Planning Demand and Supply in a Supply Chain

Forecasting and Aggregate Planning

Learning Objectives

- **♦** Overview of forecasting
- **♦** Forecast errors
- **◆** Aggregate planning in the supply chain
- **◆** Managing demand
- **♦** Managing capacity

Phases of Supply Chain Decisions

◆ Strategy or design: Forecast

♦ Planning: Forecast

◆ Operation Actual demand

- ◆ Since actual demands differs from forecasts so does the execution from the plans.
 - E.g. Supply Chain concentration plans 40 students per year whereas the actual is ??.

Characteristics of forecasts

- ◆ Forecasts are always wrong. Should include expected value and measure of error.
- ◆ Long-term forecasts are less accurate than short-term forecasts. Too long term forecasts are useless: Forecast horizon
- ◆ Aggregate forecasts are more accurate than disaggregate forecasts
 - Variance of aggregate is smaller because extremes cancel out
 - » Two samples: (3,5) and (2,6). Averages of samples: 4 and 4.
 - » Variance of sample averages=0
 - \Rightarrow Variance of (3,5,2,6)=5/2
- Several ways to aggregate
 - Products into product groups
 - Demand by location
 - Demand by time period

Forecasting Methods

- **♦** Qualitative
 - Expert opinion
 - E.g. Why do you listen to Wall Street stock analysts?
- **♦** Time Series
 - Static
 - Adaptive
- **♦** Causal
- **♦** Forecast Simulation for planning purposes

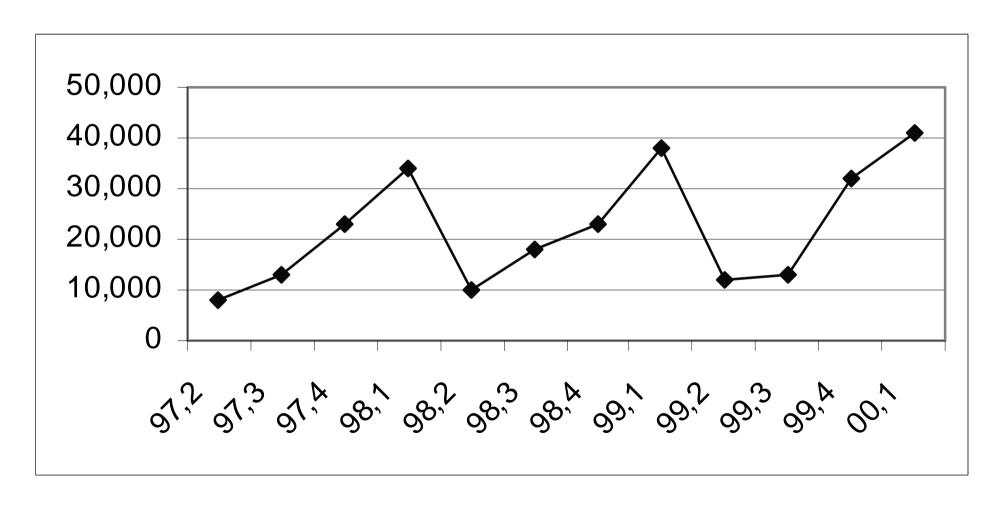
Components of an observation

Observed demand (O) =

Systematic component (S) + Random component (R)

Level (current deseasonalized demand)

Trend (growth or decline in demand)

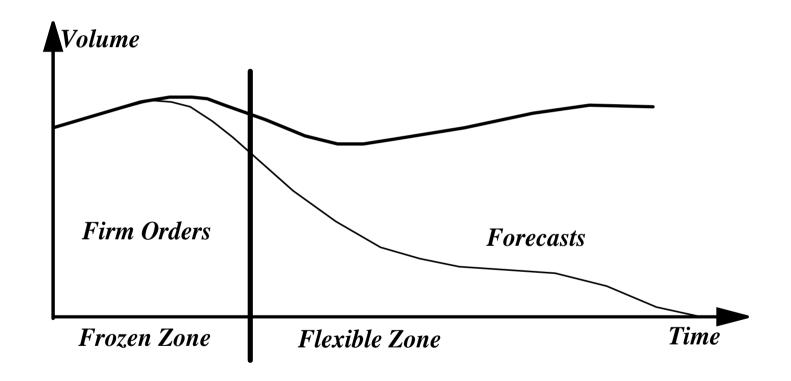

Seasonality (predictable seasonal fluctuation)

