ‘harbored at least one nonsynonymous
mutation in both the Discovery and Validation Screens and
if the total number of mutations per nucleotide sequenced
exceeded a minimum threshold’ [47].

It is in principle possible to carry out a very large number
of experiments to test whether specific lesions are causal or
not. However, in order to be definitive, it is not enough to
study individual lesions – one would also have to study all
possible combinations of lesions. Even if one were to focus
only on the 280 CAN-genes, there would be roughly 40,000
pairs of genes, and roughly 3.6 million triplets of genes, and
so on.

It is clearly impractical to carry out so many experiments.
It would be preferable to have some additional indications
so as to prioritize the experiments roughly in proportion to
their likelihood of success. One way to achieve this is to
begin with a handful of experiments where the outcomes are
known, some genes being likely tumor-suppressors (‘hits’)
while others are not likely to be so (‘misses’). Then some
form of pattern recognition or machine learning algorithms
can be used to discriminate between the known successes
(‘hits’) and known failures (‘misses’). In the last step, this
discriminating function can then be extrapoloated to all
CAN-genes (or perhaps to an even larger set of genes). It
must be emphasized that statistical or pattern recognition
methods are not a substitute for actual experimental veri-
fication. However, by providing a high degree of separation
between known hits and known misses, such methods can
assist in prioritizing future experiments by increasing the
likelihood of success.

Now we introduce the so-called developmental gene ex-
pression profile, and justify why it may possibly have a
role in distinguishing between drivers and passengers. De-
velopment can be divided into seven stages, namely embroyd
body, blastocyst, fetus, neonate, infant, juvenile, and adult.
The database Unigene [49] provides, for more than 100,000
genes as well as ESTs,19 their frequency of occurrence within
the tissues tested at each of the seven developmental stages.
The Unigene database is far more comprehensive than earlier
efforts by individual research teams to determine this type
of information; see [50] for an example of this type of
effort. For instance, it has been known for some time that
various genes belonging to the so-called RAS family play
an important role in cancer; see [51]. Out of the genes in
this family, let us focus on KRAS and HRAS for now. Their
Unigene entries are as follows, in parts per million:

Gene EB B F N I J A
KRAS 169 80 60 0 0 54 77
HRAS 28 16 19 0 0 0 24

Since the entries are in parts per million, it is clear that
these genes are not prevalent in any developmental stage.
This raises the question as to how statistically significant the
zero entries are. We shall discuss this topic in the concluding
section.

19ESTs (Expressed Sequence Tags) are parts of genes that were sequenced
and catalogued before whole genome sequencing became commonplace.

Our hypothesis is that the developmental gene expres-
sion profile can be used to discriminate between drivers
and passengers. This hypothesis is the outcome of putting
together the results of a very interesting series of biological
experiments. Specifically, in [52] it is shown that KRAS
is essential for the development of the mouse embryo – if
the KRAS gene is knocked out, then the embryo does not
survive. However, as shown in [53], if the KRAS gene is not
knocked out, but is instead replaced by HRAS in the KRAS
locus, then the resulting HRAS-knocked in mouse embryo
develops normally. Following along these lines, when HRAS
was put into the KRAS locus and lung cancer was induced
in these mice, the HRAS in the KRAS locus was found to
be mutated, whereas the HRAS in the HRAS locus was not
mutated [54]. Since HRAS and KRAS express themselves
at different stages of the development of a mouse embryo,
this observation suggests a possible relationship between the
expression profile of a gene as a function of developmental
stage on the one hand, and its role as a causal factor in cancer
on the other hand.

To validate our hypothesis, we used another database
called COSMIC (Catalogue of Somatic Mutations in Cancer)
[55], that gives the observed mutation frequency of various
genes in various forms of cancer. Again, COSMIC is a
repository of mutation data discovered by research teams
all around the world, as in [56] for example. In spite of
this, since testing is expensive, not all of the roughly 30,000
known genes have been tested for mutations in all available
tissues. At the moment (though of course this number keeps
changing with time, albeit rather slowly), a total of 4,105
genes have been tested for mutations in any one of five forms
of cancer, namely: breast, kidney, large intestine (colon),
lung, and pancreas. Therefore the remaining genes were
deemed not to have sufficient mutation data to permit the
drawing of meaningful conclusions. Out of these 4,105 genes
from COSMIC, 3,672 had entries in Unigene. These 3,672
seven-dimensional developmental gene expression profiles
were clustered using the popular k-means algorithm [57]. In
this approach, the given data vectors x1, . . . ,xn ∈ R7 where
n = 3672 are clustered into k classes (k to be specified by
the user) in such a way that the vectors in each class are
closer to the centroid of its own class than to the centroids
of all other classes. In symbols, if x̄1, . . . , x̄k denote the
centroids of the clusters, and N1, . . . ,Nk denote the classes
themselves, then

‖xi − x̄k‖ ≤ ‖xi − x̄j‖, ∀j 6= k, ∀i ∈ Nk.

