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Minimum-Seeking Properties of Analog Neural 
Networks with Multilinear Objective Functions 

M. Vidyasagar, Fellow, IEEE 

Abstract-In this paper, we study the problem of minimzing a 
multilinear objective function over the discrete set {0, 1)”. This 
is an extension of an earlier work addressed to the problem of 
minimizing a quadratic function over {0, 1)”. A gradient-type 
neural network is proposed to perform the optimization. A novel 
feature of the network is the introduction of a so-called bias 
vector. The network is operated in the high-gain region of the 
sigmoidal nonlinearities. The following comprehensive theorem 
is proved: For all sufficiently small bias vectors except those 
belonging to a set of measure zero, for all sufficiently large 
sigmoidal gains, for all initial conditions except those belonging 
to a nowhere dense set, the state of the network converges to a 
local minimum of the objective function. This is a considerable 
generalization of earlier results for quadratic objective functions. 
Moreover, the proofs here are completely rigorous. The neural 
network-based approach to optimization is briefly compared to 
the so-called interior-point methods of nonlinear programming, 
as exemplified by Karmarkar’s algorithm. Some problems for 
future research are suggested. 

I. INTRODUCTION 

OST of the current research into feedback neural net- M works is concentrated on networks with linear intercon- 
nections and quadratic energy functions. In his trend-setting 
paper [ 141, Hopfield considers two-state networks described 
by 

I n  I 

(1.1) 
where n is the number of neurons, z , ( t )  E (-1.1) is the state 
of neuron z at time t .  w , ~  is the weight of the interconnection 
from neuron j to neuron i .  and -6, is the firing threshold of 
neuron 2 .  Hopfield [14] defines the energy of the network as 

J 

n n  n 

i = l  j=1 i=l 

and proves the following the property: Suppose wji = wzj for 
all i . j  (symmetric interactions) and wii = 0 for all i (no self- 
interactions). Finally, suppose the neural states are updated 
asynchronously as follows: At each (discrete) instant of time t ,  
select an integer i E { 1. . . . , n}  in sequence, compute zi( t+ 1) 
in accordance with ( l . l ) ,  but leave z j ( t )  unchanged for all 
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j # i .  In this mode of operation, it is true that 

E[Z(t  + 111 L E[Z(t)l (1.3) 

where z = [ZI . . .xnIt .  Thus, in an asynchronous mode of 
operation, the neural network will eventually reach a fixed 
point of the network, that is, a vector 20 with the property 
that 

(1.4) 

irrespective of which neuron is updated at time t .  Hence, if it 
is desired to optimize a quadratic objective function over the 
discrete set { -1, l}”,  one can use a neural network of form 
(1.1). Such a network will, within a finite number of time steps, 
reach a local minimum of E.  Some practical problems that 
can be translated as the minimization of a quadratic objective 
function include the Traveling Salesman Problem [16] and 
linear programming [26]. 

While the above results are very impressive, the asyn- 
chronous mode of operation is vulnerable to the criticism that 
the convergence to a local minimum will be slow, because out 
of the n neurons, only one neuron changes its state at a time. If 
one thinks of the state space of the neural network as the set 
of 2” comers of the hypercube [-1, l]”, then asynchronous 
updating changes the state of the network only to an adjacent 
state at each time step. Indeed, the results of [25] can be 
interpreted to mean that, in the worst case, a discrete-state 
Hopfield network can take an exponential number of steps to 
reach even a local minimum. It is of course possible to operate 
the network in a synchronous mode; in other words, at time t ,  
the state of each neuron is updated according to (1.1). If this 
is done, however, then (1.3) is no longer true, and the network 
may not converge to a fixed point. In fact, it is shown in [ l  11 
that in the synchronous mode, the network can go into a limit 
cycle of length two. 

In an attempt to speed up the operation of the network, 
Hopfield [ 151 considers analog neural networks where the 
constituent neurons have graded responses. Such networks are 
described by 

Z ( t )  = 20 =+ Z(t  + 1) = 20 

n 
1 

ciui = --ua + wijvj + Bi, vi = g i ( X U a ) ,  
Ri j=1 

i =  1 1 . . .  > n  (1 5 )  

where n is the number of neurons; v, is the neural current 
and U ,  is the neural voltage, 6, is the external current input 
to the ith neuron, C, is the membrane capacitance and R, 
is the neural resistance, X is a scaling parameter, and wz3 is 
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the weight of the interconnection from neuron j to neuron 2. 
The function 9,: 91 + ( 0 , l )  is continuously differentiable, 
strictly increasing, g l ( z )  -, 1 as z + m, and g t ( x )  + 0 as 
s + -x. Note that as the scaling parameter X -+ 30, the 
function z ++ .91 (Ax) approaches the “saturation” function sat 
(z), which equals zero if x < 0 and equals one if z > 0. In 
[15], Hopfield assumes that wZJ = wJl for all 2 , ~  and that 
U‘,, = 0 for all 2. He then proposes the energy function 

and shows that 
d 
nt -Ec[v(t)] IO 

along trajectories of system (1 S). Hirsch 

(1.7) 

[12] shows, using 
relationship (1.7), that- system (1.5) is totally stable; that is, 
every solution trajectory approaches an equilibrium. Salam er 
al. [23] fix a small technical flaw in the reasoning of [12] 
by establishing that no solution trajectory of (1.5) escapes to 
infinity (in the U space). 

The results of [12] and [23] combined show that every 
solution trajectory of (lS),  irrespective of the initial condition, 
approaches an equilibrium. Thus it becomes important to 
analyze the location and stability status of the equilibria of 
system (1.5). Such an analysis is carried out in [27] for a very 
general class of neural networks in the high gain limit, i.e., 
as X + x. The analysis of [27] applies also to the neural 
network ( 1  3. It shows that, if w,, = 0 for all i, wZJ = wJ2 for 
all i . j ,  and certain additional assumptions hold, then “almost 
all” solution trajectories of the network approach a comer of 
the unit hypercube [0, 11“. Note that, as X -+ M, the energy 
function E, of (1.6) approaches the energy function E of (1.2). 
Hence, by operating the analog network (1.5) near the high 
gain limit, it is possible to minimize E over the discrete set 
(0. l}“. Note that the operation of the analog network (1.5) 
is “synchronous” in the sense that the states of all neurons 
are changing at the same time. It can therefore be argued that 
the analog implementation combines the speed of synchronous 
operation with the minimum-seeking property of asynchronous 
operation. 

Thus, in the case where the objective function to be min- 
imized is a quadratic, the situation is quite well understood. 
There are situations, however, in which it is more natural to 
use an objective function which is a polynomial of degree 
three or higher. One such example is given in [21], wherein 
the problem of checking whether of not there exists a truth 
assignment on a set of Boolean variables that makes each of 
a set of formulas true (commonly known as the “satisfiability 
problem” and the “original” NP-complete problem) is formu- 
lated as a minimization problem over the set (0, l}n where n is 
the number of literals and the degree of the objective function 
is the length of the longest clause in the set of formulas. 
Another example is given in [5], wherein the problem of 
algebraic block-decoding is formulated as that of maximizing 
a polynomial over ( - 1. I}“. where the number of neurons n 

equals the length of the encoded words and the degree of the 
objective function is equal to the number of information bits. 

The objective of the present paper is to generalize the system 
description (1.5) to the case of an objective function that is not 
necessarily quadratic. A natural way to do this is to replace the 
term Cy=l wijvj + Bi in (1.5) by the negative gradient of the 
objective function. This, plus the introduction of a so-called 
“bias” vector, is the essence of the approach proposed here. 

Next, the organization of the paper is described. The analysis 
of the neural networks can be divided into two distinct parts. 
The first part of the analysis applies to any neural network 
described by a set of equations of the form 

U .  

ai 
G .  2 -  - -2 - f.(Z) + b .  ,, x. , - - g i ( A u a ) ,  i = 1,. . . n 

where f: [O, 11” + R” is continuously differentiable. In other 
words, it is not necessary that f be the gradient of a scalar- 
valued function. Even in this quite general case, it is possible 
to carry out a fairly comprehensive analysis of the equilibria 
of the network. This is done in Section 11. The results of this 
section are similar to those in [27], except that the proofs are 
completely rigorous. This is in contrast to [27], where there is 
a certain amount of “hand waving.” 

The second part of the analysis applies to the specific class 
of neural networks described by 

(1.9) 

where E is the objective function to be minimized over 
(0, l}”. It is assumed that the function E satisfies the con- 
dition 

- = 0 for all i. 
d*E 
dX,? 

(1.10) 

It is easy to see that the above condition is equivalent to 
requiring E(z1,.  . . , 2,) to be an affine function of when all 
other xj , j # i are fixed, i.e., requiring that E be a multilinear 
polynomial. This condition assures that the right side of (1.9) is 
independent of xi and can be thought of as a nonlinear version 
of the “no self-interactions” assumption made by Hopfield in 
[15]. In particular, if E is of the form (1.2), then E satisfies 
(1.10) if and only if wii = 0 for all i. Thus the class of 
objective functions studied here includes those of Hopfield as 
a special case. 

The class of networks described by (1.9) is analyzed in 
Section 111. The key to the analysis is the introduction of the 
so-called “bias” vector b into the dynamics (1.9). The main 
conclusions of the analysis are that, for “almost all” sufficiently 
small bias vectors b, for “almost all” initial conditions z(O), 
and all sufficiently high values of the sigmoidal gain A, 
the solution trajectory of (1.9) approaches a corner of the 
hypercube [0, 11” and that this comer is a local minimum of 
E over (0 , l )” .  

In Section IV, a few simple examples are presented to show 
that the introduction of the bias vector is really necessary, in 
the sense that the theorems are false without these features. 
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In Section V, the neural network-based approach analyzed 
here is briefly compared to the so-called interior-point methods 
for nonlinear programming, as exemplified by Karmarkar's 
algorithm [18]. Special attention is paid to the so-called 
affine scaling vector field and another approach suggested by 
Faybusovich [7]. 

Section VI contains the concluding remarks. One of the 
conclusions is that there is a need to develop a suitable 
theory of computational complexity for analog computation. 
The paper is rounded out by two brief appendixes. The 
first summarizes optimality conditions in the case where the 
objective function is multilinear, while the second presents an 
open problem related to the strict local minima of multilinear 
polynomials. 

Now a brief word about the notation. For the most part, 
upper-case bold-face letters indicate matrices, while lower- 
case bold-face letters indicate vectors. The symbol o( A-') 
indicates a vector with the property that 

lim x o(x-') = o (1.11) 
A-x.  

while the symbol O(X-') indicates a matrix with the property 
that 

lim x o(x-') = 0. (1.12) 
A-33 

Thus the only difference between o(X-') and O(X-') is that 
the former is a vector while the latter is a matrix. In particular, 
there is no distinction as to the rate of convergence to zero as 
X ---f x. This usage is a little different from the standard 
convention. 