Time Series Forecasting

Quarter	Demand D _t				
II, 1998	8000				
III, 1998	13000				
IV, 1998	23000				
I, 1999	34000				
II, 1999	10000				
III, 1999	18000				
IV, 1999	23000				
I, 2000	38000				
II, 2000	12000				
III, 2000	13000				
IV, 2000	32000				
I, 2001	41000				

Forecast demand for the next four quarters.

Time Series Forecasting


Forecasting methods

- **♦** Static
- **♦** Adaptive
 - Moving average
 - Simple exponential smoothing
 - Holt's model (with trend)
 - Winter's model (with trend and seasonality)

Error measures

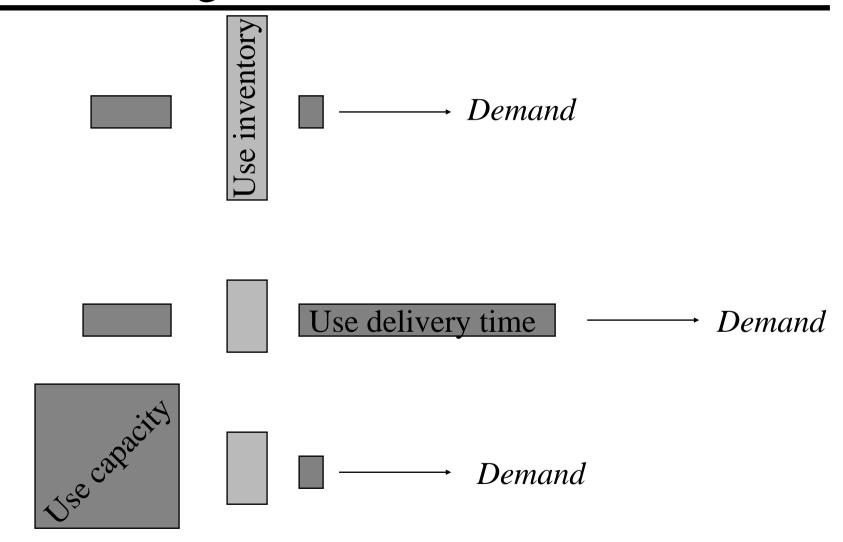
- ◆ MAD
- ◆ Mean Squared Error (MSE)
- ◆ Mean Absolute Percentage Error (MAPE)
- **♦** Bias
- **◆** Tracking Signal

Master Production Schedule

◆ MPS is a schedule of future deliveries. A combination of forecasts and firm orders.

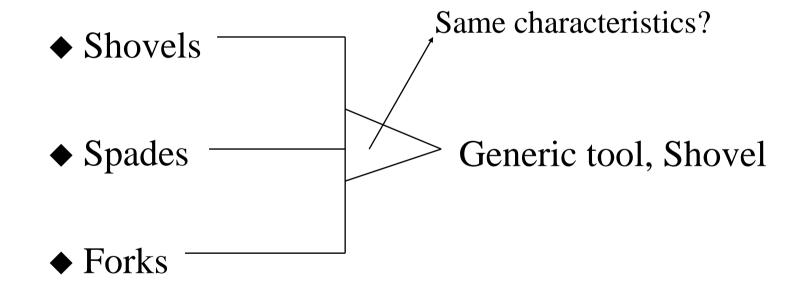
Aggregate Planning

- ◆ If actual is different than plan, why bother sweating over detailed plans
- ◆ Aggregate planning: General plan
 - Combined products = aggregate product
 - » Short and long sleeve shirts = shirt
 - ◆ Single product
 - Pooled capacities = aggregated capacity
 - » Dedicated machine and general machine = machine
 - ◆ Single capacity
 - Time periods = time buckets
 - » Consider all the demand and production of a given month together
 - ◆ Quite a few time buckets
 - ◆ When does the demand or production take place in a time bucket?


