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Maximum Entropy

max
𝑞1,…,𝑞𝑚

෍

𝑚

𝐻(𝑞𝑚)

such that the moment matching condition is satisfied

෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) =෍

𝑚

෍

𝑥

𝑞𝑚 𝑥|𝑦𝑚 𝑓 𝑥, 𝑦𝑚

𝑞1, … , 𝑞𝑚 are discrete probability distributions

and 𝑓 𝑥𝑚, 𝑦𝑚 = σ𝐶 𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚
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Regularized MLE

• 𝐿2 regularizer with a constant 𝜆

– 𝜆 is unknown and is chosen by cross-validation 

Regularized log-likelihood:

𝜃,෍

𝑚

෍

𝐶

𝑓𝐶 𝑥𝐶
𝑚, 𝑦𝑚 −෍

𝑚

log 𝑍 𝜃, 𝑦𝑚 −
𝜆

2
𝜃 2
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Regularized maximum entropy:

max
𝑞1,…,𝑞𝑚

෍

𝑚

𝐻(𝑞𝑚) −
1

2𝜆
෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) −෍

𝑚

෍

𝑥

𝑞𝑚 𝑥|𝑦𝑚 𝑓 𝑥, 𝑦𝑚
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Bethe Entropy

𝐻𝐵 𝜏 = −෍

𝑖∈𝑉

෍

𝑥𝑖

𝜏𝑖 𝑥𝑖 log 𝜏𝑖 𝑥𝑖 −෍

𝐶

෍

𝑥𝐶

𝜏𝐶 𝑥𝐶 log
𝜏𝐶 𝑥𝐶

ς𝑘∈𝐶 𝜏𝑘(𝑥𝑘)

• 𝜏 are pseudomarginals in the marginal polytope

• Not concave in general

– Real entropy is concave

– Can make it concave by “reweighting” some of the pieces
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Concave Entropy Approximations

𝐻𝜌 𝜏 = −෍

𝑖∈𝑉

෍

𝑥𝑖

𝜏𝑖 𝑥𝑖 log 𝜏𝑖 𝑥𝑖 −෍

𝐶

𝜌𝐶෍

𝑥𝐶

𝜏𝐶 𝑥𝐶 log
𝜏𝐶 𝑥𝐶

ς𝑘∈𝐶 𝜏𝑘(𝑥𝑘)

= −෍

𝑖∈𝑉

෍

𝑥𝑖

1 −෍

𝐶⊃𝑖

𝜌𝐶 𝜏𝑖 𝑥𝑖 log 𝜏𝑖 𝑥𝑖 −෍

𝐶

𝜌𝐶෍

𝑥𝐶

𝜏𝐶 𝑥𝐶 log 𝜏𝐶 𝑥𝐶

• For each clique C, choose some real number 𝜌𝐶 ≥ 0

– We can always choose the 𝜌 such that the resulting 
approximation is concave

– Use this as a surrogate for the true entropy
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Reweighted Maximum Entropy

max
𝜏1,…,𝜏𝑀∈𝑇

෍

𝑚

𝐻𝜌(𝜏
𝑚) −

1

2𝜆
෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) −෍

𝑚

෍

𝐶

෍

𝑥𝐶

𝜏𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚

2

2

• For appropriate choice of 𝜌 this is a constrained concave 
optimization problem

• This approximate maximum entropy optimization problem is 
dual to an approximate MLE optimization problem where we 
approximate 𝑍 using the Bethe free energy with a concave 
entropy approximation

– Note:  strong duality holds when this problem is concave 
and you choose the same 𝜌 for both max-entropy and MLE
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Gradient Descent

• Suppose that we want to minimize a convex function 𝑓(𝑥)

• Start with an initial point 𝑥0

𝑥𝑡 = 𝑥𝑡−1 − 𝛾𝑡𝛻𝑓(𝑥
𝑡−1)

– 𝛾𝑡 is a step size

• Idea:  step along a decreasing direction
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Franke-Wolfe

• Let’s suppose that we want to minimize a convex function 
𝑓(𝑥) over a convex set 𝑆

– Could take one step of gradient descent

– If we end up outside of 𝑆, just project back in (can be 
computationally expensive)

• An alternative:  the Frank-Wolfe algorithm

– To minimize a convex function over a convex set, it suffices 
to solve a series of linear optimization problems
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Franke-Wolfe

• Start with an initial point 𝑥0 ∈ 𝑆

𝑠𝑡 = argmin
𝑥∈𝑆

𝑥, 𝛻𝑓(𝑥𝑡−1)

𝑥𝑡 = (1 − 𝛾𝑡)𝑥
𝑡−1+𝛾𝑡𝑠

𝑡

• 𝛾𝑡 is the step size  

– The algorithm is guaranteed to converge if 𝛾𝑡 =
2

2+𝑡

– Other choices are also possible
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Franke-Wolfe

10

min
𝑥,𝑦

𝑥 − .25 2 + 𝑦 − .25 2

such that 
𝑥 + 𝑦 ≤ 1
0 ≤ 𝑥, 𝑦 ≤ 1

(𝑥0, 𝑦0) = (.1, . 7)