11. SOME GENERAL RESULTS 

Throughout this section, we study a very general class of 
nonlinear neural networks described by 

U1 

a ,  
U ,  = -- - ft(z) + b l . T l  = g 2 ( X u 2 ) ,  2 = 1.. . . .n  

(2.1) 

where f: [O. lIn --f %" is continuously differentiable.' Note 
that f need not be the gradient of any function. Thus the 
above class of networks is much more general than the gradient 
neural networks studied in earlier papers and than (1.9). The 
object of the study is to determine what happens to the 
location of the equilibria of the network as the sigmoidal 
gain X approaches infinity. It turns out that, under very mild 
conditions, network (2.1) has only a finite number of equilibria 
for each fixed value of A. As X -+ m, these equilibria cluster 
at various points in the hypercube [0,1]". The objective of this 
section is to obtain an explicit characterization of these cluster 
points. The culmination of the study undertaken in this section 
is Theorem 2.6, given at the end of the section. 

To proceed further, we introduce an assumption on the 
sigmoidal functions g 2  (.) . 

'This means that f IS  continuously differentiable over some open set 
contaming 10 11" 

A )  For each i .  the function gL(.): R -+ ( 0 , l )  is continuously 
differentiable, strictly increasing, and satisfies 

g z ( u )  -+ 0 as U -+ -x. g E ( u )  -+ 1 as U + x (2.2) 

and 

Iim Xgi(Xu)  = O (2.3) 
A-02 

uniformly in U over the complement of any open neighborhood 
of zero. 

Condition (2.3) means that, given any E, 6 > 0, however 
small, there exists a number A4 such that 

This is a very mild assumption. The fact that 9 ; ( u )  has a 
definite limit as I u I  -+ 30 implies that 

lim inf ug:(u) = O (2.5) 
IUI" 

because the function U H 1/u is not integrable over any 
infinite interval. Hence, for any fixed U # 0, we have 

lim inf Xg;(Xu)  = 0. (2.6) 
A-02 

So the essence of the assumption is to i) replace "lim inf' by 
"lim" in (2.6) and ii) to make the limit uniform with respect 
to U ,  as U varies over the complement of a neighborhood of 
zero. Note that the commonly used sigmoid function .9;(u) = 
I/( 1 + e P u )  satisfies this assumption. 

For purely technical reasons, it is assumed that the gain X 
assumes one of only countably many values. To be precise, 
we suppose that { X j }  is a sequence of positive numbers 
approaching infinity and study what happens when X = X j ,  

Let us begin by recalling a few standard concepts and facts. 
Suppose h: Rn + Rn is continuously differentiable. A vector 
z E Rn is called a critical point of the map h if the Jacobian 
matrix V h ( z )  is singular; otherwise, it is called a regular point 
of h. A vector y E R" is called a regular value of the map 
h if every point in h-'(y) is a regular point of h; otherwise, 
y is called a critical value of h. If h-l(y) is empty, then y 
is vacuously deemed to be a regular value. Note that if y is 
a regular value of h, then every point in the set h-'(y) is 
isolated; that is, every point 5 in h-'(y) has a neighborhood 
N ( z )  that does not contain any other point of h-'(y). This 
is a ready consequence of the fact that Vh(z) is nonsingular 
and the inverse function theorem. A standard argument based 
on the Heine-Bore1 theorem shows that if y is a regular value 
of h and S Rn is compact, then S can contain at most a 
finite number of points of h-'(y). In other words, the set S 
contains at most a finite number of solutions z of the equation 
h(z)  = y. The famous theorem of Sard [24] states, quite 
simply, that the set of critical values of any differentiable map 
has measure zero. Thus, for any differentiable map h, it is the 
case that the equation h(s) = y has only a finite number of 
solutions in any compact set S R", for "almost all" values 

j = 1 , 2 , . . .  . 

of y. 
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The objective of this section is to examine the behavior of 
the equilibria of neural network (2.1) as A + 03. Clearly, a 
vector U is an equilibrium of the network (2.1) if and only if 

21. 
0 = -2 - f,(z) + bE, zz = gz(Xut) ,  2 = 1 , .  . . ,n. 

a,  
(2.7) 

This can be expressed more compactly. Define A E PX" to 
be the diagonal matrix Diag { al, . . . , a"}, and define maps 
f: [0, 11" --+ !R",g: 8" -+ (0, l )",  and the vector b E R" in 
the obvious way. Then (2.7) can be rewritten as 

0 = -A-'u - f(z) + b, z = g(Xu). (2.8) 

Proposition 2.1: There exists a number p such that, if 
U E gn satisfies (2.8) for some A, then JJuJJ 5 p. 

Proofi Rewrite (2.8) as 

U = A[b - f(z)]. (2.9) 

Since f is continuous and z E [0, l]", there is a finite constant 
M such that I(f(z)(( 5 M for all z E [0, 11". Thus (2.9) 
implies that 

IIU 5 IIAII . [llbll + MI (2.10) 

where IJAJI denotes the induced matrix norm of A, i.e., the 
largest singular value of A. 

Now we focus on the case where X = X j  for some index 
j ,  and { X j }  is a sequence of positive numbers approaching 
infinity. In other words, X is restricted to any one of a countable 
set of values. Define €3 to be the set of solutions U of the 
equation 

(2.1 1) 

Thus, E j  is the set of equilibria (in the u-space) of network 
(2.1) when X is set equal to X j .  Next, define 

0 = -A-'u - f[s(Xju)] + b. 

E = U E j .  
j 

(2.12) 

Thus E is the set of all equilibria (in the u-space) of (2.1), for 
whatever A. The sets €j and E pertain to the u-space and are 
subsets of 92". It is actually more convenient to work in the 
z-space. Define Sj to be the set of solutions z of the equation 

0 = - X i ' A - l g - l ( ~ )  - f(x) + b (2.13) 

and define 

s = usj. 
j 

(2.14) 

Observe that for each j, the map U H g(Xju) is a diffeo- 
morphism of E" onto (0, l )n .  Hence there is a one-to-one 
correspondence between the sets Ej and Si. But the same 
need not be true of the sets E and S, as these are unions of 
sets corresponding to different values of A. 

Proposition 2.2: For all b E 8" except those belonging to a 
set of measure zero, each set E j  contains only a finite number 
of points. 

Pro08 Define Cj  to be the set of critical values of the 
map U H A-'U + f[g(Xu)], and observe that each Cj  has 
measure zero, by Sard's theorem. Therefore 

c = u c j  

3 

(2.15) 

also has measure zero, because C is a countable union of sets 
of measure zero.2 Thus, if b C, then b is a regular value 
of each map U H A-'U + f[g(Xu)]. Hence (2.11) has only 
a finite number of solutions in the sphere /(U(( 5 p.  From 
Proposition 2.1, these are all the solutions of (2.1 1). 

Throughout the rest of the section, it is assumed that b 6 C.  
Additional assumptions on b are added as we go on. 

Proposition 2.2 shows that, for almost all b E R", the set S 
is countable. Let us now study the cluster points of the set S. 
Recall that a vector p E R" is defined to be a cluster point of 
a set S C !J? if each neighborhood of p contains an element 
of S not equal to p. Equivalently, p is a cluster point of S 
if and only if there exists a sequence {si} in S converging 
to p such that the sequence {si} is pairwise distinct, that is, 
si # sj if i # j .  

Note that a countable set can have an uncountable number 
of cluster points. For example, let S be the set of all rational 
numbers in the interval [0, 11; then the set of cluster points 
of S is the set of all numbers in [0, 11. The objective of 
the remainder of the section is to show that, for the set S 
of equilibria of neural network (2.1), such a thing does not 
happen. In fact, for almost all bias vectors b, there are only 
a finite number of cluster points, and these can be described 
explicitly. Moreover, as X j  becomes large, network (2.1) has 
exactly as many equilibria as the number of cluster points, 
and each equilibrium of (2.1) is "close" to the corresponding 
cluster point. To arrive at this comprehensive characterization 
of the behavior of the equilibria of (2.1), we go through 
several intermediate steps. The first step is to categorize the 
cluster points of the set S into three groups. Note that, since 
S C [O, 1ITL, all cluster points of S must belong to [O,l]". 
Definition 2.1: Suppose v E [O, 1In is a cluster point of S .  

Then U is said to be an interior point if v E (0, l)", a comer 
point if v E (0, l}", and a face point otherwise. 

Suppose v E [0, I]" is a cluster point of S. Then there 
exists a pairwise distinct sequence { v i }  in S converging to v.  
In other words, there exists a sequence of indexes {ji} such 
that vi E Sj, and vi + v .  Equivalently 

0 = -X-'A-'g-'(vi) J %  - f (v i )  + b (2.16) 

and v; + U. Now, because the sequence { v i }  is pairwise 
distinct and each set Si is finite, it is clear that the sequence 
{ji} cannot contain any integer more than a finite number of 
times; thus ji + 00. Therefore, without loss of generality, we 
can renumber the sequence { Xj,  } as {A,} and observe that the 
renumbered sequence { X i  1 also approaches infinity. With the 
renumbering, (2.16) becomes 

0 = - X i  'A-'g-'(vi) - f ( ~ i )  + b. (2.17) 

'This is why X is restricted to take on any one of a countable set of values. 
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Of course, the renumbering depends on the cluster point. But 
it simplifies notation by eliminating the double subscripts. 

The next three propositions give explicit characterizations 
of each of the three types of cluster points. 

Proposition 2.3: Suppose b is a regular value of the func- 
tion f. Then w E (0.1)" is a cluster point of S if and only 
if 

f ( w )  = 6 .  (2.18) 

Proof: Suppose w E (0. 1)" is a cluster point of S; 
it is shown that U satisfies (2.18). Choose { w , } .  {Az} such 
that (2.17) holds, and w,  -+ w .  Also, assume without loss of 
generality that the components of w,  are bounded away from 
zero and one for all z; that is, suppose that there exists an 
E > 0 such that 

t I ( w , ) k  I 1 - E .  k = 1, .  . . , n, for all i. (2.19) 

This is possible because w lies in the interior of [O, 11" and 
w ,  -+ w. Now (2.19) implies that 11g-1(w2)ll can be bounded 
with respect to z by some finite constant. Letting s * 30 in 
(2.17) establishes (2.18). 

