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Expectation Maximization



Unobserved Variables

• Latent or hidden variables in the model are never observed

• We may or may not be interested in their values, but their 

existence is crucial to the model

• Some observations in a particular sample may be missing

• Missing information on surveys or medical records (quite 

common)

• We may need to model how the variables are missing
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Hidden Markov Models

𝑝 𝑥1, … , 𝑥𝑇 , 𝑦1, … , 𝑦𝑇 = 𝑝 𝑦1 𝑝 𝑥1 𝑦1 ෑ

𝑡

𝑝 𝑦𝑡 𝑦𝑡−1 𝑝(𝑥𝑡|𝑦𝑡)

• 𝑋’s are observed variables, 𝑌’s are latent

• Example: 𝑋 variables correspond sizes of tree growth rings for one 
year, the 𝑌 variables correspond to average temperature

𝑌1 𝑌2 𝑌𝑇−1 𝑌𝑇...

𝑋1 𝑋2 𝑋𝑇−1 𝑋𝑇...



Missing Data

• Data can be missing from the model in many different ways

– Missing completely at random:  the probability that a data item is 

missing is independent of the observed data and the other 

missing data

– Missing at random:  the probability that a data item is missing 

can depend on the observed data

– Missing not at random:  the probability that a data item is missing 

can depend on the observed data and the other missing data
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Handling Missing Data

• Discard all incomplete observations

– Can introduce bias

• Imputation:  actual values are substituted for missing values so that all of 
the data is fully observed

– E.g., find the most probable assignments for the missing data and 
substitute them in (not possible if the model is unknown)

– Use the sample mean/mode

• Explicitly model the missing data 

– For example, could expand the state space

– The most sensible solution, but may be non-trivial if we don’t know 
how/why the data is missing
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Modelling Missing Data

• Add additional binary variable 𝑚𝑖 to the model for each possible 

observed variable 𝑥𝑖 that indicates whether or not that variable is 

observed

𝑝 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠, 𝑚 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠 𝑝(𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑖 to the model for each possible 

observed variable 𝑥𝑖 that indicates whether or not that variable is 

observed

𝑝 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠, 𝑚 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠 𝑝(𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠)
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Explicit model of the missing data

(missing not at random)



Modelling Missing Data

• Add additional binary variable 𝑚𝑖 to the model for each possible 

observed variable 𝑥𝑖 that indicates whether or not that variable is 

observed

𝑝 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠, 𝑚 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 𝑝(𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑖 to the model for each possible 

observed variable 𝑥𝑖 that indicates whether or not that variable is 

observed

𝑝 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠, 𝑚 = 𝑝(𝑚)𝑝(𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠)
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Modelling Missing Data

• Add additional binary variable 𝑚𝑖 to the model for each possible 

observed variable 𝑥𝑖 that indicates whether or not that variable is 

observed

𝑝 𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠, 𝑚 = 𝑝(𝑚)𝑝(𝑥𝑜𝑏𝑠 , 𝑥𝑚𝑖𝑠)
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Missing 

completely at 

random

How can you model latent 

variables in this framework?



Learning with Missing Data

• In order to design learning algorithms for models with missing data, 

we will make two assumptions

– The data is missing at random

– The model parameters corresponding to the missing data (𝛿) are 

separate from the model parameters of the observed data (𝜃)

• That is

𝑝 𝑥𝑜𝑏𝑠 , 𝑚|𝜃, 𝛿 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 , 𝛿 𝑝(𝑥𝑜𝑏𝑠|𝜃)
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Learning with Missing Data

𝑝 𝑥𝑜𝑏𝑠 , 𝑚|𝜃, 𝛿 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 , 𝛿 𝑝 𝑥𝑜𝑏𝑠 𝜃

• Under the previous assumptions, the log-likelihood of samples 

𝑥1, 𝑚1 , … , (𝑥𝐾 , 𝑚𝐾) is equal to

𝑙 𝜃, 𝛿 = ෍

𝑘=1

𝐾

log 𝑝(𝑚𝑘|𝑥𝑜𝑏𝑠
𝑘 , 𝛿) +෍

𝑘=1

𝐾

log ෍

𝑥𝑚𝑖𝑠𝑘

𝑝(𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝑥𝑚𝑖𝑠𝑘|𝜃)
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Learning with Missing Data

