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Lecture 17

Introduction to Structure Learning



Structure Learning

• We have been focusing on parameter learning:

• E.g., given a graph structure, find the parameters that 
maximize the log-likelihood

• In practice, the structure of the graph may not be known and 
may need to be learned from the data

• For Bayesian networks, we may be only given samples and 
asked to make predictions
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed 
data, the MLE of the conditional probability tables was given 
by the empirical probabilities
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed 
data, the MLE of the conditional probability tables was given 
by the empirical probabilities
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BN Structure Learning

• Recall that for a fixed Bayesian network  with fully observed 
data, the MLE of the conditional probability tables was given 
by the empirical probabilities
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Which model should be preferred?
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BN Structure Learning

• Determining the structure that maximizes the log-likelihood is 
not too difficult

• A complete DAG always maximizes the log-likelihood

• This almost certainly results in overfitting

• Alternative is to attempt to learn simple structures

• Approach 1:  Optimize the log-likelihood over simple 
graphs

• Approach 2:  Add a penalty term to the log-likelihood
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Adding Edges Increases the MLE

Let 𝑝𝑝′ be the empirical probability distribution

ℓ2 − ℓ1
𝑀𝑀

=
1
𝑀𝑀
�
𝑚𝑚

log
𝑝𝑝𝑝 𝑥𝑥𝐷𝐷𝑚𝑚 𝑥𝑥𝐵𝐵𝑚𝑚, 𝑥𝑥𝐶𝐶𝑚𝑚

𝑝𝑝′ 𝑥𝑥𝐷𝐷𝑚𝑚 𝑥𝑥𝐵𝐵𝑚𝑚

= �
𝑥𝑥

𝑝𝑝′(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷) log
𝑝𝑝′(𝑥𝑥𝐷𝐷|𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶)
𝑝𝑝′(𝑥𝑥𝐷𝐷|𝑥𝑥𝐵𝐵)

= �
𝑥𝑥

𝑝𝑝′(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷) log
𝑝𝑝′(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷)

𝑝𝑝′ 𝑥𝑥𝐶𝐶 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐷𝐷 𝑥𝑥𝐵𝐵 𝑝𝑝𝑝(𝑥𝑥𝐵𝐵)

= 𝑑𝑑 𝑝𝑝′(𝑥𝑥𝐵𝐵, 𝑥𝑥𝐶𝐶, 𝑥𝑥𝐷𝐷)||𝑝𝑝′ 𝑥𝑥𝐶𝐶 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐷𝐷 𝑥𝑥𝐵𝐵 𝑝𝑝′ 𝑥𝑥𝐵𝐵 ≥ 0
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Chow-Liu Trees

• Suppose that we want to find the best tree-structured BN that 
represents a given joint probability distribution

• Find the tree-structured BN that maximizes the likelihood

• Let’s consider the log-likelihood of a fixed tree 𝑇𝑇

• Assume that the edges are directed so that each node has 
exactly one parent
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Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃, 𝑇𝑇 = �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(𝑖𝑖)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(i)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗log
N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥𝑗𝑗
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Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃, 𝑇𝑇 = �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(𝑖𝑖)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(i)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗log
N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥𝑗𝑗
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Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃, 𝑇𝑇 = �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(𝑖𝑖)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(i)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗log
N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥𝑗𝑗
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This is almost the (empirical) mutual information



Chow-Liu Trees

For a fixed tree:

max
𝜃𝜃

log 𝑙𝑙 𝜃𝜃, 𝑇𝑇 = �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(𝑖𝑖)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉(𝑇𝑇)

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑥𝑥parent 𝑖𝑖

�
𝑥𝑥𝑖𝑖

N𝑥𝑥i,𝑥𝑥parent(i)log
N𝑥𝑥𝑖𝑖,𝑥𝑥parent 𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥parent(𝑖𝑖)

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

�
𝑥𝑥𝑖𝑖,𝑥𝑥𝑗𝑗

N𝑥𝑥i,𝑥𝑥𝑗𝑗log
N𝑥𝑥i,𝑥𝑥𝑗𝑗

𝑁𝑁𝑥𝑥𝑖𝑖𝑁𝑁𝑥𝑥𝑗𝑗

= �
𝑖𝑖∈𝑉𝑉

�
𝑥𝑥𝑖𝑖

𝑁𝑁𝑥𝑥𝑖𝑖 log𝑁𝑁𝑥𝑥𝑖𝑖 + 𝑀𝑀 �
𝑖𝑖,𝑗𝑗 ∈𝐸𝐸(𝑇𝑇)

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗) − 𝐸𝐸 𝑇𝑇 𝑀𝑀log𝑀𝑀
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Chow-Liu Trees

• To maximize the log-likelihood, it then suffices to choose the tree 𝑇𝑇
that maximizes

max
𝑇𝑇

�
𝑖𝑖,𝑗𝑗

𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)

• This problem can be solved by finding the maximum weight 
spanning tree in the complete graph with edge weight 𝑤𝑤𝑖𝑖𝑖𝑖
given by the mutual information over the edge (𝑖𝑖, 𝑗𝑗)

• Greedy algorithm works:  at each step, pick the largest 
remaining edge that does not form a cycle when added to 
the already selected edges
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Chow-Liu Trees

• To use this technique for learning, we simply compute the 
mutual information for each edge using the empirical 
probability distributions and then find the max-weight 
spanning tree

• As a result, we can learn tree-structured BNs in polynomial 
time 

• Can we generalize this to all DAGs?

17



Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for 
the earlier samples
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Chow-Liu Trees:  Example

• Edge weights correspond to empirical mutual information for 
the earlier samples
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Chow-Liu Trees:  Example

• Any directed tree (where each node has one parent) over 
these edges maximizes the log-likelihood

• Why doesn’t the direction matter?

20
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Approach 2:  Penalized Likelihood

• Add a penalty term to the log-likelihood that can depend on 
the number of samples and the chosen structure

ℓ 𝐺𝐺, 𝜃𝜃 = �
𝑚𝑚

log 𝑝𝑝𝐺𝐺(𝑥𝑥𝑚𝑚|𝜃𝜃) − 𝜂𝜂 𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺)

• 𝜂𝜂(𝑀𝑀) is only a function of the number of samples

• 𝜂𝜂 𝑀𝑀 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 called the Akaike information criterion

• 𝜂𝜂 𝑀𝑀 = log 𝑀𝑀
2

called the Bayesian information criterion

• 𝐷𝐷𝐷𝐷𝐷𝐷(𝐺𝐺) is the number of parameters needed to represent 𝐺𝐺

21
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