Fundamental tradeoffs in Aggregate Planning

- **♦** Capacity (regular time, over time, subcontract)
- **♦** Inventory
- **♦** Backlog / lost sales: Customer patience?

Basic Strategies


- **♦** Chase (the demand) strategy;
 - fast food restaurants
- **◆** Time flexibility from workforce or capacity;
 - machining shops, army
- **♦** Level strategy;
 - swim wear

Matching the Demand

Aggregate planning at Red Tomato

◆ Farm tools:

Aggregate by similar characteristics

Aggregate Planning at Red Tomato Tools

Month	Demand Forecast				
January	1,600				
February	3,000				
March	3,200				
April	3,800				
May	2,200				
June	2,200				

Aggregate Planning

Item	Cost			
Materials	\$10/unit			
Inventory holding cost	\$2/unit/month			
Marginal cost of a stockout	\$5/unit/month			
Hiring and training costs	\$300/worker			
Layoff cost	\$500/worker			
Labor hours required	4hours/unit			
Regular time cost	\$4/hour			
Over time cost	\$6/hour			
Cost of subcontracting	\$30/unit			
Max overtime hrs per employee	10hours/employee			

1. Aggregate Planning (Decision Variables)

 $W_t = Workforce$ size for month t, t = 1, ..., 6

 $H_t = Number of employees hired at the beginning of month t, t = 1, ..., 6$

 L_t = Number of employees laid off at the beginning of month t, t = 1, ..., 6

 P_t = Production in month t, t = 1, ..., 6

 I_t = Inventory at the end of month t, t = 1, ..., 6

 $S_t = Number of units stocked out at the end of month <math>t, t = 1, ..., 6$

 C_t = Number of units subcontracted for month t, t = 1, ..., 6

 O_t = Number of overtime hours worked in month t, t = 1, ..., 6

2. Objective Function:

3. Constraints

♦Workforce size for each month is based on hiring and layoffs

$$W_{t} = W_{t-1} + H_{t} - L_{t}$$
, or $W_{t} - W_{t-1} - H_{t} + L_{t} = 0$ for $t = 1,...,6$, where $W_{0} = 80$.

◆Production (unit) for each month cannot exceed capacity (hour)

$$P_t \le 8 \times 20(1/4) W_t + O_t/4$$
 or $40W_t + O_t/4 - P_t \ge 0$, for $t = 1,...,6$.

19

3. Constraints

♦ Inventory balance for each month

$$I_{t-1} + P_t + C_t = D_t + S_{t-1} + I_t - S_t,$$

$$I_{t-1} + P_t + C_t - D_t - S_{t-1} - I_t + S_t = 0,$$
for $t = 1,..., 6$, where $I_0 = 1,000$, $S_0 = 0$ and $I_6 \ge 500$.

♦Over time for each month

$$O_t \le 10 W_t$$
 or $10 W_t - O_t \ge 0$ for $t = 1,...,6$.

Application

- **♦** Solve the formulation, see Table 8.3
 - Total cost=\$422.275K, total profit=\$640K
- **◆** Apply the first month of the plan
- **◆** Delay applying the remaining part of the plan until the next month
- **♦** Rerun the model with new data next month
- **♦** This is called rolling horizon execution

Aggregate Planning at Red Tomato Tools

This solution was for the following demand numbers:

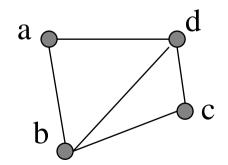
Month	Demand Forecast
January	1,600
February	3,000
March	3,200
April	3,800
May	2,200
June	2,200
Total	16,000

What if demand fluctuates more?

