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Causal Inference 
(based on slides of David Sontag and Uri Shalit)



What We’ve Done

• Compactly representable models
• Bayesian networks, MRFs, CRFs, artificial neural nets

• Inference
• Variable elimination
• Loopy belief propagation & the Bethe free energy
• Mean-field methods
• Approximate MAP inference:  MAP LP and duality
• Sampling methods: importance, Gibbs sampling

• Learning
• Maximum likelihood & psuedolikelihood
• Expectation maximization
• Structure learning
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Limits of the Theory

• Our thought process:

• Collect data

• Build model

• Do inference

• What are the limitations of this approach?

• That is, what kinds of questions can’t we answer with this 
approach?
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Causal Inference

• Our models are not really capable of answering questions 
about causation

• Recall that, in Bayesian networks, it may be tempting to 
infer causation from the directions of the arrows, but this 
isn’t justified

• The arrows only indicate which conditional probabilities 
are being modeled

• A philosophical question:  how do we determine whether or 
not 𝑋𝑋 causes 𝑌𝑌 (called causal inference)?

• Can we tell just by looking at data?
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Causality

• An example

• Suppose a patient goes to their doctor and is diagnosed 
with high blood pressure

• Further, suppose the doctor can give her one of two 
possible drugs to lower her blood pressure

• How should the doctor select the appropriate drug?
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Causality

• An example

• Suppose a patient goes to their doctor and is diagnosed 
with high blood pressure

• Further, suppose the doctor can give her one of two 
possible drugs to lower her blood pressure

• How should the doctor select the appropriate drug?

• One approach:  find similar patients and look at their 
outcomes under the two different drugs

6



Causality

• An example

• Suppose a patient goes to their doctor and is diagnosed 
with high blood pressure

• Further, suppose the doctor can give her one of two 
possible drugs to lower her blood pressure

• How should the doctor select the appropriate drug?

• Another approach:  build a model for classification of 
blood pressure given patient features
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Causality

• Build a model for classification of blood pressure given patient 
features

• Patient features include age, weight, etc. plus which drug 
they are taking

• Goal is to predict blood pressure

• E.g., could use naive Bayes

• Issues:

• This really isn’t the correct model as it is trained to predict 
blood pressure, not to predict the influence of the possible 
drugs
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Causality

• Build a model for classification of blood pressure given patient 
features

• Patient features include age, weight, etc. plus which drug 
they are taking

• Goal is to predict blood pressure

• E.g., could use naive Bayes

• Issues:

• What happens if the model basically ignores the features 
corresponding to the drugs?
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Causality

• Build a model for classification of blood pressure given patient 
features

• Patient features include age, weight, etc. plus which drug 
they are taking

• Goal is to predict blood pressure

• E.g., could use naive Bayes

• Issues:

• What happens if the training data doesn’t contain patients 
like the current patient?
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Causality

• Build a model for classification of blood pressure given patient 
features

• Patient features include age, weight, etc. plus which drug 
they are taking

• Goal is to predict blood pressure

• E.g., could use naive Bayes

• Issues:

• What happens if there are reasons why the training data 
doesn’t contain patients like the current patient (e.g., you 
can’t give a certain drug to a certain type of patient)?
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Causality

• One thought:  causal relationships may not, in general, be 
able to be learned only from our training data

• Can use observations to rule out possibilities and 
formulate hypotheses about which variables may be 
causally linked

• Need an intervention or experiment to actually test those 
hypotheses

• Challenges:

• We can’t go back in time, change treatments, and observe 
the effects
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Causality

• One thought:  causal relationships may not, in general, be 
able to be learned only from our training data

• Can use observations to rule out possibilities and 
formulate hypotheses about which variables may be 
causally linked

• Need an intervention or experiment to actually test those 
hypotheses

• Challenges:

• In practice, their may not be any “true zeros”, that is, 
almost all variables may have some small effect on each 
other
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Causality

• One thought:  causal relationships may not, in general, be 
able to be learned only from our training data

• Can use observations to rule out possibilities and 
formulate hypotheses about which variables may be 
causally linked

• Need an intervention or experiment to actually test those 
hypotheses

• Challenges:

• Confounding variables may prevent us from accurately 
assessing a causal relationship
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Confounding Variables

• In the blood pressure example socioeconomic status is a 
confounding variable

• Maybe one medication is given disproportionally based on 
wealth

• Other examples:

• Does smoking cause cancer?

• Do stricter gun laws make communities safer?

• Will a particular ad campaign increase sales?

• Does a company discriminate in its hiring practices?
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Causal Inference in Practice

• Randomized trials remain the gold standard method for 
determining causality

• Drawbacks:

• Can’t try all possible outcomes in practice

– Does asbestos cause cancer?

– Does a particular drug cause heart disease?
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Causal Inference in Practice

• Randomized trials remain the gold standard method for 
determining causality

• Drawbacks:

• Can only assess the effects of confounding variables 
that are part of the controlled experiment

• Difficult to populate a trial with a uniform sample of the 
desired population
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Causal Inference in Practice

• Randomized trials remain the gold standard method for 
determining causality

• Drawbacks:

• Study could fail to generalize from one locale to the 
next

• Conclusions apply at a population level, not the 
individual level
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Causal Inference

• Goal:  build a mathematical model of causal inference

• Many, many challenges and disagreements (both practical 
and philosophical) about the right way to model causality

• At one extreme:  causality can only be inferred under 
very strict modelling assumptions 

• The middle:  causality can be inferred from 
appropriately designed randomized trials

• At the other extreme:  many causal relationships should 
be able inferred from observational data (we do it all 
the time!)
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Causal Inference

• Goal:  build a mathematical model of causal inference

• In practice, assumptions needed to make causal inference 
doable

• All confounders must be part of the model

• Outcomes should be independent of the treatments 
given the features

• Difficult to assess whether or not assumptions hold in 
practice

• Ongoing area of research
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