Franke-Wolfe

11

min
𝑥,𝑦

𝑥 − .25 2 + 𝑦 − .25 2

such that 
𝑥 + 𝑦 ≤ 1
0 ≤ 𝑥, 𝑦 ≤ 1

(𝑥0, 𝑦0) = (.1, . 7)
𝛻𝑓 = (−.3, . 9)
𝑠1 = 1,0

(𝑥1, 𝑥2) = (.7, . 23)



Franke-Wolfe
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min
𝑥,𝑦

𝑥 − .25 2 + 𝑦 − .25 2

such that 
𝑥 + 𝑦 ≤ 1
0 ≤ 𝑥, 𝑦 ≤ 1

(𝑥1, 𝑦1) = (.7, . 23)
𝛻𝑓 = (.9, −.03)
𝑠2 = 0,1

(𝑥2, 𝑦2) = (.45, . 48)



Franke-Wolfe

13

min
𝑥,𝑦

𝑥 − .25 2 + 𝑦 − .25 2

such that 
𝑥 + 𝑦 ≤ 1
0 ≤ 𝑥, 𝑦 ≤ 1

(𝑥2, 𝑦2) = (.45, . 48)
𝛻𝑓 = (.4, . 47)
𝑠3 = 0,0

(𝑥3, 𝑦3) = (.24, . 28)



Reweighted Maximum Entropy

𝐸𝑛𝑡 𝜏1, … , 𝜏𝑀 =෍

𝑚

𝐻𝜌(𝜏
𝑚) −

1

2𝜆
෍

𝑚

𝑓(𝑥𝑚 , 𝑦𝑚) −෍

𝑚

෍

𝐶

෍

𝑥𝐶

𝜏𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚

2

2

• To apply FW, need to compute the gradient with respect to 
𝜏1, … , 𝜏𝑀

• The optimization we need to solve is

arg max
𝜇1,…,𝜇𝑚∈𝑇

𝜇, 𝛻𝐸𝑛𝑡(𝜏1, … , 𝜏𝑀)

• This is a linear programming problem over the local polytope

– This means it corresponds to solving an approximate MAP 
problem!
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MAP LP

max
𝜏

෍

𝑖∈𝑉

෍

𝑥𝑖

𝜏𝑖 𝑥𝑖 log𝜙𝑖 𝑥𝑖 +෍

𝐶

෍

𝑥𝐶

𝜏𝐶 𝑥𝐶 log𝜓𝐶(𝑥𝐶)

such that
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For all 𝑖 ∈ 𝑉

For all 𝐶, 𝑖 ∈ 𝐶, 𝑥𝑖

For all 𝑖 ∈ 𝑉, 𝑥𝑖

For all 𝐶, 𝑥𝐶

෍

𝑥𝑖

𝜏𝑖 𝑥𝑖 = 1

෍

𝑥𝐶∖𝑖

𝜏𝐶(𝑥𝐶) = 𝜏𝑖(𝑥𝑖)

𝜏𝑖 𝑥𝑖 ∈ [0,1]

𝜏𝐶 𝑥𝐶 ∈ [0,1]



Reweighted Maximum Entropy

𝐸𝑛𝑡 𝜏1, … , 𝜏𝑀 =෍

𝑚

𝐻𝜌(𝜏
𝑚) −

1

2𝜆
෍

𝑚

𝑓(𝑥𝑚, 𝑦𝑚) −෍

𝑚

෍

𝐶

෍

𝑥𝐶

𝜏𝐶
𝑚 𝑥𝐶|𝑦

𝑚 𝑓𝐶 𝑥𝐶 , 𝑦
𝑚

2

2

• Can solve this optimization problem just by solving a series of 
approximate MAP (linear programming problems)

– Many general purpose solvers exist for LPs

– Could use belief propagation!
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Reweighted Sum-Product

• We know that fixed points of loopy BP correspond to local 
optima of the Bethe free energy

• Is there an analog of sum-product for each choice of 𝜌?

– Yes!

17



Reweighted Sum-Product

• 𝑝 𝑥1, … , 𝑥𝑛 =
1

𝑍
ς𝑖∈𝑉𝜙𝑖(𝑥𝑖)ς 𝑖,𝑗 ∈𝐸𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

𝑚𝑖→𝑗 𝑥𝑗 =෍

𝑥𝑖

𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗

1
𝜌𝑖𝑗

ς𝑘∈𝑁 𝑖 𝑚𝑘→i 𝑥𝑖
𝜌𝑘𝑖

𝑚𝑗→𝑖 𝑥𝑖

• 𝜌 = 1 is equal to regular belief propagation
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Image Segmentation



Image Segmentation

This image is 159x100 = 15,900 pixels

215,900 different possible segmentations!



Image Segmentation

Given a set of labeled training examples, we want to learn the weights 

of an Ising model (with features) to correctly predict the segmentation 

of an unseen horse 

?



Image Segmentation

22

Unseen Test Image Ground Truth Segmentation

100 iterations
(9 mins)



Image Segmentation
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Unseen Test Image Ground Truth Segmentation

250 iterations



Image Segmentation
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Unseen Test Image Ground Truth Segmentation

2,000 iterations



Image Segmentation
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Unseen Test Image Ground Truth Segmentation

11,750 iterations



Image Segmentation
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Unseen Test Image Ground Truth Segmentation

100,000 iterations



Image Segmentation
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Unseen Test Image Ground Truth Segmentation

250,000 iterations
(3.7 hours)



Test Error Over Time
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