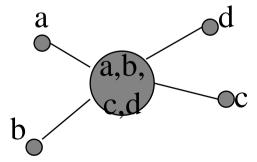
Increased Demand Fluctuation

Month	Demand Forecast
January	1,000
February	3,000
March	3,800
April	4,800
May	2,000
June	1,400
Total	16,000

Total costs=\$432.858K.


Chapter 9: Matching Demand and Supply

- ◆ Supply = Demand
- ◆ Supply < Demand => Lost revenue opportunity
- ◆ Supply > Demand => Inventory
- ◆ Manage Supply Productions Management
- ◆ Manage Demand Marketing


Managing Predictable Variability with Supply

Manage capacity

- » Time flexibility from workforce (OT and otherwise)
- » Seasonal workforce
- » Subcontracting
- » Counter cyclical products: complementary products
 - **♦** Negatively correlated product demands
 - Snow blowers and Lawn Mowers
- » Flexible processes: Dedicated vs. flexible

Similar capabilities

One super facility

Managing Predictable Variability with Inventory

- » Component commonality
 - **♦** Remember fast food restaurant menus
- » Build seasonal inventory of predictable products in preseason
 - **♦** Nothing can be learnt by procrastinating
- » Keep inventory of predictable products in the downstream supply chain

Managing Predictable Variability with Pricing

- **◆** Manage demand with pricing
 - Original pricing:
 - » Cost = \$422,275, Revenue = \$640,000, Profit=\$217,725
- **◆** Demand increases from discounting
 - Market growth
 - Stealing market share from competitor
 - Forward buying: stealing market share from the future

Discount of \$1 increases period demand by 10% and moves 20% of next two months demand forward

Off-Peak (January) Discount from \$40 to \$39

Month	Demand Forecast
January	3,000=1600(1.1)+0.2(3000+3200)
February	2,400=3000(0.8)
March	2,560=3200(0.8)
April	3,800
May	2,200
June	2,200

Cost = \$421,915, **Revenue** = \$643,400, **Profit** = \$221,485

Peak (April) Discount from \$40 to \$39

Month	Demand Forecast					
January	1,600					
February	3,000					
March	3,200					
April	5,060=3800(1.1)+0.2(2200+2200)					
May	1,760=2200(0.8)					
June	1,760=2200(0.8)					

Cost = \$438,857, Revenue = \\$650,140, Profit = \\$211,283 Discounting during peak increases the revenue but decreases the profit! 29

Demand Management

- ◆ Pricing and Aggregate Planning must be done jointly
- **♦** Factors affecting discount timing
 - Consumption: Changing fraction of increase coming from forward buy (100% increase in consumption instead of 10% increase)
 - Forward buy, still 20% of the next two months
 - Product Margin: Impact of higher margin. What if discount from \$31 to \$30 instead of from \$40 to \$39.)

January Discount: 100% increase in consumption, sale price = \$40 (\$39)

Month	Demand Forecast				
January	4,440=1600(2)+0.2(3000+3200)				
February	2,400=0.8(3000)				
March	2,560=0.8(3200)				
April	3,800				
May	2,200				
June	2,200				

Off peak discount: Cost = \$456,750, Revenue = \$699,560 Profit=\$242,810

Peak (April) Discount: 100% increase in consumption, sale price = \$40 (\$39)

Month	Demand Forecast				
January	1,600				
February	3,000				
March	3,200				
April	8,480=3800(2)+(0.2)(2200+2200)				
May	1,760=(0.8)2200				
June	1,760=(0.8)2200				