Conversely, suppose w E (0.1)" satisfies (2.18); it is shown 
that w is a cluster point of S. Since b is a regular value 
of f. it follows that w is a regular point of f, i.e., that 
Of(.) is nonsingular. Choose a 6 E ( 0 , ~ )  such that Vf(z) 
is nonsingular and Il[Vf(z)]-'II is bounded above whenever 
z E B(w. 6). where B(w. 6) denotes the ball {z: 112 - w11 < S}. 
Now consider the equation 

f(z) + X-'A-lg-'(z) = b. (2.20) 

The closed ball B = B(w, 6) lies inside tk,e interior of the open 
hypercube (0, 1)". Hence 11Vg-'(z))1 is uniformly bounded as 
z varies over B. Now a routine application of the contraction 
mapping theorem shows that (2.20) has a unique solution for z 
whenever X is sufficiently large. This can be seen by defining 
y = f(z) and rewriting (2.20) as 

y + X-'A-'g-'[f-'(y)]  = 6 

y = b - X-'A-'g-'[f-'(y)J.  

(2.21) 

or equivalently 

(2.22) 

The right side of (2.22) is a contraction whenever A-' is 
sufficiently small. Hence (2.21) has a unique solution for y, 
and (2.20) has a unique solution for z. whenever A exceeds 
some number, call it M .  To complete the argument, select 
a subsequence of the original {A,} such that A, > M for 
all 2;  renumber this subsequence as {A,}; let w, denote the 
corresponding unique solution of (2.21) inside the ball B. Then 
w E S and w,  + w .  Thus w is a cluster point of S. 

Proposition 2.4: Suppose e E (0, l}", and define 

z = b - f ( e ) .  (2.23) 

Choose b such that no component of z is zero. Then e is 
a cluster point of S if and only if the vector z satisfies the 
parity condition 

Zk > O i f  e k  = 1. zr,<Oif e k  = 0. k = l , . . . , n .  
(2.24) 

Pro08 Suppose e E (0, 1)" is a cluster point of S; it 
is shown that the parity condition (2.24) is satisfied. Select 
A,: wi such that (2.17) holds and such that wi 4 e.  Define 
ui = A;'g- ' (wi ) .  Then ui satisfies the u-space counterpart 
of (2.17), namely 

A-lui = - f [ g ( A i ~ i ) ]  + b. (2.25) 

Now let i -+ CO, Then g(Xiui) = w, -+ e, so that 

A-lui -+ - f ( e )  + b = z. (2.26) 

In other words 

~i + Az. (2.27) 

Now, by assumption, each component of z is nonzero. Hence 
each component of ui approaches a nonzero number. The 
only remaining question is the sign of this limit. Fix an index 
k E { 1, . . . , n}, and let t k  denote the limit of the sequence 
{ ( u ; ) k } .  In other Words 

t = Az. (2.28) 

By assumption, t k  # 0. Thus, since X i  + CO, it follows that 

g k [ A i ( U i ) k ]  -+ 0 if t k  < 0, 1 if t k  > 0. (2.29) 

In other words 

t k  < 0 if e k  = 0, t k  > 0 if e k  = 1. (2.30) 

Now (2.24) follows from (2.27) and (2.30), and observing 

To prove the converse, suppose e E (0, l}n, define z as in 
(2.23), and suppose the parity condition (2.24) is satisfied; it 
is shown that e is a cluster point of S. Define 

that t k  = ( Y k z k .  

u0 = Az = A6 - A f ( e ) .  (2.3 1) 

Then no component of uo is zero, by assumption. Pick an 
E > 0 such that 

1IuI1 2 (luoll - E + u k  # 0 for all k .  (2.32) 

Define the set 

U = {U  E 8": JJUIJ 2 lluoll - E } .  (2.33) 

Then U is the complement of the open ball {U: llull < I I u o ~ ~ - E }  
that contains the origin. Moreover, since U is a closed subset 
of W,  it is a complete metric space in its own right. Now by 
Assumption A) on the sigmoidal functions 

lim IIVg(Aiu)ll -+ 0, uniformly for U E U. (2.34) 
i+w 

Also, since the parity condition is satisfied, it follows that 

Jim IlfM~iuo)l - f(e)II = 0. (2.35) 

Hence it is possible to find an index N such that, whenever 
i > N ,  we have 

2-m 

( (A((  . (lf[g(xi~)]llxiVg(Ai~)(l I 1 - P:  for all U E ui 
(2.36) 
(2.37) IIAII ' Ilf[g(~iw)l - f(e)l l  I EP 
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where p E (0 .1)  is arbitrary. Now look at the equation 

U = Ab - Af[g(Xi~)].  (2.38) 

For each fixed i, the map U H Ab - Af[g(Xiu] =: Tiu is a 
contractive map on U,  in view of (2.36). If we define 

U! ' )  = Tiuo = Ab - Af[g(Xim)] (2.39) 

then 

IIU!l) - Uoll = IIA{f[g(~iuo)l - f(e))Il I fP (2.40) 

from (2.31) and (2.37). Now rewrite (2.40) as 

(2.41) 

By the local version of the contraction mapping theorem [28, 
Theorem 2.3.151, it follows that (2.38) has a unique solution 
in U ;  call it U,. Define U ,  = f[g(X,u,)]. Now it is easy to see 
that uz -+ ug and that U ,  --t e. Moreover, U, E E, and U ,  E S,. 
Hence e is a cluster point of S. 

Thus far we have examined the cluster points of S in 
the interior of [O, I]" and in the comers of [0, 11". Next we 
examine the cluster points in the faces of [O. 11". For this 
purpose, it is useful to have another interpretation of a face. 
Let I be a nonempty proper subset of { 1, . . . , n}, and let 
v2 E (0. l]I'l, where (I1 is the cardinality of the set I .  Then 
the set 

FI = (z E [O. I]": z, = ( ~ 2 ) ~  if i E I . z ,  E (0 , I )  if z I }  
(2.42) 

is an (open) face of the hypercube [0, 11". Once the index set I 
is chosen, there are 2111 ways of choosing the binary vector v2. 
Each choice of I and a corresponding choice of 0 2  defines an 
open face of [0, 11". Conversely, each open face has associated 
with it a unique set I and a unique binary vector v2. It is easy 
to see that the union of the interior of [0, l]", the comers of 
[O. 11". and the faces of [0,1]" is precisely [0,1]". Hence, a 
cluster point of S that is neither an interior point nor a comer 
must belong to a face. 

As one would expect, the conditions for a vector U belonging 
to a face of [0,1]" to be a cluster point of S are a combination 
of Propositions 2.3 and 2.4. But the notation is a little 
cumbersome. Suppose v belongs to a face of [0, I]". Let I 
denote the index set associated with this face. We can define 
the vectors 

U1 = (w,,2 $-! I} E ( 0 , 1 ) " - ~ ~ ~ ,  
U2 = ( w , , 2  E I }  E (0, l}"'. (2.43) 

Proposition 2.5: Suppose U belongs to a face of [0, l]", and 
define v1 as in (2.43). Partition f and b commensurately with 
U .  Suppose the bias vector b has two properties: i) bl is a 
regular value of the map z1 H fl(zl,u~), and ii) the vector 

(2.44) 

has all nonzero components. Under these conditions, U is a 
cluster point of S if and only if i) v1 is a solution for z1 of 
the equation 

fl(Zl.U2) = bl (2.45) 

2 2  = -fz(u1,u2) + b2 

and ii) the vector 22 satisfies the parity condition 

( ~ 2 ) ~  < 0 if ( ~ 2 ) ~  = 0. (q), > 0 if (up), = 1 .  (2.46) 

The proof is essentially a combination of those of Proposi- 

All of the above preceding results are now combined into 

Theorem 2.6: Suppose b E Rn satisfies the following con- 

1 )  b is a regular value of the map U H A-lu  + f[g(A,i)] 

2) b is a regular value of the map z H f(z). 
3) For each binary vector e E (0. I}", the vector b - f(e) 

has all nonzero components. 
4) For each nonempty proper subset I of { 1, . . . , n}  and 

each binary vector v2 E (0. l}lrl, the vector bl is a 
regular value of the map z1 H fl(z1,v2). 

5) For each solution V I  of the equation fl(vl,v2) = b l ,  
the vector b2 - f2(v1, u2) has all nonzero components. 

A) The cluster points of S in (0,l)" are precisely the 
vectors v that satisfy the equation f ( v )  = b, and these 
are finite in number. 

B) The cluster points of S in (0, l}" are precisely the 
binary vectors that satisfy parity condition (2.24). 

C) The cluster points of S in the faces of [0,1]" are 
precisely those vectors ( V I ,  v2) that satisfy (2.45) and 
(2.46), and these are finite in number. 

D) Let u l >  . . . , U ,  denote the cluster points of S .  Then 
there exists an integer N and a S > 0 such that, for 
each j > N, (2.13) has precisely T solutions; call them 
5 1 ,  . . . , z, . Moreover, these solutions can be numbered 
in such a way that l l zk  - 'ukll < S for all IC. 

Proofi The hypotheses of the theorem include those of 
Propositions 2.3-2.5. Hence Conclusions A)-C) follow from 
these propositions. The only conclusion that remains to be 
proved is Conclusion D). 

Let V I ,  . . . . U ,  denote the cluster points of the set S. From 
the proofs of Propositions 2.3-2.5, it follows that, for 6 
sufficiently small and j sufficiently large, each ball B(vk, 6) 
contains exactly one solution of (2.13). By hypothesis l), 
(2.13) has a finite number of solutions for each j .  It is of course 
possible that, for some j, (2.13) has some other solutions 
outside the balls B(uk, 6). This cannot happen, however, for 
infinitely many values of j ,  because in that case S would 
contain infinitely many points outside the union of the balls 
B(vL, 6). and would therefore have another cluster point 
besides VI.. . . , U , .  

tions 2.3 and 2.4 and is therefore omitted. 

a single statement. 

ditions: 

for all 2 .  

Under these conditions, the following conclusions hold: 

Remarks: 
1 )  The hypotheses of Theorem 2.6 are just the union of the 

hypotheses of Propositions 2.3-2.5. The important point 
to note is that these five hypotheses hold for all b E 8" 
except those belonging to a set of measure zero. The 
first three conclusions of the theorem are again a repeat 
of those of Propositions 2.3-2.5. The extra conclusion 
is the last one, which states that, for sufficiently large 
A. the number of equilibria of network (2.1) equals 
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the number of cluster points and that there is a one- 
to-one correspondence between them. Thus, for almost 
all choices of the bias vector, the “high gain” behavior 
of network (2.1) is quite easy to analyze. As shown 
by Examples 4.14.3, however, the “natural choice” of 
b = 0 just may belong to the exceptional set. Therefore, 
the bias term is very important to be able to predict the 
high gain behavior of network (2.1). 

