Formulas for closed-book OPRE 6302 Exams

Reminder for Statistics:

• Given a population $\{X_1, X_2, \dots, X_N\}$, Mean: $\bar{X} = \frac{\sum_{i=1}^N X_i}{N}$; Variance: $\operatorname{Var}(X) = \frac{\sum_{i=1}^N (X_i - \bar{X})^2}{N}$.

Standard deviation for the population: $\sigma = \sqrt{Var(X)}$. **Coefficient of Variation** for the population: $CV = \sigma/\bar{X}$.

• Exponential distribution fits well to interarrival times to a queue and it has a CV of 1.

Prob(exponential random variable with mean $\mu \leq t$) = $1 - e^{-t/\mu}$

• For a normal random variable $N(\mu, \sigma^2)$, $(N(\mu, \sigma^2) - \mu)/\sigma = N(0, 1)$ is the standard normal random variable. If we sum *L* many independent normal random variables $N(\mu, \sigma^2)$, the sum is a normal random variable $N(L\mu, L\sigma^2)$.

Excel's Normal Probability functions:

	ſ	normdist(x, mean, stdev, 0):	normal probability density at x ,
ons:	{	normdist(x, mean, stdev, 1):	normal cumulative density at <i>x</i> ,
	l	nominv(prob, mean, stdev) :	inverse of the cumulative density at <i>prob</i> .

Areas under the standard normal curve from $-\infty$ to *z* and $\mathbf{L}(\mathbf{z}) = normdist(z, 0, 1, 0) - z * (1 - normdist(z, 0, 1, 1))$:

Z	0.1	0.2	0.3 0	.4 0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	
Area	0.54	0.58	0.62 0.	66 0.69	0.73	0.76	0.79	0.82	0.84	0.86	0.88	0.9	0.919	-
L(z)	0.35	0.31	0.27 0.	23 0.20	0.17	0.14	0.12	0.10	0.08	0.07	0.06	0.05	0.037	
Z	1.5	16	1 65	17	18	19	20	21	21	2	23	24	25	26
~	1.0	1.0	1.00	1.7	1.0	1.7	2.0	2.1	2.2	2	2.0	2.7	2.0	2.0
Area	0.933	0.945	0.950	0.955	0.964	0.971	0.977	0.982	2 0.98	2 86 ().989	0.992	0.994	0.995

OPRE 6302 Formulas:

The following formulas until the diamond sign \diamond are included after students specifically asked for them.

Inventory turne	_	1 _ COGS				
inventory turns	_	$\overline{\text{Flow time}} = \overline{\text{Value of the Inventory}}$.				
Annual Day Unit Inventory Cost		Annual Inventory Cost				
Annual i el Onit inventory Cost	_	Number of Inventory Turns Per Annum				
Process capacity	=	Min{Capacity of Res 1,, Capacity of Res 2}.				
Thruput	=	Min{Input rate, Process capacity, Demand rate}.				
Requested cycle time	=	Operating time per week				
Requested cycle time		Demand per week				
Designed cycle time	=	$\frac{1}{\frac{1}{1}}$				
		Process Capacity				
Flow rate	=	$\frac{1}{\text{Cycle time}}$.				
Cost of direct labor		Total Wages				
Cost of direct labor		Flow Rate				
Idle time for worker at resource i	=	Cycle time \times Number of workers at resource <i>i</i>				
		- Activity time at resource <i>i</i> .				

