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Previously...
-

* We looked at k-means and hierarchical clustering as
mechanisms for unsupervised learning

— k-means was simply a block coordinate descent
scheme for a specific objective function

* Today: how to learn probabilistic models for unsupervised
learning problems




EM: Soft Clustering

* Clustering (e.g., k-means) typically assumes that each
instance is given a “hard” assignment to exactly one cluster

* Does not allow uncertainty in class membership or for an
instance to belong to more than one cluster

— Problematic because data points that lie roughly midway between
cluster centers are assigned to one cluster

 Soft clustering gives probabilities that an instance belongs
to each of a set of clusters




Probabilistic Clustering

* Try a probabilistic model! umn

« Allows overlaps, clusters of different size, 7?2 01 21
etc.
?? 05 -1.1
e (Can tell a generative story for data » 00 3.0
-px|y) p(y) ? 0.1 -2.0
e Challenge: we need to estimate model ?? 0.2 15

parameters without labeled y’s (i.e., in
the unsupervised setting)




Probabilistic Clustering

/2
SV

 Clusters of different shapes and sizes

* Clusters can overlap! (k-means doesn’t allow this)




Finite Mixture Models

« Given adataset: x(D, ..., x@)
 Mixture model: © = {44, ..., A, 01, ..., Ok}

k
p(x10) = > A,py(x]6y)
y=1

where p,, (x|6,, ) is a mixture component from some family of
probability distributions parameterized by 6,, and A = 0 such
that )., A, = 1 are the mixture weights

— We can thinkof 1, = p(Y = y|©) for some random
variable Y that takes valuesin {1, ..., k}
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Finite Mixture Models
IS

p(x)




Multivariate Gaussian

-
* A d-dimensional multivariate Gaussian distribution is

defined by a d X d covariance matrix ~ and a mean vector

U

p(x|X, ) = . exp (—l(x - w'E T (x —u)>
T J@mddet(D) 2

* The covariance matrix describes the degree to which pairs
of variables vary together

— The diagonal elements correspond to variances of the
individual variables




Multivariate Gaussian
,ee e

* A d-dimensional multivariate Gaussian distribution is
defined by a d X d covariance matrix ~ and a mean vector

u

p(x|X, ) = . exp (—l(x - w'E T (x —u)>
T J@mddet(D) 2

* The covariance matrix must be a symmetric positive definite
matrix in order for the above to make sense

— Positive definite: all eigenvalues are positive & matrix is
invertible

— Ensures that the quadratic form is concave
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Gaussian Mixture Models (GMMs)

» We can define a GMM by choosing the k" component of the
mixture to be a Gaussian density with parameters

Hk — {,Uk, Zk}

1 1 _
p(x|Zg, up) = \/(Zn)ddet(Zk) exp (— 5 (x — .uk)TZk 1(x — Uk) )

We could cluster by fitting a mixture of k Gaussians to our data
How do we learn these kinds of models?
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Learning Gaussian Parameters
e

* MLE for supervised univariate Gaussian
N
1 .
UMLE = Nz x@
=1
1 N
. 2
UJZWLE = NE(X(O - .UMLE)
=1

* MLE for supervised multivariate Gaussian

1 N

=_E (D)
UMLE N . X
=1

N
1 . .
2MLE = NZ(x(l) — .UMLE)(x(l) — .UMLE)T
i=1
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Learning Gaussian Parameters
I

* MLE for supervised multivariate mixture of k Gaussian
distributions

Ny

1 .
ko= E ()
UMLE N, X

i=1

Ng
1 . .
EII\C/ILE = N_kz(x(l) - .uMLE)(x(l) - .UMLE)T
i=1

Sums are over the observations that were generated by the k" mixture
component (this requires that we know which points were generated by
which distribution!)
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The Unsupervised Case

 Whatif our observations do not include information about
which of the k mixture components generated them?

* Consider a joint probability distribution over data points,
x (), and mixture assignments, y € {1, ..., k}

* MLE:

2
2

Mw

p(xD,Y = y|0)

arg max p(xD|0) = arg max
i=1 i=1

<
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=

M?T‘

= argmax p(x(i)|Y =y, @)p(Y = y|0)
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The Unsupervised Case

 Whatif our observations do not include information about
which of the k mixture components generated them?