Peak discount: Cost = \$536,200, Revenue = \$783,520 Profit=\$247,320

Performance Under Different Scenarios

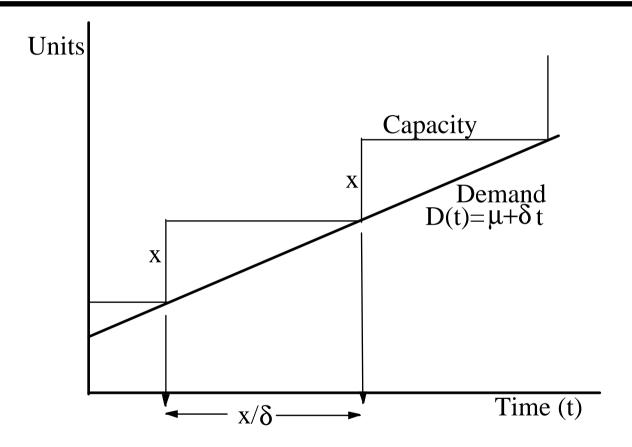
Regular	Promotion	Promotion	Percent	Percent	Profit	Average
Price	Price	Period	increase in	forward		Inventory
			demand	buy		
\$40	\$40	NA	NA	NA	\$217,725	895
\$40	\$39	January	20 %	20 %	\$221,485	523
\$40	\$39	April	20%	20%	\$211,283	938
\$40	\$39	January	100%	20%	\$242,810	208
\$40	\$39	April	100%	20%	\$247,320	1,492
\$31	\$31	NA	NA	NA	\$73,725	895
\$31	\$30	January	100%	20%	\$84,410	208
\$31	\$30	April	100%	20%	\$69,120	1,492

Use rows in bold to explain Xmas discounts.

Factors Affecting Promotion Timing

Factor	Favored timing				
High forward buying	Low demand period				
High stealing share	High demand period				
High growth of market	High demand period				
High margin	High demand period				
Low margin	Low demand period				
High holding cost	Low demand period				
Low capacity volume	Low demand period				
flexibility					

Capacity Demand Matching Inventory/Capacity tradeoff


- **◆** Leveling capacity forces inventory to build up in anticipation of seasonal variation in demand Level strategy
- ◆ Carrying low levels of inventory requires capacity to vary with seasonal variation in demand or enough capacity to cover peak demand during season

 Chase strategy

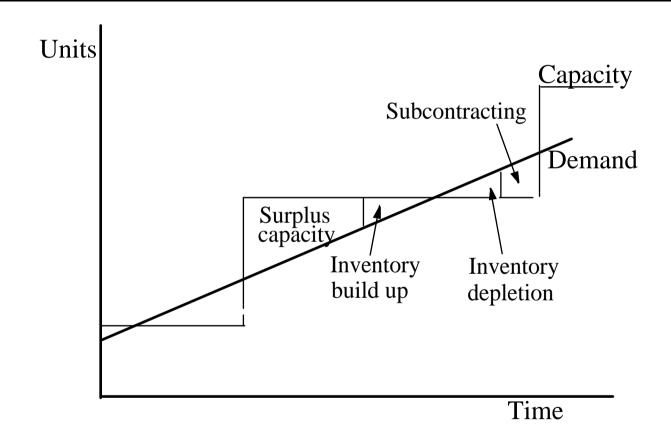
Deterministic Capacity Expansion Issues

- ◆ Single vs. Multiple Facilities
 - Dallas and Atlanta plants of Lockheed Martin
- ◆ Single vs. Multiple Resources
 - Machines and workforce
- ◆ Single vs. Multiple Product Demands
- ◆ Expansion only or with Contraction
- ◆ Discrete vs. Continuous Expansion Times
- ◆ Discrete vs. Continuous Capacity Increments
 - Can you buy capacity in units of 723.13832?
- ◆ Resource costs, economies of scale
- ◆ Penalty for demand-capacity mismatch
- ◆ Single vs. Multiple decision makers

A Simple Model

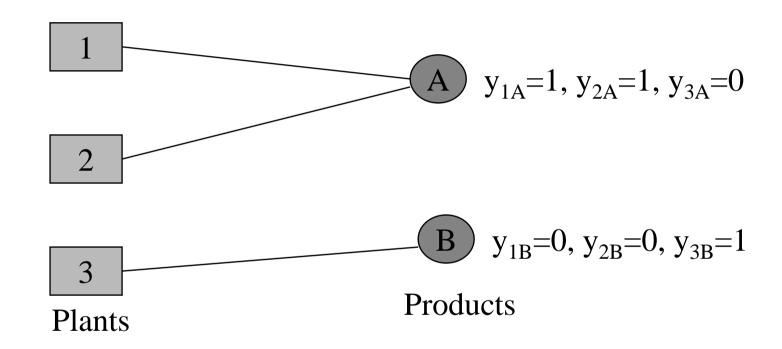
No stock outs. x is capacity increments.