2) If one wishes to determine the cluster points of (2.1) cor- 
responding to a given bias vector b. one could proceed 
as follows, in principle at least: First, find all solutions 
of f (u)  = b. These are the interior cluster points. Next, 
check the 2“ comer points of (0.1)” to see whether 
they satisfy parity condition (2.24). These are the comer 
cluster points. Finally, for each nonempty proper subset 
1 of (1 : . . . n }  and each binary vector u2 E {O,l}1’1. 
do two things: Solve the equation f l ( u l ,  w 2 )  = b1 for 
u1. For each solution V I ,  check parity condition (2.46). 
Those pairs (ul.  u2) that satisfy (2.46) are the cluster 
points in the faces. In practice, however, the above 
procedure is not recommended, as it is computationally 
expensive. Just testing the parity condition at the various 
comers of (0. I}“ alone requires 2” computations! 

111. MAIN RESULTS 

Suppose the function E: [0, 1In -+ !J? is a multilinear 
polynomial and that it is desired to minimize E ( z )  as z varies 
over the discrete-set (0. l}”.  For this purpose, we propose an 
analog neural network described by 

s, =gs(Au,). i = 1:‘. .n. (3.1) 

Network (3.1) is of the form (2.1), with f replaced by V E .  
Hence Theorem 2.6 applies to this network as well. Moreover, 
in view of the special (gradient) nature of f, the analysis can 
be refined further. In particular, the network is totally stable, 
and every solution trajectory approaches an equilibrium. (This 
is true even if E is not a polynomial.) When E is a multilinear 
polynomial, the equilibria of (3.1) that cluster in the interior of 
[O. 11” tum out to be hyperbolic and unstable for sufficiently 
large values of A. as do the equilibria that cluster in the 
faces of [O. 11”. Only the equilibria that approach a comer 
of [O. 11’‘ turn out to be asymptotically stable. Hence all 
solution trajectories, except for those originating in the stable 
manifolds of the unstable equilibria, approach the “comer” 
equilibria, which correspond precisely to the local minima of 
the objective function E. This fact, described in Theorem 3.2, 
is the main result of the paper. 

Comparing (3.1) with ( IS ) ,  we can observe two important 
differences: First, the two “physical” constants C, and R, 
have been combined into a single time constant cy,. This is a 
very minor difference. Second, a “bias” input b, is introduced 
into each of the differential equations. This is a substantial 
difference and is a novel feature of the network proposed here. 
The role of the bias term is explained below, just after the 
statement of Theorem 3.3,. If the function E(z\, is quadratic of 

the form (1.2), then (3.1) reduces to (1.5), except for the bias 
term, Also, note that the function E(%) of (1.2) is multilinear if 
and only if wii = 0 for all i, i.e., there are no self-interactions. 

Proposition 3.1: Neural network (3.1) is totally stable. 
Pro08 It is first shown, as in [23], that the solution 

trajectories of (3.1) are eventually confined to a bounded 
region in u-space; in other words, the network is Lagrange 
stable. 

Let r ( t )  = llu(t)1I2. Then, from (3.1) 

dr 
- = 2 d i r  = -2[utA-’u + u t V E ( z )  - utb] 
d t  

where the argument t is suppressed for clarity. Let 

(3.2) 

(YO = max cy, (3.3) 

and observe that, since E is a polynomial, there exists a 
constant M such that 

(3.4) 

a 

IJVE(z)ll 5 M ,  for all z E (0, l )” .  

Thus, from (3.1) and (3.2), we get 

(3.5) 

Hence all solution trajectories eventually enter into the closed 
ball (in the u-space) of radius ao(M + llbll) centered at 
0 and stay there. In the z-space, &-re is a corresponding 
compact subset of ( 0 , l ) ”  to which all solution trajectories 
are eventually confined, for each fixed value of A. 

To complete the proof of total stability, define the Lyapunov 
function 

The function &(z) equals 

E&) = [VE,(z)]ti:. (3.7) 

Now i: can be computed from (3.1) as 

i: = J(Au)Air = -AJ(Au)[A-lu + V E ( z )  - b] (3.8) 

where J is the Jacobian matrix of the map g. Next, from (3.6) 
and (3.8) 

VE,(z )  = V E ( z )  - b + AA-lg-’(z) 
= V E ( z )  - b + A-’% 
= -x-’J-1(Au)i:. 

&(z) = -A-1StJ-1(Au)i:. 

Hence, from (3.7) 

Observe that J-l is positive definite. Therefore 

&(z) < o if i: # 0. &(z) 5 o for all z, 

This completes the proof of total stability. 
Now we come to the main result of the paper. 

(3.9) 

(3.10) 

(3.1 1) 
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Theorem 3.2: Suppose E is a multilinear polynomial on 92“ 
and that the sigmoidal nonlinearities gi (.) satisfy Assumption 
A). Let {A, } be any sequence of positive numbers approaching 
infinity. Under these conditions, there exists an E > O  such 
that, for all b with llbll < E  except for those belonging to a 
set of measure zero, for all sufficiently large indexes j ,  for all 
initial conditions z(0) except for those belonging to a nowhere 
dense set, the solution trajectory z ( t )  converges to a vector 
e + o(l/XJ). where e E {0,1}” and e is a local minimum of 
E over (0.1)”. 

Remarks: 
Informally, Theorem 3.2 can be stated as follows: For 
almost all sufficiently small bias vectors b, for all suffi- 
ciently large sigmoidal gains A, solution trajectories of 
(3.1) starting from almost all initial conditions converge 
to a comer of the hypercube [0,1]”. Moreover, any such 
comer is a local minimum of the objective function E 
over the discrete set ( 0 ,  1)”. 
The assumption that the objective function E is multilin- 
ear is not particularly restrictive. In the two applications 
cited in the Introduction ([21], [5]), the objective func- 
tion is already a multilinear polynomial. 
The bias vector b is very important. Theorem 3.2 states 
that almost all sufficiently small bias vectors will do the 
job. But it can happen that the “natural choice” b = 0 
belongs to the exceptional set. It is shown subsequently 
that the problem of minimizing E ( z )  = ~ 1 x 2 2 3  over the 
comers of the cube (0, 1}3, which is one of the easiest 
problems imaginable, requires a nonzero bias vector (see 
Example 4.1). In general, it appears that whenever the 
objective function assumes only integer values (as is the 
case in the application presented in [21] and [5]), the 
bias vector plays a crucial role. 
In practice, one would use Theorem 3.2 as follows: 
To minimize E over ( 0 ,  l}”, one would choose a 
‘‘small” bias vector b, a “large” sigmoidal gain A, a 
“random” initial condition u(0) and set network (3.1) in 
motion. When the vector z ( t )  appears to be approaching 
some comer of the hypercube [0, l]”, this vector is 
rounded off to the nearest binary vector e. Then, using 
Proposition A.l in the Appendix, one would check 
whether e satisfies the parity condition (AS). If so, a 
local minimum of E will have been found. If the parity 
condition is not satisfied, then the process is repeated 
by increasing A, and only as a last resort, changing 
the bias vector b. Thus, in practice, neural network 
(3.1) generates candidate local minima, which must then 
be tested to determine whether they really are local 
minima. It may be pointed out that this is a common 
feature of almost all “interior point” methods of discrete 
optimization. 

The proof of Theorem 3.2 proceeds through several stages. 
Theorem 2.6 forms the starting point of our study. The bias 
vector b is chosen so as to satisfy all five hypotheses of this 
theorem, with f(z) = V E ( z ) .  By dropping a finite number 
of terms from the sequence { X i }  if necessary, we can make 
the following assumptions: 

1 )  The set S has exactly T cluster points, ul , . . . , U?. These 
are divided into three groups: pl, . . . , p s  E (0 ,  l ) ” ,  el,  
. . . ,e, E ( 0 ,  l }” ,  and q l , .  . . , qf belong to the faces of 

2) The balls B ( U k ,  6) are pairwise disjoint, and each ball 
contains exactly one solution of (2.13), for each j .  

Before proceeding further, a few standard concepts are 

Dejnition 3.1: A matrix M is said to be hyperbolic if it 

Dejinition 3.2: Consider a differential equation 

[O, 11“. 

recalled. For further details, see [13]. 

has no eigenvalues with a zero real part. 

i ( t )  = h[z ( t ) ]  (3.12) 

where h is continuously differentiable. Suppose zo is an 
equilibrium of (3.1), i.e., that h(z0) = 0 .  Then the equilibrium 
zo is said to be hyperbolic if the matrix 

H := Vh(z0) (3.13) 

is hyperbolic. 
Hyperbolic equilibria have several advantageous features, 

one of which is that their stable and unstable manifolds have 
complementary dimensions and intersect transversally. 

The next result is at the level of a homework problem, but 
it does not seem to be stated in this form anywhere. 

Proposition 3.3: Suppose P, Q are symmetric matrices, 
with Q positive definite. Then P Q  has only real eigenvalues. 
If P is nonsingular, then P Q  is hyperbolic. 

Proofi Let Q1/2 denote the symmetric square root of Q 
and observe that 

(3.14) 

is similar to the symmetric matrix Q112PQ112. Hence P Q  
has only real eigenvalues. If P is nonsingular, then so is PQ.  
Hence zero is not an eigenvalue of PQ.  Since all eigenvalues 
of P Q  are real, this implies that P Q  is hyperbolic. 

Proposition 3.4: For all j sufficiently large, the solution 
of (2.13) in the ball B(p, ,  6) is a hyperbolic equilibrium of 
network (3.1) with X = X j ,  and it is unstable. 

Remarks: The proposition states that the equilibria that 
cluster in the interior of [0, lIn are hyperbolic and unstable 
for X j  sufficiently large. 

Proof: For clarity, hereafter we drop the subscript j on 
X j  and say “for sufficiently large A” to mean “for sufficiently 
large index j.” In the same way, we drop the subscript IC on pk. 
Thus the analysis below holds for a fixed value X = X j ,  which 
can be made arbitrarily large as desired and in the vicinity of 
a fixed cluster point pk.  

