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Last Time
=

* PAC learning

e Bias/variance tradeoff

— small hypothesis spaces (not enough flexibility) can have high
bias

— rich hypothesis spaces (too much flexibility) can have high
variance

* Today: more on this phenomenon and how to get around it




Intuition

Bias
— Measures the accuracy or quality of the algorithm

— High bias means a poor match

Variance
— Measures the precision or specificity of the match

— High variance means a weak match

We would like to minimize each of these

Unfortunately, we can’t do this independently, there is a trade-off
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Bias-Variance Analysis in Regression
e

* Truefunctionisy = f(x) +¢€

— where € is normally distributed with zero mean and standard
deviation o

- Given a set of training examples, (x¥,y;), ..., (x™, y, ), we fit
a hypothesis g(x) = wlx + b tothe data to minimize the
squared error

Z[yi -g(x®)]°




2-D Example
N

Sample 20 points from
f(x) = x + 2sin(1.5x) + N(0,0.2)

fit hypothesis




2-D Example
T

50 fits (20 examples each)
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Bias-Variance Analysis
-

» Given a new data point x'with observed value y' =
f(x") + €, want to understand the expected prediction
error

* Suppose that training samples are drawn independently
from a distribution p(S), want to compute

E,l (y'-gs(x))" ]




Probability Reminder

e Variance of a random variable, Z
Var(Z) = E[(Z — E[Z])*.
= E[Z% - 2ZE[Z] + E[Z]?]
= E[Z%] — E[Z]?

* Properties of Var(Z2)
Var(aZ) = E[a*Z?] — E[aZ])? = a*Var(Z)




Bias-Variance-Noise Decomposition
D

E|(y' - g5)" | = Elgsx)? = 2g5(x)y" + "]

= E[gs(x")2] — 2E[gs(x)]E[y'] + E[y"*]

= Var(gs(x")) + Elgs(x")] — 2E[gs(x)1f (x")
+Var(y') + f(x')?

= Var(gs(x") + (Elgs(x)] = fF(x))° + Var(e)

= Var(gs(x) + (E[gs(x)] — f(x))” + 07




Bias-Variance-Noise Decomposition
D

E [(3" — gs(x'))z ] = E[gs(x")? — 2g5(x")y" + y'?]

= E[gs(x")?] — 2E[gs(x)IEly'] + E[y"?]

= Var(gs(x") + E[gs(x")]?* — 2E[gs(x)]f (x")
+Var(y') + f(x')?

= Var(gs(x") + (ELg; ()] — f(x))” + Var(e)

et Gt 1
' Y

Variance Bias Noise
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Bias, Variance, and Noise
[

» Variance: E[ (gs(x') — E[gs(x)])?]

— Describes how much g¢(x") varies from one training set S
to another

* Bias:E[gs(x")] — f(x")
— Describes the average error of g (x')
. Noise:E[(y’— f(x’))2] = E[€?] = o?

— Describes how much y’ varies from f (x")
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2-D Example
T

50 fits (20 examples each)
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Bias

10

true function
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Variance




Noise
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Bias
IS

 Low bias

— 9

* High bias

— 9
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Bias
-r---pGTe—¥—8BF YV—————”:
* Low bias
— Linear regression applied to linear data
— 2nd degree polynomial applied to quadratic data
* High bias
— Constant function

— Linear regression applied to non-linear data
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Variance
IS

 Low variance

—9

* High variance

—?
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Variance

* Lowvariance

— Constant function

— Model independent of training data
* High variance

— High degree polynomial
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Bias/Variance Tradeoff
I

* (bias?+variance) is what counts for prediction
* Aswe saw in PAC learning, we often have

— Low bias = high variance

— Low variance = high bias

— Is this a firm rule?
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Reduce Variance Without Increasing Bias

* Averaging reduces variance: let Z4, ..., Z, bel.i.d random

variables
Var ! E YA _—1[/(17'2
N L i N ( l)

l

* |dea: average models to reduce model variance

* The problem
— Only one training set

— Where do multiple models come from?
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Bagging: Bootstrap Aggregation