Computing the optimal clusters is an NP-hard problem, so
most often one uses some randomized algorithm. Also, the
clusters themselves will be different depending on which
norm is used. We have found that we get better segregation
if we use the `1-norm than with the `2-norm.

Once the clusters are formed, the next step is to test
whether any of these clusters is ‘enriched’ with known
cancer drivers, compared to the remaining clusters. For
determining this, it is necessary that at least a few of these
3,672 genes should be labeled, so that the problem is one
of supervised learning. Fortunately, a recently completed
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work [58] provides a good starting point. In that paper,
the authors began with the 280 CAN-genes identified by
[48], [47], and identified 151 of these CAN-genes for testing
in an experimental test bed that roughly approximates the
environment in the colon.20 Each of these 151 genes was
individually suppressed, and the effect was observed. If the
suppression of the gene resulting in cell proliferation, then
the gene was labeled as a ‘hit’ and was presumed to play
some role in colorectal cancer (CRC). If on the other hand
the suppression of the gene did not result in cell proliferation,
then the gene was labeled as a ‘miss’. Out of the 151 genes
tested, 65 turned out to be hits while the remaining 86 were
labeled as misses. As a point of comparison, 400 randomly
chosen genes were also tested in the same way, and only
4 were hits. Thus the fact that 65 out of 151 CAN-genes,
roughly 45%, are hits is clearly not due to chance, because
out of the randomly chosen genes only 1% were hits.

At this stage it should be pointed out that there can in fact
be some ambiguity in the miss label. Even if the suppression
of a particular gene did not result in cell proliferation,
it is nevertheless possible that, under a different set of
experimental conditions, the gene might have turned out to
be a hit. From the standpoint of machine learning, this can be
thought of as a problem of learning and extrapolating from
labeled data, in which a positive label is 100% accurate,
whereas a negative label is treated as being inaccurate with
some small probability. Learning with randomly mislabeled
samples is a standard problem, and some results on this
problem can be found in [42].

With the aid of these labeled genes, we then tested to see
whether any of the clusters obtained by k-means was in fact
enriched. Out of the 151 CAN genes tested, only 143 had
entries in Unigene, so these were the labeled genes out of
the 3,672 genes that were clustered. When we chose k = 4,
the following clusters resulted.

No. Hits Misses Total
C1 27 47 1,807
C2 10 4 217
C3 15 16 1,016
C4 12 12 632
Total 64 79 3,672

From these results, it is apparent that Cluster No. 2 is
significantly enriched for hits. The statistical significance
of this was computed in two different ways. First, the
null hypothesis was that the hits and misses are uniformly
distributed into the four clusters, with 74, 14, 31, and 24
elements respectively, and the likelihood of there being 10
hits and 4 misses in Cluster No. 2 was computed under
the assumption that the two were distributed independently.
Second, the null hypothesis was that the hits are uniformly
distributed into the four clusters with 1,807, 217, 2,016, and
632 elements, and the likelihood of there being 10 hits out of
217 elements in Cluster No. 2 was tested. In both tests, the
null hypothesis was rejected at a 1% level. In other words,

20As can be imagined, this is a gross over-simplification, and the
interested reader is advised to read the original paper for further details.

we could assert with confidence greater than 99% that the
enrichment of hits in Cluster 2 is not due to chance.

This then allowed us to focus on the 217 genes in Cluster
No. 2 as possible candidates in causing colorectal cancer. It
is worth repeating that, out of the 217 genes in this cluster,
only 14 are CAN-genes and thus tested in [58]. The next step
was to choose which amongst the remaining 217−14 = 203
genes are to be tested. Again, since a gene that has not been
found to be mutated in even one sample of CRC tissue is
highly unlikely to be a CRC driver, we examined these 217
genes, and found 58 genes to be mutated in at least one CRC
tissue sample, as per the COSMIC database. Out of these,
14 were already tested, thus leaving 44 candidate genes for
testing as drivers for CRC.