For convenience, define 

H ( z )  = V2E(z) (3.15) 

to be the Hessian matrix of E.  Thus 
d2 E [ H ( z ) ] .  ’ - ~ 

‘ j -  axiaxj‘ (3.16) 

Observe that H ( z )  is always a symmetric matrix. Moreover, 
if E is a multilinear polynomial, then 

h; ; ( z )  = 0 for all i. (3.17) 
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Suppose 20 E B(p. 6) is an equilibrium (in the z-space) of 
network (3.1), for the fixed value of A. Then A-lg- ’ (zO)  is an 
equilibrium of (3.1) in the u-space. To determine the stability 
status of this equilibrium, we make two transformations of 
variables. First, instead of working in the u-space, we work in 
the ii := Xu space. Second, we change the time variable from 
t to r = t / X .  This reflects the fact that, as X -+ 00, the time 
scale gets correspondingly foreshortened. Now (3.1) leads to 

d ( X U )  = -A-l(Xu) - XVE(2) + Ab, 2 = g(Xu) ,  
dt 

(3.18) 

VE[g(E)] + b. (3.19) 

By assumption, this system has an equilibrium (in the E-space) 
at d := g - ’ ( z o ) .  To determine the stability status of this 
equilibrium, we linearize (2.13) around ti = d. This gives 
the linearization matrix 

M 
d 
- { -X-IA-Ia - VE[S(- )E=d 
dTi 

= -X-lA-’ - V2E[g(d ) ]J (d )  (3.20) 

where J(E)  = Vg(E) is the Jacobian matrix of the map g .  
Now M is in reality a function of A. As X + m , g ( d )  = 
zo -+ p ,  while d --t g - l ( p ) .  Of course, X-lA-l ---f 0. Hence 

M = -H(p)J[g- l (p) ]  + O(XP1)  (3.21) 

where H = V 2 E .  
Now recall that, by assumption, b is a regular value of 

the map V E .  Hence H(p)  is nonsingular. Since the Jacobian 
matrix J is positive definite, it follows from Proposition 3.3 
that the product 

MO = -H(P)J[g-l(P)l (3.22) 

is hyperbolic. It is also independent of A. Hence M is 
also hyperbolic for sufficiently large A. This shows that the 
equilibrium d (in the E-space) is hyperbolic. The property of 
hyperbolicity is preserved under a diffeomorphic coordinate 
transformation, so the corresponding equilibria in the u-space 
and u-space are also hyperbolic. 

To show that the equilibrium is unstable, observe that, 
because E is multilinear, all diagonal elements of H(p)  are 
zero [cf., (3.17)]. The same is true of MO, since J is a 
diagonal matrix. Hence the trace of MO, equal to the sum of 
the eigenvalues of M O .  is also zero. Since M O  is hyperbolic 
and has only real eigenvalues, it has at least one positive 
eigenvalue. Hence the same is true of M for sufficiently 
large A. By the linearization theorem [28, Theorem 5.5.271, it 
follows that the equilibrium at d is unstable for large enough A. 

Note that the argument in the proof collapses if H ( p )  is 
singular. This is one reason for introducing the bias vector b. 
Also, the analysis shows that, for almost all initial conditions 
z(0) near 20, the solution trajectory “flies away” from the 
equilibrium in the “fast” time scale 7 = t/X-the bigger we 
make A. the faster the trajectories move away from equilibria 
that cluster in the interior (0. l \ n .  

~ 

I361 

Proposition 3.5: For all z sufficiently large, the solution of 
(2.13) in the ball B(e ,  6) is an exponentially stable equilibrium 
of the neural network (3.1) with X = A,. 

Proof: We use the same notational simplifications as in 
the proof of Proposition 3.4 by denoting XJ,ek as X and e,  
respectively. Let zo E B(e ,S)  denote the equilibrium in the 
z-space. Then we know from the proof of Proposition 2.4 that 
there is an equilibrium in the u-space near 

U* := A[b - VE(e)] .  (3.23) 

Let uo = X - l g - l ( z 0 )  denote the equilibrium of (3.1) in the 
u-space. Then uo -+ U* as X -+ CO. Now linearize the right 
side of (3.1) at U = uo. This gives the linearization matrix 

d 
d u  

M = - { -A-’u  - V E [ ~ ( X U ) ] } U = ~ ~  

=-A- ’  - H[g(Xuo)]XJ(Xuo). (3.24) 

Now uo -+ U * ,  which is a finite vector with all nonzero 
components. Hence, by Assumption A), JJXJ(Xu0)JJ  i 0, 
even allowing for the fact that uo depends on A. Of course, 
~ ~ H [ g ( X u ~ ) ] ~ ~  is bounded. Hence 

M = -A-’ + O(X-l ) .  (3.25) 

Note that all eigenvalues of A-’ are negative; hence all 
eigenvalues of A4 have negative real parts for X sufficiently 
large. It follows from the linearization theorem [28, Corollary 
5.5.261 that the equilibrium at zo is exponentially stable. 

Proposition 3.6: For all j sufficiently large, the solution of 
(2.13) in the ball B(qk, 6) is a hyperbolic equilibrium of (3.1) 
with X = A,, and it is unstable. 

Proof: Once again, we replace A,, q,, by X and q, respec- 
tively. Also, for notational convenience, suppose the vector q 
belongs to the face 

{U E [O, 11”: U, E (0, I )  for i = 1.. . . , I C .  
= 0 or 1 fori  = IC + 1;’. ,n} .  (3.26) 

Once the vector q is fixed, this assumption can always be 
satisfied by renumbering the neurons if necessary. Define 

q1 = [41 ’ .  ’ 4 k I t  E (0, 
42 = [qk+l ‘ ’ ‘ E (0, (3.27) 

and partition all other vectors commensurately. Thus the 
subscript “1” denotes the first IC components of a vector and 
the subscript “2” denotes the last n - k components of a 
vector. Matrices are also partitioned commensurately, with the 
obvious meanings assigned to the subscripts 11-22. 

Let zo E B(q,S) denote the equilibrium whose stability 
status is to be determined. We define the auxiliary variable 

where 

A = P :  In-k ] 

(3.28) 

(3.29) 
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Also, we study the vector 

(3.30) 

It turns out that this vector is well behaved as X -+ 

suggesting that the trajectories of the neural network in 
vicinity of the equilibrium clustering in the faces of [0, 
exhibit two time scale behavior. Now (3.1) leads to 

00, 
the 
11 

& 
- = AU = -A-lii - AVE[g(XA-%i)] + A b  
dt  

(3.31) 

where we take advantage of the fact that A and A-' commute, 
both being diagonal matrices. Hence 

A-1- & = -A-lA-l-  
U - VE[g(AA-'$i)] + b. (3.32) 

Let us linearize the right side of (3.32) around the equilibrium 
in the U-space. This equilibrium is at 

dt  

(3.33) 

This can be seen by analogy with the proofs of Propositions 
3.4 and 3.5. Hence the linearization matrix is 

d 
dE 

M = -{ -A-lA-lii - VE[g(XA-l$i)]}~i=$io 

= -A-'A-' - V2E[g( XA-lUo)]  XA-'J( XA-lUo). 

Now note that 

Also, by assumption 

g(XA-lS0) = 20 = q + o(X-'). 

Therefore 

V2E[g(AA-1Eo)] = H ( q )  + O(A-') 

where H = VE. Next, by Assumption A) 

where 

d' = gT1(ql) E !JP. 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

Substituting from (3.37) and (3.38) into (3.34) leads to 

where the matrix A-'AL/ is absorbed into the O(A-') term. 
Now define 

This matrix is independent of A. The set of eigenvalues of 
MO, denoted by spec (MO), is given by 

spec(Mo) = s~ec[ -Hl l (q)J(dl ) ]  U spec(-&;) (3.42) 

because MO is block triangular. By assumption (see Hy- 
pothesis 4 of Theorem 2.6), q1 is a regular value of the 
map 21 H VE(21,q2). Hence H l l ( q )  is nonsingular. By 
Proposition 3.3, the product -Hll (qJll(dl) is hyperbolic. 
Clearly so is the matrix A;;. Hence MO is also hyperbolic. 
Since MO is independent of X and M = MO + O(X-'), it 
follows that M is also hyperbolic for sufficiently large A. 
Hence the equilibrium at 20 is hyperbolic. 

To prove that 20 is an unstable equilibrium, we proceed ex- 
actly as in the proof of Proposition 3.4. The matrix Hll(q) has 
zero diagonal elements; hence the trace of - H l l ( q ) J l l ( d l )  
is also zero. Since the matrix is hyperbolic and has only real 
eigenvalues, it follows that at least one eigenvalue is positive. 
Hence 20 is an unstable equilibrium. 

The proof of Proposition 3.6 sheds some light on the 
behavior of the solution trajectories near the "face" equilibria. 
Let 20 = zo(A)  denote the equilibrium of (3.1) that approaches 
the "face" vector q.  If we define the new variable U as in (3.28) 
and linearize around the equilibrium uo (with the partitioning 
of the time variable into a fast and a slow time scale, as in 
(3.30)), then the linearization matrix approaches the block- 
triangular matrix M O .  Note that the set M = { U  E Rn: u2 = 
0} is invariant under MO; that is, U E M implies that 
Mou E M .  Hence, by standard arguments in the theory of 
singular perturbations (see e.g., [8] and [17]), there exists, for 
each sufficiently large A, an (n - k)-dimensional manifold 
MA containing 20 that is invariant under the flow of the 
differential equation (3.1). Moreover, this invariant manifold 
MA "approaches" M as A -+ cc. If we examine the vector 
field defined by (3.1) when restricted to the lower-dimensional 
invariant manifold M A ,  then 2 2 0  is an equilibrium of this 
restricted vector field. Moreover, if this restricted vector field is 
linearized around the equilibrium 2 2 0 ,  then the resulting matrix 
equals -A;; + O(A-') [see (3.42)]. On the other hand, the 
matrix -Hl l (q)J l l (d l )  has at least one positive eigenvalue. 
Hence, at least one of the components of the "fast" variables 
"flies away" from the equilibrium 210 in the fast time scale 
r = t / X .  Hence, for large enough A, roughly speaking, the 
last (n  - I C )  components of z( t )  converge exponentially fast 
in the normal time scale t to 2 2 0 ,  while at least one of the 
first IC components of ~ ( t )  flies away from z10 in the fast time 
scale r. 

At last we come to the proof of the main result. 
Proof of Theorem 3.2: Propositions 3.4, 3.5, and 3.6 to- 

i) The neural network has only a finite number of equilibria. 
ii) All equilibria are hyperbolic. 
iii) The equilibria can be grouped unambiguously into 

three classes, namely: Those approaching the interior 

gether show that, for almost all b E W: 
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of [O. 11“. those approaching the faces of [O. 11”. and 
those approaching the comers of [O. 11”. 

iv) Of these, the equilibria in the first two classes are 
unstable, while those in the last class are exponentially 
stable. 

Now, the stable manifold of each unstable equilibrium (in the 
z-space) is a nowhere dense set because it is a manifold of 
dimension lower than n. Since there are only a finite number of 
such unstable equilibria, the union of the stable manifolds of all 
unstable equilibria is also a nowhere dense set. Let V denote 
this union. Since the network is totally stable by Proposition 
3.1, it follows that, whenever z(0) V. the resulting solution 
trajectory must converge to one of the “comer” equilibria, i.e., 
to a vector of the form e + o(X-’). where e E (0. l}”. 

It only remains to show that, whenever the norm llbll of the 
bias vector is sufficiently small, each such comer e is a local 
minimum of the objective function E.  For this purpose, define 

(3.43) E&) = E ( z )  - b*Z. 

CEb(2)  = G E ( z )  - b. 

