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Announcements

* Exams graded and available for viewing

e Homework 3 due 10/19

— Could extend it to 10/21, if everyone agrees




Exam Recap

Many people had trouble with VC dimension

(exam problem discussed on the board)

Other questions about the exam?




Binary Variables

e Coin flipping: heads=1, tails=0 with bias u
p(X =1{u) =u
e Bernoulli Distribution

Bern(x|u) = p* - (1 — )™
E[X] =u

var(X) =u- (1 —p)




Binary Variables
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Binomial Distribution
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Estimating the Bias of a Coin
.

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

— How should we estimate the bias?
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Estimating the Bias of a Coin

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

— How should we estimate the bias?

— With these coin flips, our estimate of the bias is: 3/5

e Why is this a good estimate of the bias?




Coin Flipping - Binomial Distribution

e P(Heads) =0, P(Tails) = 1—26
e Flips arei.i.d.

— Independent events

— ldentically distributed according to Binomial distribution
e Qurtraining data consists of a heads and a tails

p(D[6) = 6% - (1 —6)°T

10




Maximum Likelihood Estimation (MLE)

e Data: Observed set of a; heads and a7 tails
* Hypothesis: Coin flips follow a binomial distribution
e Leaming: Find the “best” 6

e MLE: Choose O to maximize probability of D given 6

0

arg m@ax P(D | 0)
arg m@ax In P(D | 9)
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Your first parameter learning algorithm

H = argm@ax InP(D | 0)

= argm@ax INO*H (1 — 0)°T

Set derivative to zero, and solve!

d% nP(D|6) = d% [In %5 (1 — )27
— d% [jHIn9+a2|n(1 —0)]
=an— InH—I—ozT@ In(1—6)
_ O‘TH _ IO‘_TQ =0
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Your first parameter learning algorithm
[

H = argm@ax InP(D | 0)

= argm@ax INO*H (1 — 0)°T

Set derivative to zero, and solve!

d% nP(D|6) = d% [In %5 (1 — )27
— d% [jH Ing + oq:im(l —0)]
— aH@InH—I—ozT@m(l —0)

:




Coin Flip MLE

L(6:D)
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e Suppose we have 5 coin flips all of which are heads

— MLE would give 8y, = 1
— This event occurs with probability zis = 312 for a fair coin

— Are we willing to commit to such a strong conclusion
with such little evidence?
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Priors

* Priors are a Bayesian mechanism that allow us to take into account
“prior” knowledge about our belief in the outcome

e Ratherthan estimating a single 6, consider a distribution over
possible values of 8 given the data

— Update our prior after seeing data

Our best guess in the Our estimate after we
absence of any data see some data
16 | Beta(2,2) | Beta(3,2)
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Bayesian Learning

Apply Bayes rule: Data Likelihood Prlor
V
s
p(6|D) = p(D[6)p(0) AR
P i _
'sOSterlor/ p(D)
\ Normalization

0.4 o8
arameter vaiua

e Orequivalently: p(@|D) < p(D|8)p(0)
* For uniform priors this reduces to the MLE objective
p() x1 = p(0|D) x p(D|6)
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Picking Priors
.
 How do we pick a good prior distribution?

— Could represent expert domain knowledge

— Statisticians choose them to make the posterior
distribution “nice” (conjugate priors)

 Whatis a good prior for the bias in the coin flipping
problem?
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Picking Priors
e
 How do we pick a good prior distribution?

— Could represent expert domain knowledge

— Statisticians choose them to make the posterior
distribution “nice” (conjugate priors)

 Whatis a good prior for the bias in the coin flipping
problem?

— Truncated Gaussian (tough to work with)

— Beta distribution (works well for binary random

variables)
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Coin Flips with Beta Distribution

Likelihood function: P(D|0) = 0“H(1 — )T
9Pn—1(1 — 9)fr—1

BB, Br)

Beta(1,1) o Beta(2,2) Beta(3,2) . Beta(30,20)

Prior: P(0) = ~ Beta(Bgy, Br)
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Posterior:
P(0 | D) o< 07 (1— )" 67171 (1 = 9)*r "
_ 9“H+'8H_1(1 _ H)aT+ﬁT—1
= Beta(OzH—FﬁHa OCT‘|‘6T) Ut b




e Suppose we have 5 coin flips all of which are heads

— MLE would give 8y, = 1
— MLE with a Beta(2,2) prior gives Oy 4p = - ~ .857

— As we see more data, the effect of the prior diminishes

ag+pfy—1 ay
e = ~ for large # of
MAP aH+,8H+aT+BT—2 agtar g

observations
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— Suppose Y3, ..., Yy are i.i.d. random variables taking values
in {0, 1} suchthat E,,[Y;] = y. Fore > 0,

p (Iy _%Ziyi | = e) < 2eg~2Ne€*
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— For the coin flipping problem with X, ..., X,, iid coin flips
ande > 0,

1
p( Orrye _Nz Xi| = e) < 2 2N€’
L
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Sample Complexity

* How many coin flips do we need in order to guarantee that our
learned parameter does not differ too much from the true
parameter (with high probability)?

e (Can use Chernoff bound (again!)

— For the coin flipping problem with X, ..., X,, iid coin flips
ande > 0,

p(letrue — HMLE' >€) < ZQ_ZNEZ

1 2
5> e 2Ne* 5 N >_"_|p=
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