Due to the size of the data set, a table containing the
predicted and tested genes is placed at the end of the paper,
after the references. In the table, the 10 genes that are hits
are shown in green, while the 4 genes that are misses are
shown in maroon. The mutation frequency of the genes in
the samples tested as per the COSMIC database is also shown
as a percentage. A careful annotation by Prof. Michael A.
White of the UT Southwestern Medical Center showed that
out of these 44 genes, 9 had already been mentioned in the
biology literature as playing a role in other forms of cancer.
This annotation is also shown in the table. This finding
should be considered significant, because these 44 genes
were determined purely on the basis of the developmental
gene expression data, and the likelihood that 20% of them
(9/44) would turn out to have a role in cancer is rather
minimal. One other noteworthy point is that the gene no.
3486, IGFBP3, is known to be a tumor suppressor, but in
the experiments of Eskiocak et al. [58], it turned out to be
a miss! This again highlights that while a hit is definitely a
hit, a miss is not always a miss.

VI. SOME RESEARCH DIRECTIONS

The preceding discussion barely scratches the surface of
the vast array of possibilities for applying probabilistic ap-
proaches to problems in cancer biology. Rather, the emphasis
has been on describing a few problems in sufficient detail to
permit a description of directions for further research.

In the problem of reverse-engineering GRNs, we have
discussed only methods based on viewing the gene ex-
pression data as a set of samples of random variables.
There are other possible approaches; see for instance the
work of Sontag and his coworkers [60], [61], [62] based
on network reconstruction based on steady state data, an
approach followed also in [63], [64]. Another approach is
to view a regulatory network as a Boolean network, and the
onset of cancer as a fault in the Boolean network; see [65],
[66].

In terms of using probabilistic methods, the present sit-
uation is not entirely satisfactory. The most widely used
approaches, based respectively on mutual information and
on Bayesian networks respectively, each place very severe
restrictions on the nature of the interactions between genes.
The mutual information-based approach presumes that inter-
actions between genes are always symmetric, whereas the
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Bayesian framework presumes that the interactions are al-
ways acyclic. In reality, neither assumption holds in practice.
Hence the need of the hour is to come up with some other
measure of interaction that is more biologically realistic,
while being amenable to computation. In the case of the
methods based on mutual information, there is a basic
premise that is adopted for convenience, but is not strictly
valid. Specifically, the data processing inequality states that
if X → Y → Z is a short Markov chain, then

I(X,Z) ≤ min{I(X,Y ), I(Y,Z)}.

However, as can be seen from Section II-B, in the ARACNE
algorithm the above reasoning is turned around to say that,
if the data processing inequality holds, then no edge exists
between X and Z. Ideally one should avoid such steps.
In the case of the Bayesian approach, the choice of the
‘prior’, be it the graph G or the probability distribution of
the various parameters that describe G, is always contentious.
And finally, to repeat again, the fact that real biological
networks neither have symmetric interactions nor are acyclic
needs to be taken into account in future research.

In the case of personal genomic networks, the amendment
in (III.2) is not entirely realistic. In the original page rank
algorithm, the justification for introducing an additional term
is to eliminate the possibility of dangling nodes (i.e. nodes
with no outgoing edges), which would cause the stationary
distribution to be supported entirely on these dangling nodes.
Given that a correction is required, in the page rank algorithm
the correction is taken to be proportional to the rank one
matrix ene

T
n , the reason being that a user of the web is just as

likely to jump from any one web page to any other web page.
In the context of genomic networks, the justification has to
be that, while the original graph G captures the known (or
suspected) interactions between genes or gene products, there
may be other interactions that have not yet been detected.
Hence here again a correction term is warranted. However, it
is no longer possible to justify that the correction term should
be proportional to ene

T
n . Such a correction term presupposes

that every gene is equally likely to have an undetected inter-
action with every other gene. In reality, such an assumption
is quite unrealistic. It would be far more realistic to suppose
that a node with many known interactions is more likely to
have undetected interactions than a node with fewer known
interactions. Accordingly, instead of (III.2), it may be more
realistic to use the modification

fij = (1− qi)pij +
qi
n
,

or equivalently

F = (I −Q)P + (1/n)Qene
T
n ,

where qi is an increasing function of |S(i)|, the cardinality of
the known outgoing edge set, and Q is a diagonal matrix with
q1, . . . , qn on the diagonal. It is not difficult to modify the
randomized algorithm of [39] to this alternate formulation.
In terms of applying the algorithm, the termination criterion
should be, not that the stationary distribution has been
reached, but that the sign of each figure of merit rij can be

unambiguously determined (which can happen much earlier).
In short, the asymptotic theory of [39], which is based on
the theory of ergodicity from [37], needs to be converted
to provide finite-time estimates. One possibility may be to
use the Birkhoff contraction coefficient, as discussed in [37].
With the correction, the matrix F is strictly positive as are
the matrices arising from the randomized algorithm, so they
all have a Birkhoff contraction strictly less than one.