Then Eb is also a multilinear polynomial. Now observe that 

(3.44) 

By Proposition 2.4, e is a cluster point of S if and only if it 
satisfies parity condition (2.24) with f(z) = V E ( z ) ;  that is 

[ V E ( z )  - b], > O if ei = 0. < O if ei = 1. (3.45) 

From Proposition A.2, e satisfies (3.45) if and only if it is a 
strict local minimum of the function Eb. Thus the proof of 
Theorem 3.2 is complete if it can be shown that, whenever 
llbll is sufficiently small, every strict local minimum of Eb is 
also a local minimum of E.  

We prove the contrapositive, namely: If z E (0. l}n is 
not a local minimum of E.  then there exists an E > 0 such 
that z is also not a (strict) local minimum of Eb whenever 
llbllx < E .  Suppose z is not a local minimum of E.  Then 
there exists a neighbor y E A’V(z) such that E ( z )  > E(y). 
Choose a y E :V(z) such that E ( z )  - E(y) is positive, but as 
small as possible. Define g(z) = E ( z )  - E(y). Then g(z) > 0. 
Moreover, since there are only a finite number of vectors 2. 
there exists an E > 0 such that E 5 g(z) whenever is not a 
local minimum of E .  Now suppose IbiI < 6 for each i. Let z be 
any nonlocal minimum of E .  and choose y E N ( z )  such that 

E(%) - E ( Y )  = .9(z) > 0. (3.46) 

Suppose z and y differ only in the ith component. Then 

E b b )  - Eb(Y)  = E ( z )  - E ( Y )  - b f ( z  - Y) 

2 g(z) - IbiI > 0 (3.47) 

since g(z) 2 E and IbiI < E .  Hence z is not a local minimum 
of Eb. This completes the proof. 

The above proof suggests a way of making the phrase 
“sufficiently small bias vector b’ in the statement of Theorem 
3.2 quantitatively precise. Suppose the objective function E 
assumes only integer values (as is the case in the applications 
suggested in [21] and [ 5 ] ,  for example). Then it is easy to 
see that if z is not a local minimum of E .  then there exists an 

adjacent vector y E N ( z )  such that E(y) 5 E ( z )  - 1. In other 
words, g(z) 2 1 for all z that are not local minima. Thus, to 
apply Theorem 3.2 to objective functions that assume only 
integer values, one can use any bias vector b such that Ib; I < 1 
for all i. and almost all such bias vectors will work. Now 
consider the case of a general polynomial objective function 
E whose coefficients are rational numbers; this assumption 
applies to all but the most contrived situations. Let r denote 
the least common multiple of the denominators of all the 
coefficients of E.  Then clearly the modified objective function 
r E ( z )  assumes only integer values, and as a result, we have 
that rg(z) 2 1 for all 2 that are not local minima. Thus, in 
applying Theorem 3.2, we can choose any bias vector such 
that IbiI < 1/r for all i. 

Iv .  NECESSITY OF THE BIAS VECTOR 

Neural network (3.1) has two distinctive features when com- 
pared with earlier works, including [27]. First, the sigmoidal 
gain X is made to go to infinity via a sequence of values, 
rather than through a continuum of values. This is purely a 
technical device to enable the application of Sard’s theorem. 
In practice, one would run network (3.1) with a particular 
value of A. and if the results are not satisfactory, run it again 
with a higher value of A, and so on. Thus, in practice, X 
does indeed assume only a sequence of values. In fact, after a 
finite number of trials, one is guaranteed success, so actually 
X assumes only a finite set of values. Hence the restriction on 
X is quite justifiable. The second distinctive feature of network 
(3.1) is the introduction of the bias vector b. Theorem 3.2 holds 
for “almost all” bias vectors b. but the “natural choice” b = 0 
may not work, because it may belong to the exceptional set. 
This is illustrated through two simple examples. 

Example 4.1: Suppose n = 3. and consider the problem of 
minimizing 

E ( z )  = ~ 1 ~ 2 x 3  (4.1) 

as z varies over (0, l j3 .  It is obvious that E ( z )  = 1 if 
z = [l 1 11‘ and equals zero otherwise. Hence the function 
E has seven local minima. The trouble is that none of them 
is a strict local minimum. 

Suppose we set up network (3.1) with b = 0 and look at 
the cluster points of the resulting set of equilibria. Formally 
letting A, -+ cc in (2.17) gives 

V E ( z )  = 0 (4.2) 

as the equation to be satisfied by the cluster points in the 
interior of [O. 11”. This equation has the solution set 

{z:q =x2 = 0) U{z:xl  = 5 3  = o j  U{z:x2 = z3 = 0) 

(4.3) 

which contains uncountably many points. All the analysis in 
the paper breaks down, because b = 0 is a critical value of 
the map V E .  One can also verify that none of the seven 
local minima of E satisfies parity condition (2.24), because 
the vector z contains at least one zero component in each 
case. This is because none of the seven local minima of E is 
a strict local minimum. 
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The introduction of the bias vector solves the problem. 
One can compute the number g(z) introduced in the proof 
of Theorem 3.2. There is only one nonminimum, namely 
z = [l 1 lit, and it is easy to see that g(z) = 1. It is 
an easy exercise to verify that, if b is any vector with Ib,I < 1 
for all 2 .  then for each of the Z3 = 8 possible combinations of 
the signs of the vector b, at least one of the seven local minima 
of E becomes a strict local minimum of Eb(z) = E ( z )  - b t z .  
Hence network (3.1) has an exponentially stable equilibrium 
near this binary vector. Also, the equation VE(z) = b has 
only a finite number of solutions (in most cases, zero) inside 
the set (0. l)n. Hence the introduction of the bias term greatly 
simplifies and clarifies the situation. 

Example 4.2: Consider the Hopfield network (1.5) with 
n = 3.C, = R, = 1 for all i ,  and 

0 1 0  
W =  1 0  0 (4.4) 

[o 0 0 ] *  O =  F]. 
This network is a special case of (3.1), with the bias vector 
b = 0. Since W is singular, the equation W z  = b has an 
uncountable number of solutions if b = 0 ,  each of which is 
potentially a cluster point of the equilibria of (3.1). So the 
situation is very messy. On the other hand, the range of the 
matrix W has dimension two; so, for almost all b E R3, the 
equation W z  = b has no solution, and as a result, the equilibria 
of (3.1) have no cluster point in the interior (0, l)n. Hence, 
once again, the introduction of the bias vector simplifies the 
dynamics considerably. 

In [27], the possibility of the equation W z  = b having 
an infinite number of solutions is avoided by assuming that 
all principal submatrices of W of size 2 x 2 or larger are 
hyperbolic (and therefore nonsingular). Hence the arguments 
of [27] are technically sound. But the assumptions on the 
weight matrix W are really not necessary-it is enough to 
introduce a bias vector. In contrast, no such assumptions on 
W are made in [15]. Hence, strictly speaking, the analysis in 
[15] is incorrect, though it is correct in spirit. 

Example 4.3: In Proposition 4.4, the vector b is supposed to 
be chosen in such a way that no component of z is zero. One 
may be tempted to make the following conjecture: Suppose 
e E (0, l}n, and define z = b - f ( e ) .  Then e is a cluster point 
of S if and only if z satisfies the “relaxed’ parity condition 

z ,  5 0 if e, = 0, z ,  2 0 if e, = 1. (4.5) 

But this conjecture is false. The objective of this example is to 
show that, if some component of z equals zero and z satisfies 
(4.5), then e may or may not be a cluster point of S. 

Suppose n = 1 (a single neuron), and let 

f(.) = x(. - 1). (4.6) 

Suppose g(.) is a sigmoidal nonlinearity. A plot of - f [ g (Xu) ]  
versus U is shown in Fig. 1 for increasing values of A. Suppose 
the bias b is set equal to zero. Then both e = 0 and e = 1 
satisfy the relaxed parity condition (4.5). But it tums out that 
e = 0 is not a cluster point of S, while e = 1 is a cluster 
point. Thus. if some components of z = b - f(e) are zero. 

Fig. 1. Plot for Example 4.3; Xz > XI. 

then there is no simple way to determine whether or not e is 
a cluster point of S. 

To prove the assertion in the preceding paragraph, observe 
that the equilibria of the network in the u-space are the 
solutions of 

n-lu = - f [ . g ( h ) ] .  (4.7) 

Fig. 1 shows that, for each X > 0, (4.7) has exactly one solution 
for U,  call it ux. As X + 02, ux + O+ while g(Xu) + 1. Thus 
e = 1 is a cluster point of S while e = 0 is not. 

It is left to the reader to show that, if f is changed to 

f(.) = z(1- .) (4.8) 

then once again both e = 0 and e = 1 satisfy the relaxed parity 
condition (4.5). But now the situation is reversed: e = 0 is a 
cluster point of S while e = 1 is not. 

The difficulty in trying to determine whether a given c E 
(0, l}n is a cluster point when some component of z is zero 
is this: We can have a situation where some component of the 
equilibrium ux approaches zero, but does so more slowly than 
l / X .  In this case, the corresponding component of g(Xu) can 
approach zero or one even though the component of 4~ itself 
approaches zero. The introduction of a bias term eliminates 
this difficulty, because for almost all b, the vector z will have 
all nonzero components. 

v. CONNECTIONS TO INTERIOR-POINT 
METHODS OF OPTIMIZATION 

In this section, a brief comparison is given of the neural 
network-based optimization methods discussed thus far with 
the so-called interior-point methods of linear and nonlinear 
programming. In any such comparison, the following point 
should be kept in mind: Nonlinear programming is a decades- 
old subject, and the recent interior-point methods (which are 
about a decade old) can be interpreted in terms of penalty func- 
tion methods, which are nearly 30 years old. In contrast, the 
use of neural networks to perform combinatorial optimization 
is relatively new, and this paper is just about the first to give a 
rigorous analysis of the dynamical behavior of analog neural 
networks for optimization. Thus it would be unreasonable to 
expect that neural network-based methods would at once be 
competitive with nonlinear programming methods. Rather, the 
present paper can be said to open the door towards enhanc- 
ing the competitiveness of neural network-based methods by 
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presenting a very general set of analysis tools that can be 
applied to a very broad class of neural networks (see Section 
11). These tools are applied here to a particular network (3.1), 
but in principle future researchers could apply these analysis 
tools to other formulations as well. Using the results presented 
here, it should be possible to analyze the relative merits 
and demerits of neural network-based optimization methods 
vis-a-vis other methods. Of course, one cannot rule out the 
possibility that neural network-based methods will eventually 
turn out be demonstrably inferior to interior-point methods. 
If so, the present paper will have at least served to facilitate 
such a comparison. 