* Consider a joint probability distribution over data points,
x (), and mixture assignments, y € {1, ..., k}

e MLE: We only know
how to compute
_ the probabilities
p(x®D,Y = y|®)  for each mixture
component

2
2

Mw

arg max p(xD|0) = arg max
i=1 i=1

<
Il
=

M?T‘

= argmax p(x(i)|Y =y, @)p(Y = y|0)
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The Unsupervised Case
e

* |nthe case of a Gaussian mixture model

1 1, o
=P (_E (2 = py) 251 (x® — py) )

\/ (2m)ddet(Z,)

p(x(i)|Y =Y, @) =

p(Y =y|0) =4,

 Differentiating the MLE objective yields a system of
equations that is difficult to solve in general

— The solution: modify the objective to make the
optimization easier
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\w Expectation
Maximization
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Jensen’s Inequality

For a convex function f: R" — R,any a4, ..., a; € [0,1]
suchthata; + -+ a, = 1,andanyx®, ..., x¥) € R™,

alf(x(l)) Tt akf(x(k)) = f(a1x(1) + -+ akx(k))
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EM Algorithm

N k
log£(0) = 2 logz: p(x(i),Y = y|®)

=

N
) @y
qu (x0.Y = ylo)
N k ;
p(x®,y = y|0)
> q:(y)log
=1Z q:(y)

F(0,q)
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EM Algorithm

N k
log 2(0) = ) log ) p(x®,Y = y|e)
=1 y=1

k

— E L (O Y

q;(y) isan

N k . : .
(i) — arbitrary positive
> E E Cli()’)logp(x Y =y10) S
. qi(Y) distribution
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EM Algorithm

N k
log£(0) = 2 logz: p(x(i)»y = y|e)

[=

N ()
y .
l Z x(l), Y — @
4 MOM b v16)
=1
> AN p(x?,Y = y|e)
= - Z (y)log qi(y) \ Jensen’s ineq.

F(0,q)
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EM Algorithm

N k Dy — vlo
arg max zzqi(y)logp(x ’. v|0)

G:CIL"JCIN -
1=1y=1

* This objective is not jointly concave in ®and g4, ..., gy

— Best we can hope for is a local maxima (and there could be
A LOT of them)

* The EM algorithm is a block coordinate ascent scheme that
finds a local optimum of this objective

— Start from an initialization @° and qf, e CI1(\)/
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EM Algorithm

* Estep: with the 6’s fixed, maximize the objective over q

(i) _ t
X ,Y—y|@ )
t+1 € gr max 22 (y)lo (

i=1y=1

e Using the method of Lagrange multipliers for the constraint
that )., q;(y) = 1 gives

a1 (y) = p(Y = y|X = x©, 0°)
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EM Algorithm

* Mstep: with the g’s fixed, maximize the objective over ©®

N k .
(i) _ t
p(x*,Y = y|0O
g+l Eargm(glx E E qf“(y)log ( . | )

i=1y=1

* Forthe case of GMM, we can compute this update in closed
form
— This is not necessarily the case for every model

— May require gradient ascent
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EM Algorithm

 Start with random parameters

* E-step maximizes a lower bound on the log-sum for fixed
parameters

* M-step solves the MLE estimation problem for fixed
probabilities

* |terate between the E-step and M-step until convergence
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EM for Gaussian Mixtures

* E-step:
t At (x(l) |Ily; Zt) ——_ Probability of
q; () = ) st x® under the
ZY’ )]'y' (x |'uy" y' ) appropriate
. M-step: anLJrIr’cr:\;ellriate
t+1 _ l 1 q; (Y)x(l) distribution
Hy = =

= 1ql(y)

T
yi+1 — i= 1ql (y)(x(l) t+1)(x(l) ;+1
’ 19 )

N
1
=2 gf®)
=1
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Gaussian Mixture Example: Start




After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration




After 20th iteration




Properties of EM

-
* EM converges to a local optima

— This is because each iteration improves the log-
likelihood

— Proof same as k-means (just block coordinate ascent)
 E-step can never decrease likelihood

* M-step can never decrease likelihood

 If we make hard assignments instead of soft ones,
algorithm is equivalent to k-means!
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