* Take repeated bootstrap samples from training set D
(Breiman, 1994)

* Bootstrap sampling: Given set D containing N training examples,

create D' by drawing N examples at random with replacement from
D

* Bagging
— Create k bootstrap samples Dy, ..., Dy,

— Train distinct classifier on each D;

— Classify new instance by majority vote / average
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Original
Training data

Step 1:
Create Multiple D,
Data Sets

Step 2:
Build Multiple C
Classifiers i

>

<4

Step 3:
Combine
Classifiers

[image from the slides of David Sontag]
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Bagging

Data 1 2 3 4 5 6 7 38 9 10
BS1 7 1 9 10 7 8 8 4 7 2
BS 2 8 1 3 1 9 7 4 10 1
BS3 5 4 8 8 2 5 5 7 38 38

* Build a classifier from each bootstrap sample

* |neach bootstrap sample, each data point has probability

1\N .
(1 — —) of not being selected
N
* Expected number of data points in each sample is then

N - (1 — (1 —%)N) ~N-(1—exp(-=1)) =.632- N
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Decision Tree Bagging

[image from the slides of David Sontag]



Decision Tree Bagging (100 Bagged Trees)

-1.0 -0.5 0.0 0.5 1.0

[image from the slides of David Sontag]



Bagging Experiments

i) The data set is randomly divided into a test set 7 and a learning set L. In the real data
sets 7 is 10% of'the data. In the simulated waveform data, 1800 samples are generated.
L consists of 300 of these, and 7 the remainder.

i1) A classification tree is constructed from £ using 10-fold cross-validation. Running the
test set 7 down this tree gives the misclassification rate eg (L, 7).

iii) A bootstrap sample L g is selected from L, and a tree grown using Lp. The original
learning set £ is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiers ¢ (x), ..., ¢so(x).

iv) If (j.,x,) € 7, then the estimated class of x,, is that class having the plurality in
P1(xy), - .., Ps0(xy,). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the
bagging misclassification rate eg (L, 7).

v) The random division of the data into £ and 7 is repeated 100 times and the reported
es, €p are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors of €5 and e over the 100 iterations are
also computed.
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Bagging Results

Data Set €g en Decrease
waveform 29.1 19.3 34%
heart 4.9 2.8 43%

breast cancer 5.9 3.7 37%
ionosphere 11.2 7.9 29%
diabetes 253 239 6%

glass 304 236 22%
soybean 8.6 6.8 21%

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994
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Random Forests

[ ——
. Step 1:
Original Randomize) (Create random
Training data vectors

[ I . i
Step 2: : o | :
Use random | |

buTECr:'?url:?pIe | 'l' l’ l’ | l’

decision trees :M‘ MTE ﬁll | ﬁ

Step 3:
Combine
decision trees

29




Random Forests
_

* Ensemble method specifically designed for decision tree
classifiers

* Introduce two sources of randomness: “bagging” and
“random input vectors”

— Bagging method: each tree is grown using a bootstrap
sample of training data

— Random vector method: best split at each node is
chosen from a random sample of m attributes instead
of all attributes
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Random Forest Algorithm
-

e Forb =1toB
— Draw a bootstrap sample of size N from the data

— Grow a tree T}, using the bootstrap sample as follows
e Choose m attributes uniformly at random from the data
* Choose the best attribute among the m to split on

 Split on the best attribute and recurse (until partitions have
fewer than s,,,;,, number of nodes)

* Prediction for a new data point x
— Regression: %Zb Ty (x)

— Classification: choose the majority class label among
Tl (X), L) TB (x)
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When Will Bagging Improve Accuracy?
e

* Depends on the stability of the base-level classifiers.

* Alearneris unstable if a small change to the training set causes a
large change in the output hypothesis

— If small changes in D cause large changes in the output, then there
will be an improvement in performance with bagging

» Bagging helps unstable procedures, but could hurt the performance of
stable procedures

— Decision trees are unstable

— k-nearest neighbor is stable
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