A.  Brief Summary of Interior-Point Methods 
for Linear Programming 

The present generation of interior-point methods can be said 
to have been launched by the paper of Karmarkar [18], who 
proposed a new algorithm for linear programming. Since that 
time, more than lo00 papers have appeared on the subject. In 
particular, Renegar [22] has shown that Karmarkar’s algorithm 
is closely related to the much older penalty function methods 
of Fiacco and McCormick [9], provided that i) the penalty 
function used is of the so-called “logarithmic barrier” type 
and ii) at each iteration, only a single Newton iteration is 
performed on the penalty-augmented objective function (as 
opposed to carrying out a complete minimization along a 
particular search direction). In this subsection, a brief review is 
attempted of interior-point methods with particular emphasis 
on those formulations that can be interpreted as dynamical 
systems. 

Problem Formulation: The two most popular formulations 
of linear programming problems are as follows. 

Canonical form: Given vectors c E R”. b E Rm and a 
matrix -4 E 8”’”. the problem is 

min ctz.  subject toA4z = b. s, 2 0 for all i. and (5.1) 
(5 .2 )  e t z  = n. where e = [1 1 . .  . lIt E R”. 

It is assumed that the choice z = e is feasible. This form is 
well suited for the so-called projective scaling algorithms as 
exemplified by Karmarkar’s original algorithm [ 181. 

(Strict) Standard form: In this case the problem is given 
by (5.1), without the additional constraint (5.2). This is called 
the “standard’ form. If, in addition, there exists a feasible 
point z with s, > 0 for all i. then the problem is said to be 
in “strict standard’ form. Note that the canonical form is in 
strict standard form. in view of the assumption that z = e 
is feasible. This form is well suited for the so-called affine 
scaling algorithms; see, e.g., 111. 

Both forms are equivalent for all practical purposes. The 
discussion below is in terms of the strict standard form, since 
it  is closer to the optimization problem studied in Section 111. 
Moreover, to avoid certain technical difficulties, it is further 
assumed that the feasible region is bounded and that the matrix 
A has full row rank (i.e., all constraints are independent). 
These assumptions are satisfied by the problem in Section 111. 

Affine Scaling Vector Field: To solve the problem at hand, 
one defines a \ector field on the relative interior of the 

feasible region. To describe this vector field, a little notation 
is introduced: 

Let 8; denote the nonnegative orthant in X n .  and let 
8; denote its interior. Thus 

R2“+ = {z E 8”: X; 2 0 for all i } .  and 
R t  = {z E X n :  > 0 for all i } .  (5.3) 

Clearly ‘32; is an n-dimensional manifold. 
Given any vector z E R”. let X denote the corre- 
sponding diagonal matrix with the elements of z on the 
diagonal. Thus, if z = [XI . . . x , ] ~ .  then X = Diag 

Given a matrix M E R m X n ,  let IIL(M) denote the 
orthogonal projection of R” onto the orthogonal com- 
plement of the range of M .  Note that if M has full row 
rank (so that M M t  is nonsingular), then 

{XI,. . . . X”}. 

P ( M )  = I - M t ( M M t ) - l M .  (5.4) 

With this notation, the affine scaling vector field on R: 
is defined by (see, e.g., 12, (2.8)]) 

f(z) = - X I I l ( A X ) X c  
= - X [ I  - X A t ( A X 2 A t ) - 1 A X ] X c .  (5.5) 

Approaches to Optimization: At this point, one can iden- 
tify three distinct approaches to the solution of the linear 
programming problem. 

a )  Path-following approach: One solves the differential 
equation 

Z(t)  = f[z(t)],z(O) = 2 0  (5.6) 

where the vector field f is defined in (5.5), and 50 E 8; 
is feasible. This approach is closest in spirit to the neural 
networks approach suggested in Section 111. If 20 is chosen as 
the so-called “center” of the feasible region, then under mild 
conditions the resulting solution trajectory z( t )  approaches the 
optimal face of the LP problem [3, Theorem 9.21. For the class 
of optimization problems discussed in Section 111, the “center” 
zo equals [0.5 . . . 0.5It. 

6) Predictor-corrector approach: Unlike the path- 
following approach, this is an iterative method. At the 
initial iteration, z = zo,  and one defines a search direction 
uo := f(z0). where f is the vector field of (5.5). Then one 
takes a “moderate-sized’ step along the direction U O .  This is 
the predictor step. In doing so, one of course deviates from the 
“true” solution trajectory of (5.6). Let cy0 denote the step size, 
and define Z1 = zo + CYOUO. The vector Z1 is then “corrected’ 
to a nearby point z1 on the “true” solution trajectory of (5.6). 
One then defines the next search direction w1 = f(z1) and 
repeats the procedure. There are several rules of thumb for 
selecting the step size, but they all have the flavor of requiring 
that the inner product between successive search directions 
(computed in accordance with some appropriate Riemannian 
metric) be bounded away from zero. From a theoretical 
standpoint, the validity of this approach can be established 
only in relatively simple cases (see. e.g., [19, Theorem 21). 



1372 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 8, AUGUST 1995 

c )  Large step-size approach: In this approach, one iden- 

as possible while still remaining within the feasible region. 
Dikin's method [6] is of this type. To define the method 
precisely, let P denote the feasible region of the problem, i.e., 

(5.7) P = {z E 92:: Az = b}. 

At iteration 2. one defines the search direction U, as f(z,), and 

C. Applications to Function Minimization over { 0, l}" 

to the discrete optimization problem 

tifies a search direction and takes large a step Now we briefly discuss how the above ideas may be applied 

min E ( z )  subject to z E (0, l } n .  (5.17) 

The first step is to consider the continuous relaxation 

(5.18) min E(%) subject to z E [0,1]". 

If a solution to (5.18) actually belongs to (0. l } n ,  then we 
A, = max{A: z, + Au, E P } .  (5.8) 

Thus denotes the size Of the largest step that One take 
'. Now One defines zt+1 = ~ z + O . ~ ~ A Z V Z ,  

are done. In general, this is not very likely. The discussion in 
Section 111, however, implies the following fact: Consider the staying 

where the factor of 0.95 ensures that z,+1 is an interior point. augmented objective function 

B. Interior-Point Methods for  Nonlinear 
Programming with Linear Constraints 

Next, consider the problem 

min E(z) subject to A z  = b , z ,  _> 0 for all i .  (5.9) 

Now the objective function is nonlinear, but the constraints 
are still linear. At this stage one can identify two distinct 
approaches. 

AfJine Scaling Approach: Here one merely replaces the 
vector c in (5.5) by the gradient VE(z)  of the objective 
function. Thus one sets up the differential equation 

k = -XII'(AX)XVE(z).  (5.10) 

Faybusovich's Approach [7]: Here one eliminates the con- 

x, = y,2. i = 1 , . . . , n  . (5.1 1) 

Let us write the above equation in brief as z = 4(y) .  This 
transformation gets rid of the constraint z E 927, but in the 
process the linear constraints on z get transformed into the set 
of nonlinear constraints 

A$(Y) = b. (5.12) 

The idea is to set up a vector field in the y variables that is 
everywhere tangent to the above constraint surface. For this 
purpose, one defines 

M(y) = [ Y a i . .  . Y a k ]  E snxm (5.13) 

where Y = Diag {VI. . . . , yn} (compare the definition of X )  
and al. . . . , am are the rows of the matrix A. Then one defines 
the projection matrix 

(5.14) 

This matrix projects a vector z E 92" onto its tangent (at y) 
to the surface defined by (5.12). Now the objective function 
E ( z )  also gets transformed into z ( y )  := E[q5(y)]. Moreover 

VYE(Y) = YVZE[$(Y)l. (5.15) 

straint E 927 by introducing new variables as follows 

W Y )  = I - M(y)[Mt(y)M(y)]- lMt(y) .  

With this background, one defines the vector field 

d Y )  = -n(Y)yvzE[4(Y)l. (5.16) 

It is also possible to retransform this vector field back into an 
equivalent vector field in the original z (see [7, (19)]), but this 
is not discussed here. 

Eb(z) = E ( z )  + b t z .  (5.19) 

Proposition 5.1: Suppose E is a multilinear polynomial. 

1) For all bias vectors b except those belonging to a set 
of measure zero, the function Eb is a Morse function at 
each of its stationary points in (0, l)n. In other words, 
whenever z E (0, 1)" satisfies VEb(z) = 0, it is true 
that V2Eb(z) is nonsingular. Moreover, the trace of 
V2Eb(z) equals zero. Hence Eb does not have any local 
minima in (0, l)n. Similarly, it does not have any local 
minima in the faces of [0,1]". Hence any local minima 
of Eb over [0,1]" are the same as its local minima over 

2) For all sufficiently small bias vectors b except those 
belong to a set of measure zero, every local minimum 
over (0, 1)" of Eb is also a local minimum of E. 

This proposition means that, for almost all sufficiently small 
bias vectors b, original discrete optimization problem (5.17) 
can be solved by solving instead the continuous relaxation 
(5.18) (with E replaced by Eb). 

With this technicality out of the way, we can now focus 
on how the interior-point methods of Section V-B can be 
used to solve the continuous relaxation problem (5.18). In 
the discussion that follows, the objective function E should 
be understood as the augmented objective function of (5.19). 
The subscript b is omitted, however, to facilitate a comparison 
with the contents of Section V-B. 

Then: 

(0, 

The constraints in (5.18) can be expressed as 

ic; 2 O , - Q  2 -1, i = 1;. . ,n .  (5.20) 

These inequality constraints can be converted to equality 
constraints via the introduction of "slack' variables, as is by 
now standard. The details of these manipulations are omitted, 
as they are straightforward. 

AfJine-Scaling Vector Field: Here one can use the contents 
of [3, Section VIII]. The "logarithmic barrier function" of [3, 
(8.6)] becomes3 

n 

L ( z )  = - [log Z; + l O g ( 1  - xi)]. (5.21) 
i= l  

3Note that the symbol f~ in the cited equation is changed to L .  to avoid 
confusion. 
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The Hessian of L is diagonal, and where h(.) satisfies 

Thus the affine-scaling vector field becomes (cf., [3, (8.1 l)]) 

1 d E  ~ f ( l  -xi)' dE . (5.23) - - j.. - 
* - (V2L)zz(z) dzi xf + (1 - . i)2 as1 

This is equivalent to (5.10) in that both systems have the 
same trajectory, though the parameterization of "time" might 
be different-see [3, Theorem 8.11. 

Faybusovich Vector Field: Define 

z2L-1 = 2,. 22 ,  = 1 - X I ,  2 = 1 , .  . . , n .  (5.24) 

Then the constraints in (5.20) become 

z,  2 0, i = 1 , .  . . ,2n, and 
~ 2 ~ ~ 1  + zz1 = 1. i = l , . . .  1 7 1 .  (5.25) 

Now let 

z , = y i l  2 i = l , . - . , n .  (5.26) 

Then the projection matrix of (5.14) is easily verified to be 

II(y) = Block Diag(II1,. . . , II,} (5.27) 

where 

Now, E(y) = E ( z )  depends only on y2i-1 and not on y2;. 

