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Introduction to Structure Learning



Structure Learning

• We have been focusing on parameter learning:

– E.g., given a graph structure, find the parameters that 
maximize the log-likelihood

• In practice, the structure of the graph may not be known and 
may need to be learned from the data

– For Bayesian networks, we may be only given samples and 
asked to make predictions
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed 
data, the MLE of the conditional probability tables was given 
by the empirical probabilities
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Determining the structure that maximizes the log-likelihood is 
not too difficult

– A complete DAG always maximizes the log-likelihood

– This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures

– Approach 1:  Optimize the log-likelihood over simple 
graphs

– Approach 2:  Add a penalty term to the log-likelihood
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Adding Edges Increases the MLE

Let 𝑝′ be the empirical probability distribution
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Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN that 
represents a given joint probability distribution

– Find the tree-structured BN that maximizes the likelihood

• Let’s consider the log-likelihood of a fixed tree 𝑇

– Assume that the edges are directed so that each node has 
exactly one parent
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Chow-Liu Trees

For a fixed tree:
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Chow-Liu Trees
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This is the (empirical) mutual information, usually 
denoted 𝐼(𝑥𝑖; 𝑥𝑗)



Chow-Liu Trees

• To maximize the log-likelihood, it then suffices to choose the tree 𝑇
that maximizes

max
𝑇

෍

𝑖,𝑗

𝐼(𝑥𝑖; 𝑥𝑗)

• This problem can be solved by finding the maximum weight 
spanning tree in the complete graph with edge weight 𝑤𝑖𝑗

given by the mutual information over the edge (𝑖, 𝑗)

– Greedy algorithm works:  at each step, pick the largest 
remaining edge that does not form a cycle when added to 
the already selected edges
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Chow-Liu Trees

• To use this technique for learning, we simply compute the 
mutual information for each edge using the empirical 
probability distributions and then find the max-weight 
spanning tree

• As a result, we can learn tree-structured BNs in polynomial 
time 

– Can we generalize this to all DAGs?
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for 
the earlier samples
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Chow-Liu Trees:  Example

• Any directed tree (where each node has one parent) over 
these edges maximizes the log-likelihood

– Why doesn’t the direction matter?
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Approach 2:  Penalized Likelihood

• Add a penalty term to the log-likelihood that can depend on 
the number of samples and the chosen structure

ℓ 𝐺, 𝜃 =෍

𝑚

log 𝑝𝐺(𝑥
𝑚|𝜃) − 𝜂 𝑀 𝐷𝑖𝑚(𝐺)

• 𝜂(𝑀) is only a function of the number of samples

– 𝜂 𝑀 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 called the Akaike information criterion

– 𝜂 𝑀 =
log 𝑀

2
called the Bayesian information criterion

• 𝐷𝑖𝑚(𝐺) is the number of parameters needed to represent 𝐺
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