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Exponential Families &
Expectation Propagation



Discrete State Spaces

• We have been focusing on the case of MRFs over discrete 
state spaces

• Probability distributions over discrete spaces correspond to 
vectors of probabilities for each element in the space such 
that the vector sums to one

– The partition function is simply a sum over all of the 
possible values for each variable

– Entropy of the distribution is nonnegative and is also 
computed by summing over the state space
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Continuous State Spaces

𝑝 𝑥 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝑥𝐶

• For continuous state spaces, the partition function is now an 
integral

𝑍 = නෑ

𝐶

𝜓𝐶 𝑥𝐶 𝑑𝑥

• The entropy becomes

𝐻 𝑥 = −න𝑝 𝑥 log 𝑝(𝑥) 𝑑𝑥
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Differential Entropy

𝐻 𝑥 = −න𝑝 𝑥 log 𝑝(𝑥) 𝑑𝑥

• This is called the differential entropy

– It is not always greater than or equal to zero

• Easy to construct such distributions:

– Let 𝑞 𝑥 be the uniform distribution over the 
interval [𝑎, 𝑏], what is the entropy of 𝑞(𝑥)?
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Differential Entropy

𝐻 𝑥 = −න𝑝 𝑥 log 𝑝(𝑥) 𝑑𝑥

• This is called the differential entropy

– It is not always greater than or equal to zero

• Easy to construct such distributions:

– Let 𝑞 𝑥 be the uniform distribution over the 
interval [𝑎, 𝑏], what is the entropy of 𝑞(𝑥)?

𝐻 𝑞 = −න
𝑎

𝑏 1

𝑏 − 𝑎
log

1

𝑏 − 𝑎
𝑑𝑥 = log(𝑏 − 𝑎)
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KL Divergence

𝑑(𝑞| 𝑝 = න𝑞 𝑥 log
𝑞 𝑥

𝑝(𝑥)
𝑑𝑥

• The KL-divergence is still nonnegative, even though it contains the 
differential entropy

– This means that all of the observations that we made for finite 
state spaces will carry over to the continuous case

– The EM algorithm, mean-field methods, etc.

– Most importantly

log 𝑍 ≥ 𝐻 𝑞 +෍

𝐶

න𝑞𝐶 𝑥𝐶 log𝜓𝐶 𝑥𝐶 𝑑𝑥𝐶
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Continuous State Spaces

• Examples of probability distributions over continuous state 
spaces

– The uniform distribution over the interval [𝑎, 𝑏]

𝑞 𝑥 =
1𝑥∈ 𝑎,𝑏

𝑏 − 𝑎

– The multivariate normal distribution with mean 𝜇 and 
covariance matrix Σ

𝑞 𝑥 =
1

2𝜋 𝑘det(Σ)
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1(𝑥 − 𝜇)
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Continuous State Spaces

• What makes continuous distributions so difficult to deal with?

– They may not be compactly representable

– Families of continuous distributions need not be closed 
under marginalization

• The marginal distributions of multivariate normal 
distributions are (multivariate) normal distributions

– Integration problems of interest (e.g., the partition 
function or marginal distributions) may not have closed 
form solutions

• Integrals may also not exist!
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The Exponential Family

𝑝 𝑥 𝜃 = h x ⋅ exp 𝜃, 𝜙(𝑥) − log 𝑍(𝜃)

• A distribution is a member of the exponential family if its 
probability density function can be expressed as above for 
some choice of parameters 𝜃 and potential functions 𝜙(𝑥)

• We are only interested in models for which 𝑍(𝜃) is finite

• The family of log-linear models that we have been focusing on 
in the discrete case belong to the exponential family
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The Exponential Family

𝑝 𝑥 𝜃 = h x ⋅ exp 𝜃, 𝜙(𝑥) − log 𝑍(𝜃)

• As in the discrete case, there is not necessarily a unique way 
to express a distribution in this form

• We say that the representation is minimal if there does not 
exist a vector 𝑎 ≠ 0 such that 

𝑎, 𝜙(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

– In this case, there is a unique parameter vector associated 
with each member of the family

– The 𝜙 are called sufficient statistics for the distribution
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The Multivariate Normal

𝑞 𝑥|𝜇, Σ =
1

𝑍
exp −

1

2
𝑥 − 𝜇 𝑇Σ−1 𝑥 − 𝜇

• The multivariate normal distribution is a member of the 
exponential family

𝑞 𝑥|𝜃 =
1

𝑍(𝜃)
exp ෍

𝑖

𝜃𝑖𝑥𝑖 +෍

𝑖≥𝑗

𝜃𝑖𝑗𝑥𝑖𝑥𝑗

• The mean and the covariance matrix (must be positive 
semidefinite) are sufficient statistics of the multivariate 
normal distribution
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The Exponential Family

• Many of the discrete distributions that you have seen before 
are members of the exponential family

– Binomial, Poisson, Bernoulli, Gamma, Beta, Laplace, 
Categorical, etc.