Average labor utilization	_	Labor content					
Average labor utilization		Labor content + Total idle time					
Process Litilization		Flow Rate					
Frocess Othization	_	Process Capacity					
		Capacity Requested by Demand					
Implied Utilization	=	Available Capacity					
Time to make X units	=	Time through empty system + (X-1)/Process Capacity					
	=	Time through empty system + (X-1)Cycle Time.					
		Replace X-1 with X f	for continu	ious production.			
		-		-			
		Batch	Size				
Capacity given Batch Size	=	Batch Set-up time + Batch-	Size -size*Time	e per unit			
Capacity given Batch Size	=	Batch Set-up time + Batch- Flow Rate * Setup	Size -size*Time Time	e per unit [°] .			
Capacity given Batch Size Recommended Batch Size	=	Batch Set-up time + Batch- Flow Rate * Setup 1-Flow Rate*Time po	Size -size*Time Time er Unit	e per unit			
Capacity given Batch Size Recommended Batch Size	_	Batch Set-up time + Batch- Flow Rate * Setup 1-Flow Rate*Time po Return	Size -size*Time Time er Unit Return	e per unit [.] Revenue			
Capacity given Batch Size Recommended Batch Size Return on invested capital	=	$\frac{Batch}{Set-up time + Batch}$ $\frac{Flow Rate * Setup}{1-Flow Rate*Time po}$ $\frac{Return}{Invested Capital} = $	Size -size*Time Time er Unit Return Revenue	e per unit [*] Revenue Invested Capital [*]			
Capacity given Batch Size Recommended Batch Size Return on invested capital	=	$\frac{Batch}{Set-up time + Batch}$ $\frac{Flow Rate * Setup}{1-Flow Rate*Time p}$ $\frac{Return}{Invested Capital} =$ $Return Revenue$	Size -size*Time Time er Unit Return Revenue ie - Fixed c	Revenue Invested Capital' costs - Flow rate*Variable costs			
Capacity given Batch Size Recommended Batch Size Return on invested capital	_	$\frac{\text{Batch}}{\text{Set-up time + Batch}}$ $\frac{\text{Flow Rate * Setup}}{\text{1-Flow Rate*Time po}}$ $\frac{\text{Return}}{\text{Invested Capital}} = \frac{\text{Return}}{\text{Return}}$	Size -size*Time Time er Unit Return Revenue ie - Fixed c	e per unit Revenue Invested Capital' costs - Flow rate*Variable costs Revenue			
Capacity given Batch Size Recommended Batch Size Return on invested capital	_	$\frac{Batch}{Set-up time + Batch}$ $\frac{Flow Rate * Setup}{1-Flow Rate*Time p}$ $\frac{Return}{Invested Capital} = \frac{Return}{Revenue} = \frac{Revenu}{Revenue}$	Size -size*Time Time er Unit Return Revenue te - Fixed c	Revenue Invested Capital' costs - Flow rate*Variable costs Revenue e*Price			

Little's Law: Average Inventory = Average Flow rate * Average Flow time.

Economic Production/Order Quantity model to find lot size *Q*:

R: Demand rate per time. *P*: Production rate per time. *K*: Fixed (Setup) cost. *h*: Holding cost rate per time per unit.

Average Inventory=Q/2. Length of an Inventory Cycle=Q/R.

Total EPQ cost per time =
$$C(Q; P) = \underbrace{\frac{1}{2} \frac{Q}{P} (P - R)h}_{Inventory holding cost per time} + \underbrace{\frac{KR}{Q}}_{Set up cost per time}$$

$$\mathbf{EPQ}(P) = \sqrt{\frac{2KR}{(1-R/P)h}}$$

Set $P = \infty$ to obtain *EOQ*. Specifically,

Total EOQ cost per time =
$$C(Q; P = \infty) = \frac{1}{2}Qh + \frac{KR}{Q}$$

Inventory holding cost per time Set up cost per time

$$\mathbf{EOQ} = \sqrt{\frac{2KR}{h}} = \lim_{P \to \infty} \sqrt{\frac{2KR}{(1 - R/P)h}} = EPQ(P = \infty)$$

With $P = \infty$ and Q = EOQ, the total cost C(Q) per time becomes $C(Q = EOQ; P = \infty) = \sqrt{2KRh}$.

Level production plan:

The regular production is kept constant (level) over periods and demand fluctuations are satisfied with overtime production. If the regular production has a capacity then, we may be forced to produce at that capacity. In general,

Regular production quantity = min
$$\left\{ \frac{\text{Sum of the demands}}{\text{Number of periods}}, \text{Regular production capacity} \right\}$$

Here is an example, suppose the demand for the next two weeks are 50 and 100 and the regular production capacity is 70. We can produce only 140 units in two weeks on regular time. The remaining 10 (=150-140) units are produced in overtime. It is better to do the overtime in the second week to save on inventory holding. Then the regular production is 70 and 70 in the first and the second week while the overtime production is 0 and 10 units in the first and the second week.

Queues

 CV_a = St.Dev.of interarrival time/Aver. interarrival time. CV_p = St.Dev.of service time/Aver. service time. CV_a and CV_p are CV of interarrival and service times.

