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Eigenvalues
e

« Aisan eigenvalue of a matrix A € R™*" if the linear
system Ax = Ax has at least one non-zero solution

— If Ax = Ax we say that A is an eigenvalue of A with
corresponding eigenvector x

— Could be multiple eigenvectors for the same A




Eigenvalues of Symmetric Matrices
e

« IfA € R™" is symmetric, then it has n linearly
independent eigenvectors vy, ..., v,, corresponding to n
real eigenvalues

* A symmetric matrix is positive definite if and only if all of its
eigenvalues are positive




Eigenvalues of Symmetric Matrices
e

« IfA € R™" is symmetric, then it has n linearly
independent eigenvectors vy, ..., v,, corresponding to n
real eigenvalues

— Moreover, it has n linearly independent orthonormal
eigenvectors:

* v/ v; = Oforalli # j

« v/ v; = 1forall i




Example

* The 2x2 identity matrix has all of its eigenvalues equal to 1

with orthonormal eigenvectors [(1)] and [(1)]

* The matrix H ﬂ has eigenvalues 0 and 2 with
e o

orthonormal eigenvectors and

Sl S
Sl = Sl -




Eigenvalues
-

* Suppose A € R™ ™ is symmetric

* Any x € R" can be writtenas x = )., c;v; where
V4, ..., U, are the eigenvectors of A

— Ax = X1 Ay,

2, _ NN 42
—A%x = ), Aicv;

t,, — ' t
— A = Nj=1 A




Eigenvalues
e

* Suppose A € R™ ™ is symmetric

* Any x € R" can be writtenas x = )., c;v; where
V4, ..., U, are the eigenvectors of A

— ¢; = v] x, this is the projection of x along the line given
by v; (assuming that v; is a unit vector)




Eigenvalues
e

* Let Q € R™ " be the matrix whose it" column is v; and
D € R™ ™ pe the diagonal matrix such that D;; = A;

—Ax = QDQ"x

— Can throw away some eigenvectors to approximate this
quantity

* Forexample, let Q;, be the matrix formed by keeping only the
top k eigenvectors and D,, be the diagonal matrix whose
diagonal consists of the top k eigenvalues




Frobenius Norm

 The Frobenius norm is a matrix norm written as

n n
llle = | >[4y

i=1j=1
\

* Q.Dy Q,f is the best rank k approximation of the matrix
symmetric matrix A with respect to the Frobenius norm




Principal Component Analysis
-

* Given a collection of data points sampled from some
distribution x4, ..., x,, € R"

— Construct the matrix X € R™*? whose i*" column is x;

* Want to reduce the dimensionality of the data while still
maintaining a good approximation of the sample mean and
variance




Principal Component Analysis
-

 Construct the matrix W € R™ P whose it"* column is
2%
p

Xi

— This gives the data a zero mean
 The matrix WW 7 is the sample covariance matrix

— WWT is symmetric and positive semidefinite (simple
proof later)




Principal Component Analysis
-

* PCA attempts to find a set of orthogonal vectors that best
explain the variance of the sample covariance matrix

— From our previous discussion, these are exactly the
eigenvectors of WW T




PCA in Practice

* Forming the matrix WW T can require a lot of memory
(especiallyif n > p)

— Need a faster way to compute this without forming the
matrix explicitly

— Typical approach: use the singular value decomposition




Singular Value Decomposition (SVD)

 Every matrix B € R™"*P admits a decomposition of the
form

B =Uxv"

— where U € R™ " is an orthogonal matrix, 2 € R"*P is
non-negative diagonal matrix, and V' € RP*P is an
orthogonal matrix

— A matrix C € R™ ™ js orthogonal if CT = C~ 1.
Equivalently, the rows and columns of C are
orthonormal vectors




Singular Value Decomposition (SVD)

 Every matrix B € R™"*P admits a decomposition of the
form

Diagonal elements
of X called singular

B=UxVT values

— where U € R™ " is an orthogonal matrix, 2 € R"*P is
non-negative diagonal matrix, and V' € RP*P is an
orthogonal matrix

— A matrix C € R™ ™ js orthogonal if CT = C~ 1.
Equivalently, the rows and columns of C are
orthonormal vectors




SVD and PCA

* Returning to PCA
— LetW = UZV" be the SVD of W
-wwt =uzvtvzto" = uzztu’
— U is then the matrix of eigenvectors of WIW T

— If we can compute the SVD of i/, then we don't need to
form the matrix WW T




SVD and PCA

* Forany matrix 4, AAT is symmetric and positive
semidefinite

— Let A = UV be the SVD of A
—AAT = uxvtvetu? = uzztu?
— U is then the matrix of eigenvectors of AA”

— The eigenvalues of AA” are all non-negative because
> = 2 which are the square of the singular values of
A




An Example: “Eigenfaces”
[ —

* Let’s suppose that our data is a collection of images of the
faces of individuals




An Example: “Eigenfaces”
-

* Let’s suppose that our data is a collection of images of the
faces of individuals

— The goal is, given the "training data", to correctly label
unseen images

— Let’s suppose that each image is an s X s array of
pixels: x; € R™,n = s?

— As before, construct the matrix W € R™*P whose it"

. X
columnis x; — ijf




An Example: “Eigenfaces”
-

* Forming the matrix WW T requires a lot of memory
—s =256means WW 7' is 65536 x 65536

— Need a faster way to compute this without forming the
matrix explicitly

— Could use the singular value decomposition




An Example: “Eigenfaces”
-

* Adifferentapproach whenp < n

— Compute the eigenvectors of AT A (thisisanp X p
matrix)

— Let v be an eigenvector of AT A with eigenvalue A
— AAT Av = AAv

— This means that Av is an eigenvector of AA” with
eigenvalue A (or 0)

— Save the top k eigenvectors - called eigenfaces in this
example

UT D



An Example: “Eigenfaces”
-

* The data in the matrix is “training data”

— Given a new image, we’d like to determine which, if any,
member of the data set that it belongs to

e Step 1: Compute the projection of the recentered image to
classify onto each of the k eigenvectors

— This gives us a vector of weights ¢, ..., Cx




An Example: “Eigenfaces”
-

* The data in the matrix is “training data”

— Given a new image, we’d like to determine which, if any,
member of the data set that it belongs to

» Step 2: Determine if the input image is close to one of the
faces in the data set

— If the distance between the input and it's approximation
is too large, then the input is likely not a face




An Example: “Eigenfaces”
-

* The data in the matrix is “training data”

— Given a new image, we’d like to determine which, if any,
member of the data set that it belongs to

e Step 3: Find the person in the training data that is closest
to the new input

— Replace each group of training images by its average

— Compute the distance to the jth average HC —a' H

where a'® are the coefficients of the average face for
person i

UT D



