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Alternatives to MLE



Alternatives to MLE

• Exact MLE estimation is intractable

• To compute the gradient of the log-likelihood, we need to 
compute marginals of the model

• Alternatives include

• Pseudolikelihood approximation to the MLE problem that 
relies on computing only local probabilities

• For structured prediction problems, we could avoid 
likelihoods entirely by minimizing a loss function that 
measures our prediction error
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Pseudolikelihood

• Consider a log-linear MRF 𝑝𝑝 𝑥𝑥|𝜃𝜃 = 1
𝑍𝑍 𝜃𝜃

∏𝐶𝐶 exp 𝜃𝜃,𝑓𝑓𝑐𝑐(𝑥𝑥𝑐𝑐)

• By the chain rule, the joint distribution factorizes as

𝑝𝑝 𝑥𝑥|𝜃𝜃 = �
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1,𝜃𝜃)

• This quantity can be approximated by conditioning on all of the 
other variables (called the pseudolikelihood)

𝑝𝑝 𝑥𝑥|𝜃𝜃 ≈�
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1, … , 𝑥𝑥𝑛𝑛,𝜃𝜃)
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Pseudolikelihood

• Using the independence relations from the MRF

𝑝𝑝 𝑥𝑥|𝜃𝜃 ≈�
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥𝑁𝑁 𝑖𝑖 ,𝜃𝜃)

• Only requires computing local probability distributions (typically 
much easier)

• Does not require knowing 𝑍𝑍(𝜃𝜃)

• Why not?

4



Pseudolikelihood
• For samples 𝑥𝑥1, … , 𝑥𝑥𝑀𝑀

log ℓ𝑃𝑃𝑃𝑃(𝜃𝜃) = �
𝑚𝑚

�
𝑖𝑖

log 𝑝𝑝(𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 ,𝜃𝜃)

• This approximation is called the pseudolikelihood

• If the data is generated from a model of this form, then in 
the limit of infinite data, maximizing the pseudolikelihood
recovers the true model parameters

• Can be much more efficient to compute than the log 
likelihood
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Pseudolikelihood

log ℓ𝑃𝑃𝑃𝑃(𝜃𝜃) = �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝(𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 ,𝜃𝜃)

= �
𝑚𝑚

�
𝑖𝑖

log
𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃
∑𝑥𝑥𝑖𝑖′ 𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃 − log�

𝑥𝑥𝑖𝑖
′

𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚) − log�
𝑥𝑥𝑖𝑖
′

exp 𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚 )
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Pseudolikelihood

log ℓ𝑃𝑃𝑃𝑃(𝜃𝜃) = �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝(𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 ,𝜃𝜃)

= �
𝑚𝑚

�
𝑖𝑖

log
𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃
∑𝑥𝑥𝑖𝑖′ 𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃 − log�

𝑥𝑥𝑖𝑖
′

𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚) − log�
𝑥𝑥𝑖𝑖
′

exp 𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚 )

7

Only involves summing over 𝑥𝑥𝑖𝑖!



Pseudolikelihood

log ℓ𝑃𝑃𝑃𝑃(𝜃𝜃) = �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝(𝑥𝑥𝑖𝑖𝑚𝑚|𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 ,𝜃𝜃)

= �
𝑚𝑚

�
𝑖𝑖

log
𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃
∑𝑥𝑥𝑖𝑖′ 𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖

𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

log𝑝𝑝 𝑥𝑥𝑖𝑖𝑚𝑚, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃 − log�

𝑥𝑥𝑖𝑖
′

𝑝𝑝 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 𝜃𝜃

= �
𝑚𝑚

�
𝑖𝑖

𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚) − log�
𝑥𝑥𝑖𝑖
′

exp 𝜃𝜃,�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚 )
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Concave in 𝜃𝜃! (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝? )



Consistency of Pseudolikelihood

• Pseudolikelihood is a consistent estimator

• That is, in the limit of large data, it is exact if the true model 
belongs to the family of distributions being modeled

