

Unsupervised Learning: Clustering

Nicholas Ruozzi
University of Texas at Dallas

Announcements

- Midterm (next Monday in class)
 - Closed book, closed notes, etc. (just you and a pencil)
 - Try to arrive as early as possible so as to maximize your exam taking time
 - Covers everything up to the end of boosting
 - Be prepared for theoretical questions!
 - The exam is worth a significant percentage of the grade, talk to other students and use Piazza to make sure that you are prepared!

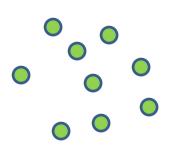
Announcements

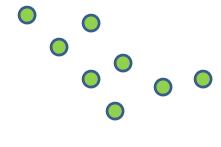
- Homework 1 & 2 grades are now available
 - Talk to the TA about any grading issues/questions
- Solutions will be posted soon
- Homework 3: will be due on 10/19, but you should attempt it before the exam

Clustering systems:

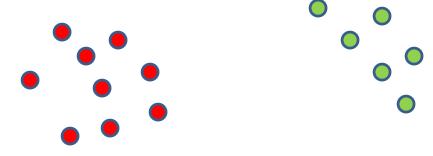
- Unsupervised learning
- Requires data, but no labels
- Detect patterns, e.g., in
 - Group emails or search results
 - Customer shopping patterns
- Useful when don't know what you're looking for
 - But often get gibberish

- Want to group together parts of a dataset that are close together in some metric
 - Useful for finding the important parameters/features of a dataset





- Want to group together parts of a dataset that are close together in some metric
 - Useful for finding the important parameters/features of a dataset



- Intuitive notion of clustering is a somewhat ill-defined problem
 - Identification of clusters depends on the scale at which we perceive the data

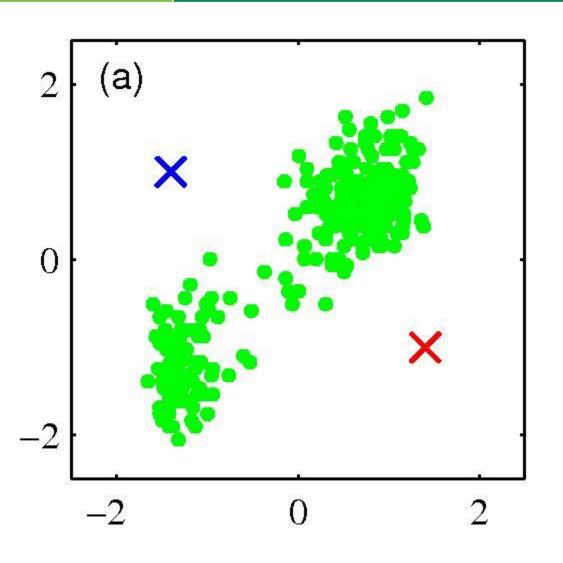
- Intuitive notion of clustering is a somewhat ill-defined problem
 - Identification of clusters depends on the scale at which we perceive the data

• Input: a collection of points $x_1, ..., x_n \in \mathbb{R}^m$, an integer k

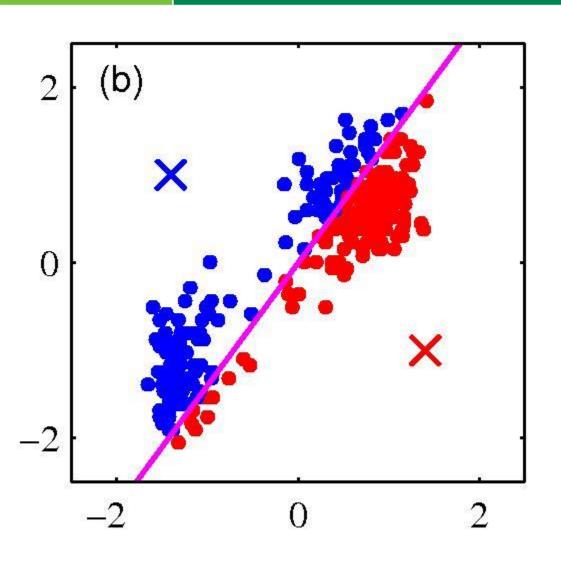
• Output: A partitioning of the input points into k sets that minimizes some metric of closeness

k-means Clustering

- Pick an initial set of k means (usually at random)
- Repeat until the clusters do not change:
 - Partition the data points, assigning each data point to a cluster based on the mean that is closest to it
 - Update the cluster means so that the i^{th} mean is equal to the average of all data points assigned to cluster i