If a queue with *m* servers has average interarrival times *a* and activity times *p*, its utilization *u* and the approximate expected waiting time T_q are:

$$\mathbf{u} = \frac{p}{a \, m}. \qquad \mathbf{T}_{\mathbf{q}} = \left(\frac{p}{m}\right) \left(\frac{u\sqrt{2(m+1)}-1}{1-u}\right) \left(\frac{CV_a^2 + CV_p^2}{2}\right).$$

Then, we have: **T** = $T_q + p$. **I**_p = $m \cdot u$. **I** = $I_q + I_p$. **I**_q = $(1/a)T_q$. **I** = $(1/a)(T_q + p)$.

Cost of Direct Labor =
$$\frac{\text{Total wages per time}}{\text{Flow rate per time}} = \frac{m * \text{Wages per time}}{1/a} = \frac{p * \text{Wages per time}}{u}$$

If a queue with *m* servers has average interarrival times *a* and activity times *p*, let r := p/a, then

Prob(All servers are busy) =
$$\frac{(r^m)/(m!)}{\sum_{i=0}^m (r^i)/(i!)}$$
 or use Erlang loss table.
The rate of served output = $\frac{1}{a}$ Prob(Not all servers are busy).

Quality

• If the sandard deviation of a population is σ , then the standard deviation of the sample means of this population is

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

where *n* is the size of each sample.

• Control charts:

Mean Chart: UCL=Average of Sample Means $+ z \cdot$ StDev of Sample Means LCL=Average of Sample Means $- z \cdot$ StDev of Sample Means

where we choose *z* so that Type I error probability is α . One can also use

LCL=norminv($\alpha/2$,mean,stdev), UCL=norminv(1- $\alpha/2$,mean,stdev).

One can also use

LCL=Average of Sample Means $-A_2 \cdot \overline{R}$, **UCL=Average of Sample Means** $+A_2 \cdot \overline{R}$.

Range Chart: LCL= $D_3\bar{R}$ and UCL= $D_4\bar{R}$. Standard deviation can be estimated by $\sigma_{\bar{X}} = \bar{R}/d_2$.

Sample size	<i>A</i> ₂	D_3	D_4	<i>d</i> ₂	Sample size	A_2	<i>D</i> ₃	D_4	<i>d</i> ₂
2	1.88	0	3.27	1.12	6	0.48	0	2.00	2.53
3	1.02	0	2.57	1.69	7	0.42	0.08	1.92	2.70
4	0.73	0	2.28	2.06	8	0.37	0.14	1.86	2.85
5	0.58	0	2.11	2.33	9	0.34	0.18	1.82	2.97

Table for A_2 , D_4 , D_3 and d_2 under 99.74% or $3\sigma_{\bar{X}}$ confidence:

For **p-chart** with sample size *n*:

StDev of Sample Mean =
$$\sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$$

• Process capability:

$$\mathbf{C_p} = \mathbf{Process\ capability\ ratio} = \frac{\mathbf{Upper\ specification\ level} - \mathbf{Lower\ specification\ level}}{6\sigma_{\bar{X}}}$$

Inventory

• The newsvendor optimal order quantity formula:

In-stock Probability = Prob(Demand
$$\leq \mathbf{Q}$$
) = $\frac{C_u}{C_u + C_o}$

• Expected (lost sales=shortage) in a season = $E(\max{\text{Demand in a season} - Q, 0})$. When the demand is normally distributed with mean μ and standard deviation σ , the **expected lost sales** is $\sigma \times L(\mathbf{z})$, where

$$\mathbf{z} = \frac{Q-\mu}{\sigma}$$
 and $\mathbf{L}(\mathbf{z}) = normdist(z,0,1,0) - z * (1 - normdist(z,0,1,1))$

• Demand=Sales+Lost Sales and Inventory=Sales+Left Over Inventory.

Expected demand = μ = Expected sales + Expected lost sales.

Inventory = Q = Expected sales + Expected left over inventory.

• Service measures:

Instock probability = Prob(Demand
$$\leq Q$$
)
Fill rate = $\frac{\text{Expected sales}}{\text{Expected demand}} = 1 - \frac{\text{Expected lost sales}}{\text{Expected demand}}$

• **Inventory level**=(On-hand inventory)-(Backorder) and Inventory position=(Inventory level)+(Onorder inventory)

• In the basestock policy, we keep inventory position at **S to cover (lead time + 1) periods' demand**. Basestock is just another name for order-up-to level.