Hence (5.16) becomes (on noting that y2i-1 = a 

One can reduce these to a set of n equations (not 2n) by 
noting that 

(5.30) 
aE xz = 2y2,-&,-1 = -2x1(1 - X i ) - .  
8x2 

D. Comparison with Proposed Neural Network 

Note that both the vector fields (5.23) and (5.30) are well 
defined for all z E and not just when z E [0,1]". (Recall 
that E is a polynomial and hence analytic.) Also, it is clear 
that each of the 2" vectors in (0, l}n is an equilibrium of 
both vector fields. This is a clear difference from the neural 
network proposed here, which has an equilibrium near a vector 
e E (0. I}" if and only if e is a local minimum of E 
over (0. l }" .  On the other hand, it is easy to verify that an 
equilibrium of (5.23) or (5.30) at e E (0,l)" is exponentially 
stable if and only if e satisfies parity condition (A.10), i.e., is a 
strict local minimum of E over (0, l}". This can be shown as 
follows: Both the vector fields (5.23) and (5.30) have the form 

(5.31) 
dE x, = h(Xi)- =: g,(z) 
as, 

h(0) = h(1) = 0, h'(0) > 0, h'(1) < 0. (5.32) 

Now linearize (5.31) around an equilibrium e E (0, I}". Then 

a9i aE - = h ' (Xci ) -  axi axi (5.33) 

agi a2E 
ax axiaxj - = h(xi)- = 0 if x; E {0,1}. (5.34) 

Here we use the fact that a2E/dzf = 0 because E is 
multilinear. Thus the matrix obtained by linearizing (5.31) 
around z = e is diagonal. Moreover, every diagonal element 
is negative (i.e., the equilibrium is exponentially stable) if and 
only if 

[VE(e)]i  > 0 if ei = 0, [VE(e)]i  < 0 if ei = 1. (5.35) 

But this is precisely parity condition (A.lO). 
In summary, it can be stated that compared to the neural net- 

work proposed here, both (5.23) (the affine scaling vector field) 
and (5.30) (Faybusovich's vector field) have more spurious 
equilibria, but these spurious equilibria are not exponentially 
stable. It is desirable to make a deeper comparison involving 
the actual behavior of the time trajectories. Such a comparison 
can be a topic for future researchers. 

VI. CONCLUSIONS 

In this paper, we have shown that an analog neural network 
can be used to find a local minimum of any multilinear 
polynomial over the discrete set (0, l}". 

Comparing the present paper with earlier results, we can 
claim the following advantages: First, the treatment here is 
comprehensive and rigorous. Second, it has been shown that 
it is necessary to introduce a so-called "bias" vector, which is 
not done in earlier work. Without the bias vector, some of the 
claims of the earlier papers may not be valid. 

The results presented here guarantee only convergence to 
a local minimum. To build a network that is guaranteed to 
converge to a global minimum, a natural guess would be to 
mimic the simulated annealing algorithm, by replacing the 
deterministic and constant bias vector by a stochastic and time- 
varying bias vector, and slowly reduce the variance of the bias 
vector to zero. The analysis of such networks is bound to be 
extremely complicated and is left to those more competent 
than the author in such matters. 

At the current state of evolution of the theory of neu- 
ral computation, it is no longer enough to show that some 
problems can (also) be solved using a neural network-it is 
necessary to analyze the complexity of the computation. For 
instance, in [5] it is shown that the MAX-CUT problem (which 
is NP-complete) can be formulated as that of minimizing a 
quadratic objective function over (0, l}" and can thus be 
solved using a conventional discrete Hopfield network. Since 
a discrete Hopfield network merely changes one component of 
the state vector at a time, it is difficult to believe that "neural" 
computation based on such an approach can be superior to 
other algorithms for discrete optimization. Indeed, the results 
of [25] can be interpreted to mean that, in the worst case, 
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a discrete-state Hopfield network can take an exponential 
number of time steps (O(2")) to reach even a local minimum. 
Note that, by simply enumerating E ( z )  at all the 2" points in 
(0, 1)". one can in fact find a global minimum of E. 

The contents of the present paper highlight the need to de- 
velop a theory of complexity for computation using differential 
equations. The vast majority of complexity theory is addressed 
to the computing ability of algorithms/machines and to the 
expressive ability of languages, though some beginnings have 
been made in a complexity theory for continuous computation 
[4]. But it appears that an entirely new approach is needed 
to analyze the complexity of computation using analog neural 
net works. 

APPENDIX A 
MULTILINEAR POLYNOMIALS 

Suppose E: [O, 11" 4 8 is a multilinear polynomial and that 
it is desired to minimize E(%) as z varies over the discrete 
set (0. 1)". The objective of the appendix is to show that 
there exist very simple necessary and sufficient conditions for 
a vector z E (0, l}" to be a local minimum of E. Thus, given 
a "candidate minimum" z E (0, l}", it is a very simple matter 
to determine whether or not z is indeed a local minimum. This 
justifies the analog approach to discrete optimization, whereby 
the aim is to generate a sequence of candidate minima, which 
are then checked for optimality. 

De3nition A.1: A vector z E (0, l )"  is said to be a local 
minimum of the objective function E if 

E(%) 5 E(y), for all y E N ( z )  ('4.1) 

where N ( z )  denotes the set of all vectors in (0, 1)" lying at 
a Hamming distance of one from 2. z is said to be a strict 
local minimum of E if 

E ( z )  < E(y), for all y E N ( z ) .  (A.2) 

We begin with an obvious observation. For each 2 E 8" 
and each index i E { 1, . . . , n}, let Zi denote the (n - 1)- 
dimensional vector obtained by omitting the ith component of 
z; that is 

Suppose E(%) is a multilinear polynomial. Then it is easy to 
see that there exist functions Ei: -+ $2 and ci: $2*-l + 
?J? such that 

E ( z )  = Z i E i ( Z i )  + C&). 64.4) 

This property proves useful below. 
Proposition A. l :  Suppose E is a multilinear polynomial on 

8" and that z E (0, l}*. Then the following statements are 
equivalent: 

1) z is a local minimum of E. 
2) z satisfies the "relaxed parity condition," that is 

[VE(z)]j 5 0 if zj = 1, [VE(z)]i 2 O if xi = 0. 
(A.5) 

Proof: "(2) (1)" Suppose Statement 2 is true. Select 
an arbitrary index i E { 1, . . , n}, and define y E (0,1}" by 

yi = 1 -xi, y j  = xj for a l l j  # i .  (A.6) 

Then y E N ( z ) ,  and Yi = Zi, where Zi is defined in (A.3). 
Hence, from (A.4), it follows that 

E ( y )  = g/iE(Zi) + c;(Zi) = (1 - x i ) E ( Z ; )  + ci(Z~). (A.7) 

Therefore 

E(y) - E ( z )  = (1 - 2 x , ) E ( z z ) .  (A.8) 

Now observe from (A.4) that 

- dE 
d X i  

E(3i)  = - = [VE(z ) ] z .  

Hence, if z satisfies parity condition (AS), it follows from 
(A.8) that E(y) 2 E ( z ) .  Since the index i is arbitrary, the 
conclusion is that z is a local minimum. 

(2)" We show instead that if Statement 2 is false, 
then so is Statement 1. Suppose accordingly that the parity 
condition (AS) is violated for some i .  Define y as in (A.6); 
then (A.8) shows that E(y) < E ( z ) ,  so that z is not a local 
minimum. 

Proposition A.2: Suppose E is a multilinear polynomial on 
Xn and that z E (0, l}". Then the following statements are 
equivalent: 

"( 1) 

1) z is a strict local minimum of E. 
2) z satisfies the "parity condition," that is, no component 

of V E ( z )  is zero, and 

[VE(z ) ] i  < 0 if xi = 1, [VE(z ) ] i  > O if xi = 0. 
(A.lO) 

The proof is a routine modification of that of Proposition 
A.l and is left to the reader. 

APPENDIX B 
AN OPEN PROBLEM 

In this appendix, we postulate a conjecture on the strict local 
minima of multilinear polynomials. Though the results of the 
present paper hold with or without this conjecture, it never- 
theless represents an interesting problem in combinatorics. 

Suppose E is a given multilinear polynomial, e E (0, l}", 
and b is the bias vector. Suppose b is chosen such that no 
component of the vector z = b - f(e) is zero. Comparing 
Propositions A.2 and 2.4 shows that e is a cluster point of 
S if and only if e is a strict local minimum of the modified 
function Eb(2)  = ~ ( z )  - b t z .  

It is easy to see that a multilinear polynomial need not have 
any strict local minima. An extreme example is provided by 
the function E ( z )  = x1x2...xn, which has 2" - 1 local 
minima, none of them strict. Suppose e is a local minimum 
of E. It is easy to show that e is a strict local minimum of 
Eb for a suitable choice of the bias vector b. To see this, 
observe from Proposition A.l that V E ( e )  satisfies the relaxed 
parity condition (AS). Suppose some components of V E ( e )  
are zero, so that e is not a strict local minimum. If b is chosen 
such that b, < 0 if e, = 0 and [CE(e ) ] ,  = 0. and b, > 0 if 
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e, = 1 and [ T E ( e ) ] ,  = 0. then e satisfies the strict parity 
condition of Proposition A.2 for the function Eb and is thus a 
strict local minimum of Eb. provided that llbll is sufficiently 
small. But the open question is the converse, namely: Given 
E .  is it true that Eb has a strict local minimum for almost all 
b of sufficiently small norm? 

The answer to the question as stated is yes. This follows 
from Theorem 3.2. For almost all sufficiently small b. at least 
one e E (0. l}n must satisfy the conditions of Proposition 2.4; 
otherwise the network (3.1) will have only unstable equilibria, 
which contradicts the fact that the network is totally stable. 
This proof, however, is very indirect and unsatisfactory. The 
question is basically combinatorial in nature, and the answer 
should therefore have a combinatorial proof. 

Now we formulate a conjecture that goes slightly beyond 
the above question. For this purpose, some terminology is 
introduced. A chain in (0. l}” is a sequence ( ~ 1 ~ ~ 2 .  . . . .zk} 
such that z,+1 E N ( z , )  for r = l , . . . . k  - l .4 A set 
S C (0. l}” is connected if there is a chain between every pair 
of points in S. Suppose M (0. l}” is the set of local minima 
of E.  Then M can be divided into its connected components, 
call them M I .  . . . , M,. Moreover, it is easy to see that E 
has the same value at all vectors in a particular connected 
component. 

Conjecture: There exists a number E > 0, dependent on E ,  
such that, whenever llbll < E and b, # 0 for all 2 ,  at least one 
vector in is a strict local minimum of Eb, for j = 1, . . . . c. 
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