CS 6347

Lecture 19

Exponential Families &
Expectation Propagation



Discrete State Spaces
-

 We have been focusing on the case of MRFs over discrete
state spaces

* Probability distributions over discrete spaces correspond to
vectors of probabilities for each element in the space such
that the vector sums to one

— The partition function is simply a sum over all of the
possible values for each variable

— Entropy of the distribution is nonnegative and is also
computed by summing over the state space




Continuous State Spaces

1
p(x) = Z 1_[ lpC(xC)
C

* For continuous state spaces, the partition function is now an

integral
/ = fﬂl[)c(xc) dx
C

* The entropy becomes

H(x) = — f p(x) logp(x) dx




Differential Entropy

I
HGx) = — f p(x) log p(x) dx

* This is called the differential entropy
— It is not always greater than or equal to zero
e Easy to construct such distributions:

— Let g(x) be the uniform distribution over the
interval [a, b], what is the entropy of q(x)?




Differential Entropy
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H()—fbll 1d—lb
D == | gl dx =loglb—




KL Divergence
N

q(x)
p(x)

 The KL-divergence is still nonnegative, even though it contains the
differential entropy

dx

d(qllp) = f a() log

— This means that all of the observations that we made for finite
state spaces will carry over to the continuous case

— The EM algorithm, mean-field methods, etc.

— Most importantly

logZ = H(q) + z j qc(xc) logc(xc) dxc
C




Continuous State Spaces
N

* Examples of probability distributions over continuous state
spaces

— The uniform distribution over the interval [a, b]

1x€[a,b]
b—a

q(x) =

— The multivariate normal distribution with mean u and
covariance matrix X

900 = ———exp (—3<x _WTE I (x u))
J(2m)kdet(X) 2




Continuous State Spaces
-

e What makes continuous distributions so difficult to deal with?

— They may not be compactly representable

— Families of continuous distributions need not be closed
under marginalization

* The marginal distributions of multivariate normal
distributions are (multivariate) normal distributions

— Integration problems of interest (e.g., the partition
function or marginal distributions) may not have closed

form solutions

* Integrals may also not exist!
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The Exponential Family
-

p(x]6) = h(x) - exp({, p(x)) —1log Z(6))

* Adistribution is a member of the exponential family if its
probability density function can be expressed as above for
some choice of parameters 8 and potential functions ¢ (x)

* We are only interested in models for which Z(80) is finite

* The family of log-linear models that we have been focusing on
in the discrete case belong to the exponential family




The Exponential Family

p(x]6) = h(x) - exp({0, p(x)) —log Z(6))

* Asin the discrete case, there is not necessarily a unique way
to express a distribution in this form

* We say that the representation is minimal if there does not
exist a vector a # 0 such that

(a, p(x)) = constant

— In this case, there is a unique parameter vector associated
with each member of the family

— The ¢ are called sufficient statistics for the distribution
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The Multivariate Normal

1 1 )
q(x|n,Z) = - exp (—5 (x =)'z (x - u))

e The multivariate normal distribution is a member of the
exponential family

1
C[(Xlg) — Z(Q) exp (Z Hixl- + z Hl-jxl-xj>

i>]

 The mean and the covariance matrix (must be positive
semidefinite) are sufficient statistics of the multivariate
normal distribution
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The Exponential Family
-

* Many of the discrete distributions that you have seen before
are members of the exponential family

— Binomial, Poisson, Bernoulli, Gamma, Beta, Laplace,
Categorical, etc.

* The exponential family, while not the most general parametric
family, is one of the easiest to work with and captures a
variety of different distributions
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Continuous Bethe Approximation

* Recall that, from the nonnegativity of the KL-divergence

087 = H(@) + ). [ ac(ee) log e (xe) dxg
C

for any probability distribution g

 We can make the same approximations that we did in the
discrete case to approximate Z(6) in the continuous case
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Continuous Bethe Approximation

g Ha®)+ ) | et togwetxe) dxe

where

Hg(7) = ZJTl(xl) log7;(x;)dx; — ZJTC(XC) log Tc(xc)

= lEC Tl(xl)

and T is a vector of locally consistent marginals

e This approximation is exact on trees
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Continuous Belief Propagation

p(x) = %HCPL'(XL') 1_[ Vi (x, x5)

LEV (i,j)EE

* The messages passed by belief propagation are
m;i(x;) « f b: (x )i (x4, %)) 1_[ My (x;) dx;
KEN(D\J

* Depending on the functional form of the potential functions,
the message update may not have a closed form solution

— We can’t necessarily compute the correct marginal
distributions/partition function even in the case of a tree!

UT D
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Gaussian Belief Propagation
-

* When p(x) is a multivariate normal distribution, the message
updates can be computed in closed form

— In this case, max-product and sum-product are equivalent

— Note that computing the mode of a multivariate normal is
equivalent to solving a linear system of equations

— Called Gaussian belief propagation or GaBP
— Does not converge for all multivariate normal

* The messages can have a non-positive definite inverse
covariance matrix
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Properties of Exponential Families
-

e Exponential families are
— Closed under multiplication
— Not closed under marginalization

* Easy to get mixtures of Gaussians when a model has both discrete
and continuous variables

— Let p(x,y) be such that x € R" and y € {1, ..., k} such that
p(x|y) is normally distributed and p(y) is multinomially
distributed

— p(x) is then a Gaussian mixture (mixtures of exponential
family distributions are not generally in the exponential
family)

17




Properties of Exponential Families
N

* Derivatives of the log-partition function correspond to
expectations of the sufficient statistics

7, log Z(6) = f p(x16) (x)dx

e So do second derivatives
62

96,,00,

logZ(0) =

j p(x16) ()b (x)1dlx — ( j p(xw)qb(x)kdx) ( j p(xw)qs(x)ldx)
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KL-Divergence and Exponential Families
-

 Minimizing KL divergence is equivalent to “moment
matching”

e Letq(x]|0) = h(x) -exp((8, p(x)) —logZ(0)) and let p(x)
be an arbitrary distribution

dpllo) = [ pe)tog 225 dx

* This KL divergence is minimized (as a function of 8) when

f P () () ddx = j 1 (1) () dx
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Expectation Propagation

* Keyidea: given p(x) = %Hc Ye(xc) approximate it by a
simpler distribution p(x) = p(x) = %Hc Ue(xc)

 We could just replace each factor with a member of some
exponential family that best describes it, but this can result in

a poor approximation unless each Y is essentially a member
of the exponential family already

* Instead, we construct the approximating distribution by
performing a series of optimizations
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Expectation Propagation
-

1 . el e o 1 =
* |nitialize the approximate distribution p(x) = EHC Ye(xe) so
that each Y- (x.) is a member of some exponential family
* Repeat until convergence

— Foreach C

) 5(x)
et =305

* Set ¢ = argming d(P\¢¥¢||q) where the minimization
is over all exponential families g of the chosen form

7 g (x)
* SetPc(xe) = ﬁc\lcp(cx)
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Expectation Propagation

* This is one approach used to handle continuous distributions
In practice

e Other methods include discretization/sampling methods that

approximate BP messages and then sample to compute the
message updates

— Nonparametric BP
— Particle BP

— Stochastic BP
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