𝑝 𝑥𝑜𝑏𝑠 , 𝑚|𝜃, 𝛿 = 𝑝 𝑚 𝑥𝑜𝑏𝑠 , 𝛿 𝑝 𝑥𝑜𝑏𝑠 𝜃

• Under the previous assumptions, the log-likelihood of samples 

𝑥1, 𝑚1 , … , (𝑥𝐾 , 𝑚𝐾) is equal to

𝑙 𝜃, 𝛿 = ෍

𝑘=1

𝐾

log 𝑝(𝑚𝑘|𝑥𝑜𝑏𝑠
𝑘 , 𝛿) +෍

𝑘=1

𝐾

log ෍

𝑥𝑚𝑖𝑠𝑘

𝑝(𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝑥𝑚𝑖𝑠𝑘|𝜃)
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Separable in 𝜃 and 𝛿, so if we don’t care about 𝛿, then we 

only have to maximize the second term over 𝜃



Learning with Missing Data

𝑙 𝜃 = ෍

𝑘=1

𝐾

log ෍

𝑥𝑚𝑖𝑠𝑘

𝑝(𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝑥𝑚𝑖𝑠𝑘|𝜃)

• This is NOT a concave function of 𝜃

– In the worst case, could have a different local maximum for each 

possible value of the missing data

– No longer have a closed form solution, even in the case of 

Bayesian networks
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Expectation Maximization

• The expectation-maximization algorithm (EM) is method to find a 

local maximum or a saddle point of the log-likelihood with missing 

data

• Basic idea:
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𝑙 𝜃 = ෍

𝑘=1

𝐾

log ෍

𝑥𝑚𝑖𝑠𝑘

𝑝(𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝑥𝑚𝑖𝑠𝑘|𝜃)

= ෍

𝑘=1

𝐾

log ෍

𝑥𝑚𝑖𝑠𝑘

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘 ⋅
𝑝 𝑥𝑜𝑏𝑠𝑘

𝑘 , 𝑥𝑚𝑖𝑠𝑘 𝜃

𝑞𝑘 𝑥𝑚𝑖𝑠

≥ ෍

𝑘=1

𝐾

෍

𝑥𝑚𝑖𝑠𝑘

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘 log
𝑝 𝑥𝑜𝑏𝑠𝑘

𝑘 , 𝑥𝑚𝑖𝑠𝑘 𝜃

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘



Expectation Maximization

𝐹 𝑞, 𝜃 ≡ ෍

𝑘=1

𝐾

෍

𝑥𝑚𝑖𝑠𝑘

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘 log
𝑝 𝑥𝑜𝑏𝑠𝑘

𝑘 , 𝑥𝑚𝑖𝑠𝑘 𝜃

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘

• Maximizing 𝐹 is equivalent to the maximizing the log-likelihood

• Could maximize it using coordinate ascent

𝑞𝑡+1 = arg max
𝑞1,…,𝑞𝐾

𝐹(𝑞, 𝜃𝑡)

𝜃𝑡+1 = argmax
𝜃

𝐹(𝑞𝑡+1, 𝜃)
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Expectation Maximization

෍

𝑥𝑚𝑖𝑠𝑘

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘 log
𝑝 𝑥𝑜𝑏𝑠𝑘

𝑘 , 𝑥𝑚𝑖𝑠𝑘 𝜃

𝑞𝑘 𝑥𝑚𝑖𝑠𝑘

• This is just −𝑑 𝑞𝑘||𝑝 𝑥𝑜𝑏𝑠𝑘
𝑘 ,⋅ 𝜃

• Maximized when 𝑞𝑘 𝑥𝑚𝑖𝑠𝑘 = 𝑝(𝑥𝑚𝑖𝑠𝑘|𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝜃)

• Can reformulate the EM algorithm as

𝜃𝑡+1 = argmax
𝜃

෍

𝑘=1

𝐾

෍

𝑥𝑚𝑖𝑠𝑘

𝑝(𝑥𝑚𝑖𝑠𝑘|𝑥𝑜𝑏𝑠𝑘
𝑘 , 𝜃𝑡) log 𝑝 𝑥𝑜𝑏𝑠𝑘

𝑘 , 𝑥𝑚𝑖𝑠𝑘 𝜃
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An Example:  Bayesian Networks

• Recall that MLE for Bayesian networks without latent variables 

yielded 

𝜃𝑥𝑖|𝑥𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑖 =
N𝑥𝑖,𝑥parents 𝑖

σ
𝑥𝑖
′N𝑥𝑖

′,𝑥parents 𝑖

• Let’s suppose that we are given observations from a Bayesian 

network in which one of the variables is hidden 

– What do the iterations of the EM algorithm look like?

(on board)
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