• The exponential family, while not the most general parametric 
family, is one of the easiest to work with and captures a 
variety of different distributions
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Continuous Bethe Approximation

• Recall that, from the nonnegativity of the KL-divergence

log 𝑍 ≥ 𝐻 𝑞 +෍

𝐶

න𝑞𝐶 𝑥𝐶 log𝜓𝐶 𝑥𝐶 𝑑𝑥𝐶

for any probability distribution 𝑞

• We can make the same approximations that we did in the 
discrete case to approximate 𝑍(𝜃) in the continuous case
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Continuous Bethe Approximation 

max
𝜏∈𝐓

𝐻𝐵 𝜏 +෍

𝐶

න𝜏𝐶 𝑥𝐶 log𝜓𝑐 𝑥𝑐 𝑑𝑥𝐶

where

𝐻𝐵 𝜏 = −෍

𝑖∈V

න𝜏𝑖 𝑥𝑖 log 𝜏𝑖(𝑥𝑖) 𝑑𝑥𝑖 −෍

𝐶

න𝜏𝐶 𝑥𝐶 log
𝜏𝐶(𝑥𝐶)

ς𝑖∈𝐶 𝜏𝑖 𝑥𝑖
𝑑𝑥𝐶

and 𝑇 is a vector of locally consistent marginals

• This approximation is exact on trees
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Continuous Belief Propagation

𝑝 𝑥 =
1

𝑍
ෑ

𝑖∈𝑉

𝜙𝑖(𝑥𝑖) ෑ

𝑖,𝑗 ∈𝐸

𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)

• The messages passed by belief propagation are 

𝑚𝑖𝑗 𝑥𝑗 ∝ න𝜙𝑖 𝑥𝑖 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 ෑ

𝑘∈𝑁 𝑖 ∖𝑗

𝑚𝑘𝑖(𝑥𝑖) 𝑑𝑥𝑖

• Depending on the functional form of the potential functions, 
the message update may not have a closed form solution

– We can’t necessarily compute the correct marginal 
distributions/partition function even in the case of a tree!
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Gaussian Belief Propagation

• When 𝑝(𝑥) is a multivariate normal distribution, the message 
updates can be computed in closed form

– In this case, max-product and sum-product are equivalent

– Note that computing the mode of a multivariate normal is 
equivalent to solving a linear system of equations

– Called Gaussian belief propagation or GaBP

– Does not converge for all multivariate normal

• The messages can have a non-positive definite inverse 
covariance matrix
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Properties of Exponential Families

• Exponential families are

– Closed under multiplication

– Not closed under marginalization

• Easy to get mixtures of Gaussians when a model has both discrete 
and continuous variables

– Let 𝑝(𝑥, 𝑦) be such that 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ {1,… , 𝑘} such that 
𝑝(𝑥|𝑦) is normally distributed and 𝑝 𝑦 is multinomially
distributed

– 𝑝(𝑥) is then a Gaussian mixture (mixtures of exponential 
family distributions are not generally in the exponential 
family)
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Properties of Exponential Families

• Derivatives of the log-partition function correspond to 
expectations of the sufficient statistics

𝛻𝜃 log 𝑍(𝜃) = න𝑝 𝑥 𝜃 𝜙(𝑥)𝑑𝑥

• So do second derivatives

𝜕2

𝜕𝜃𝑘𝜕𝜃𝑙
log 𝑍 𝜃 =

න𝑝 𝑥 𝜃 𝜙 𝑥 𝑘𝜙 𝑥 𝑙𝑑𝑥 − න𝑝 𝑥 𝜃 𝜙 𝑥 𝑘𝑑𝑥 න𝑝 𝑥 𝜃 𝜙 𝑥 𝑙𝑑𝑥
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KL-Divergence and Exponential Families

• Minimizing KL divergence is equivalent to “moment 
matching”

• Let 𝑞 𝑥 𝜃 = h x ⋅ exp 𝜃, 𝜙(𝑥) − log 𝑍(𝜃) and let 𝑝(𝑥)
be an arbitrary distribution

𝑑(𝑝| 𝑞 = න𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥|𝜃)
𝑑𝑥

• This KL divergence is minimized (as a function of 𝜃) when

න𝑝 𝑥 𝜙 𝑥 𝑘𝑑𝑥 = න𝑞 𝑥 𝜃 𝜙 𝑥 𝑘𝑑𝑥
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Expectation Propagation

• Key idea: given 𝑝 𝑥 =
1

𝑍
ς𝐶𝜓𝐶(𝑥𝐶) approximate it by a 

simpler distribution 𝑝 𝑥 ≈ ෤𝑝 𝑥 =
1

෨𝑍
ς𝐶

෨𝜓𝐶(𝑥𝐶)

• We could just replace each factor with a member of some 
exponential family that best describes it, but this can result in 
a poor approximation unless each 𝜓𝐶 is essentially a member 
of the exponential family already

• Instead, we construct the approximating distribution by 
performing a series of optimizations
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Expectation Propagation

• Initialize the approximate distribution ෤𝑝 𝑥 =
1

෨𝑍
ς𝐶

෨𝜓𝐶(𝑥𝐶) so 

that each ෨𝜓𝐶(𝑥𝐶) is a member of some exponential family

• Repeat until convergence

– For each 𝐶

• Let ෤𝑝∖𝐶 𝑥 =
෤𝑝 𝑥

෩𝜓𝐶 𝑥𝐶

• Set ෤𝑞 = argmin𝑞 𝑑( ෤𝑝\𝐶𝜓𝐶||𝑞) where the minimization 

is over all exponential families 𝑞 of the chosen form

• Set ෨𝜓𝐶 𝑥𝐶 =
෤𝑞 𝑥

෤𝑝\𝐶(𝑥)
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Expectation Propagation

• This is one approach used to handle continuous distributions 
in practice

• Other methods include discretization/sampling methods that 
approximate BP messages and then sample to compute the 
message updates

– Nonparametric BP

– Particle BP

– Stochastic BP
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