𝛻𝛻𝜃𝜃ℓ𝑃𝑃𝑃𝑃 = �
𝑚𝑚

�
𝑖𝑖

�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚) −
∑𝑥𝑥𝑖𝑖′ exp 𝜃𝜃,∑𝐶𝐶⊃𝑖𝑖 𝑓𝑓𝐶𝐶 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚 ∑𝐶𝐶⊃𝑖𝑖 𝑓𝑓𝐶𝐶 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚

∑𝑥𝑥𝑖𝑖′ exp 𝜃𝜃,∑𝐶𝐶⊃𝑖𝑖 𝑓𝑓𝐶𝐶 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚

= �
𝑚𝑚

�
𝑖𝑖

�
𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚) −�
𝑥𝑥𝑖𝑖
′

𝑝𝑝(𝑥𝑥𝑖𝑖′|𝑥𝑥𝑁𝑁 𝑖𝑖
𝑚𝑚 ,𝜃𝜃)�

𝐶𝐶⊃𝑖𝑖

𝑓𝑓𝐶𝐶 𝑥𝑥𝑖𝑖′, 𝑥𝑥𝐶𝐶∖𝑖𝑖𝑚𝑚
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Can check that the gradient is zero in the limit of large 
data if 𝜃𝜃 = 𝜃𝜃∗



Structured Prediction

• Suppose we have, 𝑝𝑝 𝑥𝑥 𝑦𝑦,𝜃𝜃 = 1
𝑍𝑍 𝜃𝜃,𝑦𝑦

∏𝐶𝐶 exp( 𝜃𝜃,𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶 ,𝑦𝑦)

• If goal is argmax
𝑥𝑥

𝑝𝑝(𝑥𝑥|𝑦𝑦), then MLE may be overkill

• We only care about classification error, not about learning 
the correct marginal distributions as well

• Recall that the classification error is simply the expected number 
of incorrect predictions made by the learned model on samples 
from the true distribution

• Instead of maximizing the likelihood, we could minimize the 
classification error over the training set
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Structured Prediction

• For samples 𝑥𝑥1,𝑦𝑦1 , … , (𝑥𝑥𝑀𝑀,𝑦𝑦𝑀𝑀), the (unnormalized) 
classification error is

�
𝑚𝑚

1 𝑥𝑥𝑚𝑚∈ argmax𝑥𝑥𝑝𝑝(𝑥𝑥|𝑦𝑦𝑚𝑚,𝜃𝜃)

• The classification error is zero when 𝑝𝑝 𝑥𝑥𝑚𝑚 𝑦𝑦𝑚𝑚,𝜃𝜃 ≥ 𝑝𝑝(𝑥𝑥|𝑦𝑦𝑚𝑚,𝜃𝜃)
for all 𝑥𝑥 and 𝑚𝑚 or equivalently

𝜃𝜃,�
𝐶𝐶

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚) ≥ 𝜃𝜃,�
𝐶𝐶

𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚)
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Structured Prediction

• In the exact case, this can be thought of as having a linear 
constraint for each possible 𝑥𝑥 and each 𝑦𝑦1, … ,𝑦𝑦𝑀𝑀

𝜃𝜃,�
𝐶𝐶

𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − 𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶 ,𝑦𝑦𝑚𝑚) ≥ 0

• Any 𝜃𝜃 that simultaneously satisfies each of these constraints will 
guarantee that the classification error is zero

• As there are exponentially many constraints, finding such a 𝜃𝜃
(if one even exists) is still a challenging problem

• If such a 𝜃𝜃 exists, we say that the problem is separable
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Structured Perceptron Algorithm

• In the separable case, a straightforward algorithm can be 
designed to for this task

• Choose an initial 𝜃𝜃

• Iterate until convergence

• For each 𝑚𝑚

• Choose 𝑥𝑥′ ∈ argmax𝑥𝑥𝑝𝑝(𝑥𝑥|𝑦𝑦𝑚𝑚,𝜃𝜃)

• Set 𝜃𝜃 = 𝜃𝜃 + ∑𝐶𝐶 𝑓𝑓𝐶𝐶 𝑥𝑥𝐶𝐶𝑚𝑚,𝑦𝑦𝑚𝑚 − 𝑓𝑓𝐶𝐶(𝑥𝑥𝐶𝐶′ ,𝑦𝑦𝑚𝑚)
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