Infinite Horizon Total Cost


$$C(x) = \sum_{k=0}^{\infty} \exp\left(-r(k\frac{x}{\delta})\right) f(x) = f(x) \sum_{k=0}^{\infty} (\exp(-rx/\delta))^k = \frac{f(x)}{1 - \exp(-rx/\delta)}$$

- lacktriangle f(x) is expansion cost of size x
- lacktriangle C(x) is the infinite horizon total discounted expansion cost

$$f(x) = x^{0.5}; r = 5\%; \delta = 1; \implies x^* \cong 30$$


Each time expand capacity by 30-week demand.

Shortages, Inventory Holding, Subcontracting

◆ Use of Inventory and subcontracting to delay capacity expansions

Stochastic Capacity Planning: The case of flexible capacity

- ◆ Plant 1 and 2 can produce product A
- ◆ Plant 3 can produce product B
- ◆ A and B are substitute products
 - with random demands $D_A + D_B = Constant$

Capacity allocation

- Say capacities are $r_1 = r_2 = r_3 = 100$
- \bullet Suppose that $D_A + D_B = 300$ and $D_A > 100$ and $D_B > 100$

With plant flexibility $y_{1A}=1$, $y_{2A}=1$, $y_{3A}=0$, $y_{1B}=0$, $y_{2B}=0$, $y_{3B}=1$.

Scenario	D_A	D_{B}	X_{1A}	X_{2A}	X_{3A}	X_{1B}	X_{2B}	X_{3B}	Shortage
1	200	100	100	100				100	0
2	150	150	100	50				100	50 B
3	100	200	100	0				100	100 B

Capacity allocation with more flexibility

- Say capacities are $r_1 = r_2 = r_3 = 100$
- Suppose that $D_A + D_B = 300$ and $D_A > 100$ and $D_B > 100$

With plant flexibility $y_{1A}=1$, $y_{2A}=1$, $y_{3A}=0$, $y_{1B}=0$, $y_{2B}=1$, $y_{3B}=1$.

Scenario	D_A	D_{B}	X _{1A}	X_{2A}	X_{3A}	X_{1B}	X_{2B}	X_{3B}	Shortage
1	200	100	100	100			0	100	0
2	150	150	100	50			50	100	О
3	100	200	100	0			100	100	О

Material Requirements Planning

- ◆ Master Production Schedule (MPS)
- ◆ Bill of Materials (BOM)
- **♦** MRP explosion
- **♦** Advantages
 - Disciplined database
 - Component commonality
- **♦** Shortcomings
 - Rigid lead times
 - No capacity consideration

Optimized Production Technology

- ◆ Focus on bottleneck resources to simplify planning
- ◆ Product mix defines the bottleneck(s)?
- ◆ Provide plenty of non-bottleneck resources.
- ◆ Shifting bottlenecks

Just in Time production

- ◆ Focus on timing
- ◆ Advocates pull system, use Kanban
- ◆ Design improvements encouraged
- ◆ Lower inventories / set up time / cycle time
- Quality improvements
- ◆ Supplier relations, fewer closer suppliers, Toyota city
- ◆ JIT philosophically different than OPT or MRP, it is not only a planning tool but a continuous improvement scheme

Summary of Learning Objectives

- **♦** Forecasting
- ◆ Aggregate planning
- ◆ Supply and demand management during aggregate planning with predictable demand variation
 - Supply management levers
 - Demand management levers
- ◆ MRP, OPT, JIT
- ◆ Deterministic Capacity Planning