

Bayesian Methods

Nicholas Ruozzi University of Texas at Dallas

Announcements

Exams graded and available for viewing

Homework 3 due 10/19

Could extend it to 10/21, if everyone agrees

Exam Recap

Many people had trouble with VC dimension

(exam problem discussed on the board)

Other questions about the exam?

Binary Variables

• Coin flipping: heads=1, tails=0 with bias μ

$$p(X=1|\mu)=\mu$$

Bernoulli Distribution

$$Bern(x|\mu) = \mu^{x} \cdot (1 - \mu)^{1-x}$$

$$E[X] = \mu$$

$$var(X) = \mu \cdot (1 - \mu)$$

Binary Variables

• N coin flips: X_1, \dots, X_N

$$p(\sum_{i} X_{i} = m | N, \mu) = {N \choose m} \mu^{m} (1 - \mu)^{N-m}$$

Binomial Distribution

$$Bin(m|N,\mu) = {N \choose m} \mu^m (1-\mu)^{N-m}$$

$$E\left[\sum_{i}X_{i}\right]=N\mu$$

$$var\left[\sum_{i} X_{i}\right] = N\mu(1-\mu)$$

Binomial Distribution

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
 - How should we estimate the bias?

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
 - How should we estimate the bias?

— With these coin flips, our estimate of the bias is: ?

Estimating the Bias of a Coin

- Suppose that we have a coin, and we would like to figure out what the probability is that it will flip up heads
 - How should we estimate the bias?

- With these coin flips, our estimate of the bias is: 3/5
 - Why is this a good estimate of the bias?

Coin Flipping – Binomial Distribution

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Flips are i.i.d.
 - Independent events
 - Identically distributed according to Binomial distribution
- Our training data consists of α_H heads and α_T tails

$$p(D|\theta) = \theta^{\alpha_H} \cdot (1-\theta)^{\alpha_T}$$

Maximum Likelihood Estimation (MLE)

- Data: Observed set of α_H heads and α_T tails
- Hypothesis: Coin flips follow a binomial distribution
- Learning: Find the "best" θ
- MLE: Choose θ to maximize probability of D given θ

$$\widehat{\theta} = \underset{\theta}{\operatorname{arg\,max}} P(\mathcal{D} \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \ln P(\mathcal{D} \mid \theta)$$

Your first parameter learning algorithm

$$\widehat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]$$

$$= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]$$

$$= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)$$

$$= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0$$

Your first parameter learning algorithm

$$\widehat{\theta} = \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta)$$

$$= \arg \max_{\theta} \ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

Set derivative to zero, and solve!

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = \frac{d}{d\theta} \left[\ln \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \right]
= \frac{d}{d\theta} \left[\alpha_H \ln \theta + \alpha_T \ln(1 - \theta) \right]
= \alpha_H \frac{d}{d\theta} \ln \theta + \alpha_T \frac{d}{d\theta} \ln(1 - \theta)
= \frac{\alpha_H}{\theta} - \frac{\alpha_T}{1 - \theta} = 0 \quad \widehat{\theta}_{MLE} = \frac{\alpha_H}{\alpha_H + \alpha_T}$$

Coin Flip MLE

Priors

- Suppose we have 5 coin flips all of which are heads
 - MLE would give $\theta_{MLE} = 1$
 - This event occurs with probability $\frac{1}{2^5} = \frac{1}{32}$ for a fair coin
 - Are we willing to commit to such a strong conclusion with such little evidence?

Priors

- Priors are a Bayesian mechanism that allow us to take into account "prior" knowledge about our belief in the outcome
- Rather than estimating a single θ , consider a distribution over possible values of θ given the data
 - Update our prior after seeing data

Our best guess in the absence of any data

Observe flips e.g.: {tails, tails}

Our estimate after we see some data

Bayesian Learning

- Or equivalently: $p(\theta|D) \propto p(D|\theta)p(\theta)$
- For uniform priors this reduces to the MLE objective

$$p(\theta) \propto 1 \quad \Rightarrow \quad p(\theta|D) \propto p(D|\theta)$$

Picking Priors

- How do we pick a good prior distribution?
 - Could represent expert domain knowledge
 - Statisticians choose them to make the posterior distribution "nice" (conjugate priors)
- What is a good prior for the bias in the coin flipping problem?

Picking Priors

- How do we pick a good prior distribution?
 - Could represent expert domain knowledge
 - Statisticians choose them to make the posterior distribution "nice" (conjugate priors)
- What is a good prior for the bias in the coin flipping problem?
 - Truncated Gaussian (tough to work with)
 - Beta distribution (works well for binary random variables)

Coin Flips with Beta Distribution

Likelihood function:

$$P(\mathcal{D} \mid \theta) = \theta^{\alpha_H} (1 - \theta)^{\alpha_T}$$

8.0

Prior:

$$P(\theta) = \frac{\theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}}{B(\beta_H, \beta_T)} \sim Beta(\beta_H, \beta_T)$$

Posterior:

$$P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_H} (1 - \theta)^{\alpha_T} \theta^{\beta_H - 1} (1 - \theta)^{\beta_T - 1}$$

$$= \theta^{\alpha_H + \beta_H - 1} (1 - \theta)^{\alpha_T + \beta_T - 1}$$

$$= Beta(\alpha_H + \beta_H, \alpha_T + \beta_T)$$

Priors

- Suppose we have 5 coin flips all of which are heads
 - MLE would give $\theta_{MLE} = 1$
 - MLE with a Beta(2,2) prior gives $\theta_{MAP} = \frac{6}{7} \approx .857$
 - As we see more data, the effect of the prior diminishes

•
$$\theta_{MAP}=\frac{\alpha_H+\beta_H-1}{\alpha_H+\beta_H+\alpha_T+\beta_T-2}\approx \frac{\alpha_H}{\alpha_H+\alpha_T}$$
 for large # of observations

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
 - Suppose Y_1, \ldots, Y_N are i.i.d. random variables taking values in $\{0, 1\}$ such that $E_p[Y_i] = y$. For $\epsilon > 0$,

$$p\left(|y - \frac{1}{N}\sum_{i} Y_{i}| \ge \epsilon\right) \le 2e^{-2N\epsilon^{2}}$$

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
 - For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

$$p\left(\left|\theta_{true} - \frac{1}{N}\sum_{i}X_{i}\right| \geq \epsilon\right) \leq 2e^{-2N\epsilon^{2}}$$

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
 - For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

$$p(|\theta_{true} - \theta_{MLE}| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$

- How many coin flips do we need in order to guarantee that our learned parameter does not differ too much from the true parameter (with high probability)?
- Can use Chernoff bound (again!)
 - For the coin flipping problem with X_1, \ldots, X_n iid coin flips and $\epsilon > 0$,

$$p(|\theta_{true} - \theta_{MLE}| \ge \epsilon) \le 2e^{-2N\epsilon^2}$$
$$\delta \ge 2e^{-2N\epsilon^2} \Rightarrow N \ge \frac{1}{2\epsilon^2} \ln \frac{2}{\delta}$$