There is one interesting issue in the case of context-
specific genomic networks, namely invariance under mono-
tone transformations. As pointed out earlier, the mutual
information between two random variables is invariant under
monotone transformations of the variables. So if we were to
pre-filter the raw gene expression data by centering, scaling,
or linear to logarithmic transformations, it is obvious that the
resulting network would be unaffected. However, it is not
clear what happens in the case of context-specific genomic
networks. About all that one can say at a first glance is that
if each weight wi is replaced by αwi where α is a fixed
scalar, then the network is unaffected; but this result is quite
trivial. It would be highly desirable to explore whether other
types of invariance properties can be proved.

The algorithms presented in Section IV are all compu-
tationally intensive, requiring evaluation of a huge number
of significance values for a given data set. In view of this
feature, it is rather unfortunate that all of these algorithms are
also nonrecursive. In other words, suppose one has run any
of these algorithms on a data set of n genes and m samples,
and now one more sample set becomes available. Then there
is no option but to carry out the entire computation ab initio.
It would therefore be desirable to develop some recursive
algorithms for addressing the type of questions studied in
Section IV.

While the approach described in Section V for discrim-
inating between causal mutations (drivers) and coincidental
mutations (passengers) does not use very advanced proba-
bility theory, it is quite possible that the simple approach
described therein is only one of many ways to achieve
this discrimination. It would therefore be of interest to find
out whether there are other approaches that can succeed in
achieving this discrimination.
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Literature-Based Annotation of Gene Predictions21

Gene Id Gene Name Mutation Frequency Literature Annotation
120 ADD3 2.7027027027 mutated in leukemia (translocation- oncogene)
529 ATP6V1E1 2.7027027027
780 DDR1 2.380952381 mutated in lung cancer-oncogene
1281 COL3A1 5.4054054054
1434 CSE1L 2.6315789474
1499 CTNNB1 5.5152394775 mutated in cancer- oncogene
1981 EIF4G1 2.7027027027
2030 SLC29A1 5.4054054054 mutated in cancer-drug resistance
2335 FN1 5.4054054054
2720 GLB1 2.8571428571
2778 GNAS NM 016592 1 0.05
2876 GPX1 9.0909090909 putative tumor suppressor
3417 IDH1 0.6787330317 oncogene
3486 IGFBP3 5.4054054054 tumor suppressor
3550 IK 2.8571428571
3915 LAMC1 2.7027027027
4131 MAP1B 5.4054054054
4179 CD46 5.4054054054
4313 MMP2 7.8947368421
5591 PRKDC 7.1428571429
5631 PRPS1 2.6315789474
5754 PTK7 0.7518796992
5878 RAB5C 2.6315789474
5954 RCN1 2.7027027027
6128 RPL6 2.7027027027 risk locus
6597 SMARCA4 7.4626865672 lung cacer-tumor suppressor
7052 TGM2 2.7027027027
7153 TOP2A 8.33333333333
7157 TP53 42.8651059086
7247 TSN 2.7777777778 translocations
7358 UGDH 2.6315789474
7385 UQCRC2 5.4054054054
7431 VIM 2.6315789474
8079 MLF2 2.7027027027
8531 CSDA 2.7027027027
8539 API5 2.8571428571
8894 EIF2S2 2.7027027027
9590 AKAP12 5.2631578947
9993 DGCR2 9.0909090909
10075 HUWE1 10.8108108108
10291 SF3A1 2.7027027027
10342 TFG 2.6315789474 translocations
11034 DSTN 2.7027027027
22974 TPX2 2.6315789474
22985 ACIN1 2.7027027027
23020 SNRNP200 2.7027027027
27131 SNX5 2.6315789474
51150 SDF4 2.7027027027
51322 WAC 2.7027027027
51614 ERGIC3 5.4054054054
54431 DNAJC10 2.7777777778
55101 ATP5SL 2.8571428571
57142 RTN4 2.7027027027
65056 GPBP1 2.8571428571
65125 WNK1 1.47058823529
81887 LAS1L 2.6315789474
83692 CD99L2 5.1282051282
347733 TUBB2B 2.7027027027

21Annotation by Prof. Michael A. White of UT Southwestern Medical Center


