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Alternatives to MLE



Alternatives to MLE

e Exact MLE estimation is intractable

— To compute the gradient of the log-likelihood, we need to
compute marginals of the model

e Alternatives include

— Pseudolikelihood approximation to the MLE problem that
relies on computing only local probabilities

— For structured prediction problems, we could avoid
likelihoods entirely by minimizing a loss function that
measures our prediction error




Pseudolikelihood

1

* Consider a log-linear MRF p(x|8) = 20) [1cexp(o, fc (xc))

* By the chain rule, the joint distribution factorizes as
p(x|0) = Hp(xdxp w0 Xi—1,0)
i

* This quantity can be approximated by conditioning on all of
the other variables (called the pseudolikelihood)

p(x|0) = 1_[ XXy s X1, X 15 ey X, 0)
i




Pseudolikelihood

* Using the independence relations from the MRF
p(10) ~ | | pCailan, 0)
i

* Only requires computing local probability distributions
(typically much easier)

— Does not require knowing Z(0)

* Why not?




Pseudolikelihood

* For samples x1, ..., xM

l0g 2¢,(6) = ) ) logp(x{"|x3y, 0)
m i

* This approximation is called the pseudolikelihood

— |If the data is generated from a model of this form, then in
the limit of infinite data, maximizing the pseudolikelihood
recovers the true model parameters

— Can be much more efficient to compute than the log
likelihood




Pseudolikelihood
.

log€p,(0) = ZZlogp(xlmx,’\?,’(i),H)

m [A
_221 p(x™ x5(|0)
= 08 I m
ngp(xz xN(i)le)

= zz _logp(x?l:x%ﬂ@) - 1082 P(x{»x%)w)‘
:ZZ < Z:fc(x )>—logzexp< ch(x xC\l>




Pseudolikelihood

log 25,(0) = » " log p(x{" |1}, 0)
m i

m l
= ZZ log p(x{™, x(»|6) — 1082 P(x{»x}\?rl(i)w)‘
m i x{

@ fc<x’c">> - logz exp< D feleh, 30
' Coi Coi d

Only involves summing over x;!
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Pseudolikelihood

log 25,(0) = » " log p(x{" |1}, 0)

m l
S p(xl" xi()|6)
_ 08 r.m
le{p(xl xN(i)le)

Concavein 8! (proof?)
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Consistency of Pseudolikelihood
I

e Pseudolikelihood is a consistent estimator

— That is, in the limit of large data, it is exact if the true
model belongs to the family of distributions being
modeled

Z ,exp(@,ZCDifC(x{,x(’}”\i))ZCDifC(x{,xE"\i)
Yotrn = 7 7 7 o) 2 exp<9'ZCDifC(xl{'xTCTL\i))

m [ Coi

=) [7 feGel) - Z POl 0) ) fe(x, xc\i)‘

m [ CoOi Coi

Can check that the gradlent is zero in the limit of large dataif = 0~




Structured Prediction
-

1
Z(6,y)

* Suppose we have, p(x|y,0) = [1c exp(46, fc(xc, ¥))

* If goalis argmax p(x|y), then MLE may be overkill
X

— We only care about classification error, not about learning
the correct marginal distributions as well

* Recall that the classification error is simply the expected
number of incorrect predictions made by the learned model
on samples from the true distribution

* Instead of maximizing the likelihood, we could minimize the
classification error over the training set
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Structured Prediction

e Forsamples (x1,y1), ..., (x™,y™), the (unnormalized)
classification error is

z 1{xme argmax,p(x|y™,0)}
m

 The classification error is zero when p(x™|y™, 8) >
p(x|y™, 8) for all x and m or equivalently

<9,ch(x2;",ym)> = <9»2fc(xc»ym)>
C C

11




Structured Prediction

* In the exact case, this can be thought of as having a linear
constraint for each possible x and each y1, ..., y™

<9;Z[fc(x7cn»ym) — fe(xc,y™1) =0

C

* Any 0 that simultaneously satisfies each of these constraints
will guarantee that the classification error is zero

— As there are exponentially many constraints, finding such a
@ (if one even exists) is still a challenging problem

— If such a 0 exists, we say that the problem is separable

UT D
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Structured Perceptron Algorithm
N

* Inthe separable case, a straightforward algorithm can be
designed to for this task

* Choose an initial
* |terate until convergence
— Foreachm

* Choose x' € argmax,p(x|y™,0)

* Setf =0 + Yclfc(xChy™) — fe(xe, y™)]
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