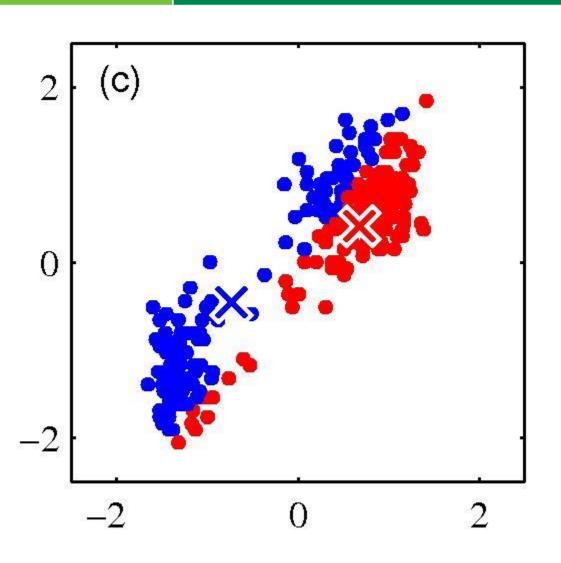


Pick *k* random points as cluster centers (means)



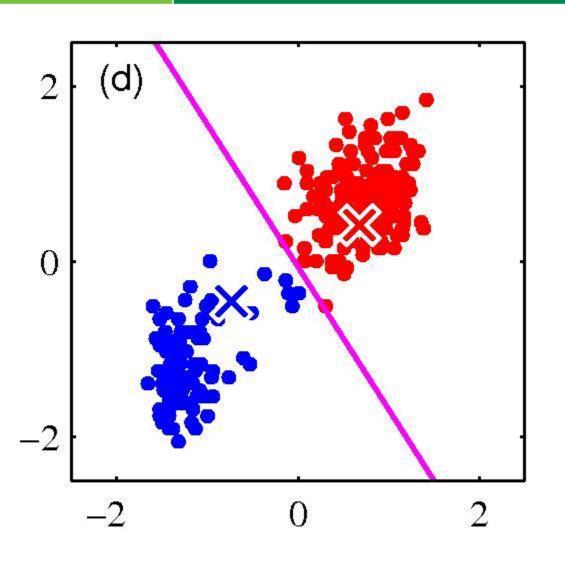
Iterative Step 1:

Assign data instances to closest cluster center

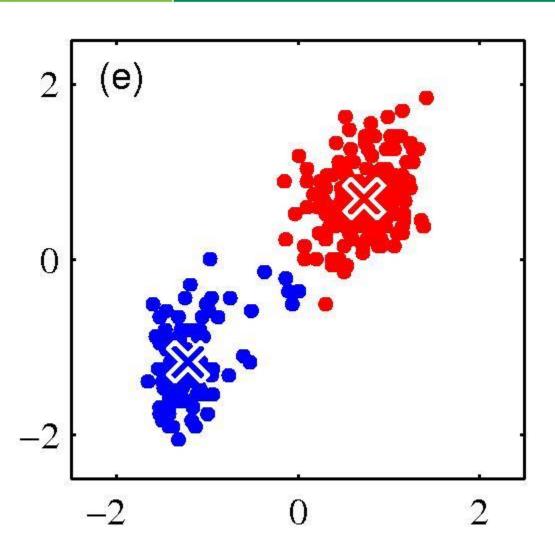


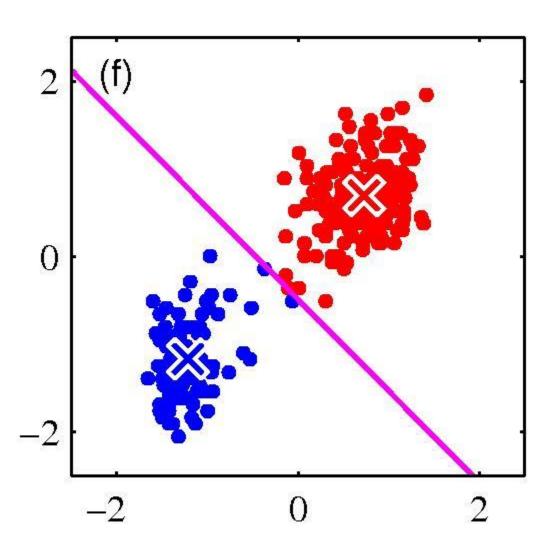
Iterative Step 2:

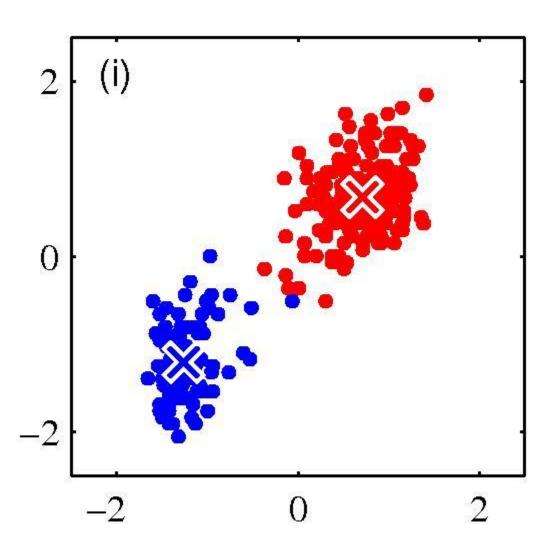
Change the cluster center to the average of the assigned points



Repeat until convergence







k-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance

k-Means for Segmentation

k = 3

Original

k-Means for Segmentation

k = 3

k = 10

Original

k-means Clustering as Optimization

 Minimize the distance of each input point to the mean of the cluster/partition that contains it

$$\min_{S_1, ..., S_k} \sum_{i=1}^k \sum_{j \in S_i} ||x_j - \mu_i||^2$$

where

- $-S_i \subseteq \{1, ..., n\}$ is the i^{th} cluster
- $-S_i \cap S_j = \emptyset \text{ for } i \neq j, \cup_i S_i = \{1, \dots, n\}$
- $-\mu_i$ is the centroid of the i^{th} cluster

k-means Clustering as Optimization

 Minimize the distance of each input point to the mean of the cluster/partition that contains it

$$\min_{S_1, \dots, S_k} \sum_{i=1}^k \sum_{j \in S_i} ||x_j - \mu_i||^2$$

where

Exactly minimizing this function is NP-hard (even for k = 2)

- $-S_i \subseteq \{1, ..., n\}$ is the i^{th} cluster
- $-S_i \cap S_j = \emptyset \text{ for } i \neq j, \cup_i S_i = \{1, \dots, n\}$
- $-\mu_i$ is the centroid of the i^{th} cluster

k-means Clustering

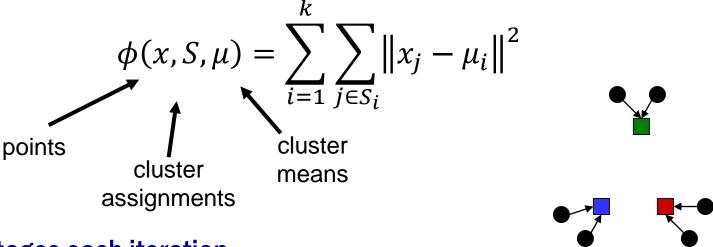
 The k-means clustering algorithm performs a block coordinate descent on the objective function

$$\sum_{i=1}^{k} \sum_{j \in S_i} ||x_j - \mu_i||^2$$

• This is not a convex function: could get stuck in local minima

k-Means as Optimization

Consider the k-means objective function



- Two stages each iteration
 - Update cluster assignments: fix means μ , change assignments S
 - Update means: fix assignments S, change means μ

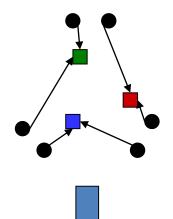
Phase I: Update Assignments

• For each point, re-assign to closest mean, $x^{(j)} \in S_i$ if

$$j \in \arg\min_{i} ||x_j - \mu_i||^2$$

• Can only decrease ϕ as the sum of the distances of all points to their respective means must decrease

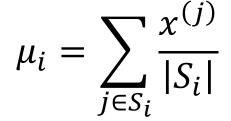
$$\phi(x, S, \mu) = \sum_{i=1}^{k} \sum_{j \in S_i} ||x_j - \mu_i||^2$$

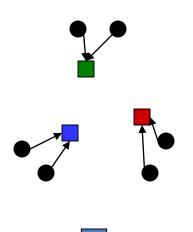


Phase II: Update Means

Move each mean to the average of its assigned points

$$\mu_i = \sum_{j \in S_i} \frac{x^{(j)}}{|S_i|}$$

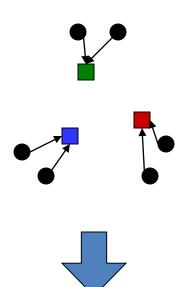




Phase II: Update Means

Move each mean to the average of its assigned points

$$\mu_i = \sum_{j \in S_i} \frac{x^{(j)}}{|S_i|}$$

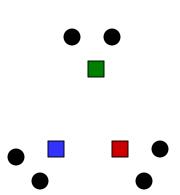


Initialization

- K-means is sensitive to initialization
 - It does matter what you pick!
 - What can go wrong?

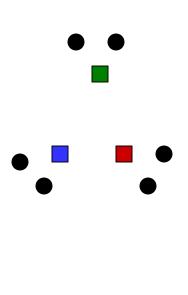
Initialization

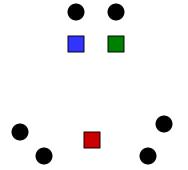
- K-means is sensitive to initialization
 - It does matter what you pick!
 - What can go wrong?



Initialization

- K-means is sensitive to initialization
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes to help alleviate this problem: initialization heuristics

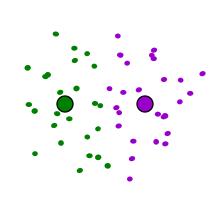


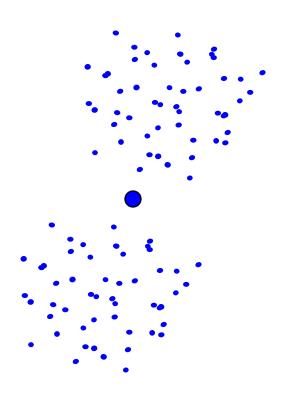


k-means Clustering

- Not clear how to figure out the "best" k in advance
- Want to choose k to pick out the interesting clusters, but not to over fit the data points
 - Large k doesn't necessarily pick out interesting clusters
 - Small k can result in large clusters than can be broken down further

Local Optima



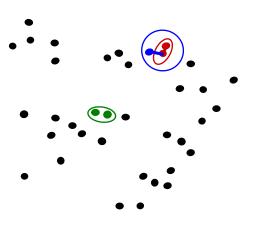


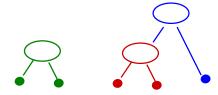
k-Means Summary

- Guaranteed to converge
 - But not to a global optimum
- Choice of k and initialization can greatly affect the outcome
- Runtime: O(kn) per iteration
- Popular because it is fast, though there are other clustering methods that may be more suitable depending on your data

Hierarchical Clustering

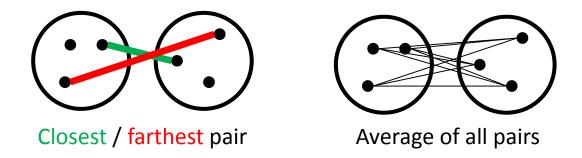
- Agglomerative clustering
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there is only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram





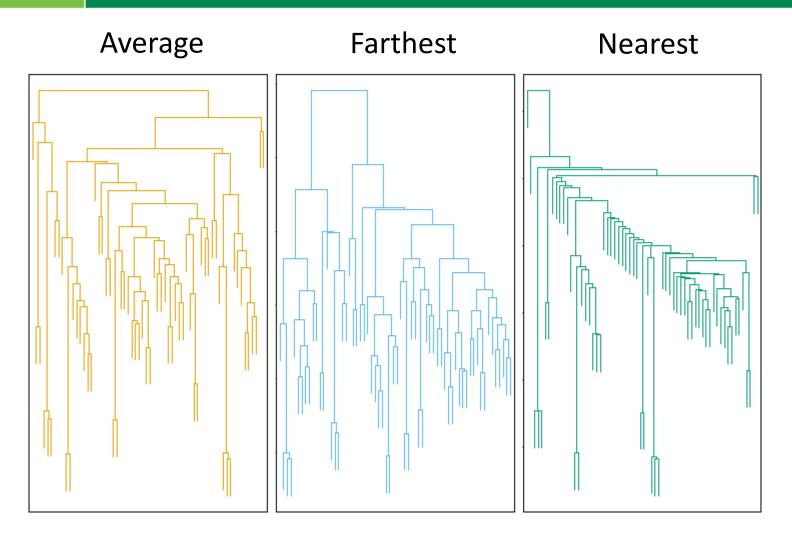
Agglomerative Clustering

How should we define "closest" for clusters with multiple elements?



Many more choices, each produces a different clustering...

Clustering Behavior



Mouse tumor data from [Hastie]

