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Unobserved Variables
=

e [atent or hidden variables in the model are never observed

* We may or may not be interested in their values, but their
existence is crucial to the model

* Some observations in a particular sample may be missing

» Missing information on surveys or medical records (quite
common)

* We may need to model how the variables are missing




Learning with Latent Variables

* Log-likelihood with latent variables:

N
logl(0) = Z log p(x®]6)
i=1
N
= Z logz p(xV, 16)
=1 y

— Again, this is typically not a concave function of 6

* We will apply the same trick that we did with GMMs last lecture

UT D



Expectation Maximization

N
logl(6) = 2 log p(x¥|6)

zlogz p(xD,y|0)
i=1




Expectation Maximization

- p(x®,y|6)
F(q,0) = z z q;(y) log
=1y

= qi(y)

e Maximizing F is equivalent to the maximizing the log-likelihood

* Maximize it using coordinate ascent

t

gtt1 = arg max F(q,0%"
1

dK

gttt = argmax F(qt*t,0)




Expectation Maximization

N]=

qdi(y)

=1
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Zqi(y)logp(x 7|6
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» Maximized when g;(y) = p(y|x®, 6?)

e Can reformulate the EM algorithm as

N
o+t = argmgxz z p(y1x®, 6% logp(x®,y|6)

i=1 y
N
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Markov Chains

* A Markov chain is a sequence of random variables
X4, ..., X7 € S such that

D (Xerqlxq, oo x7) = pOrpsrlxe )

* The set S is called the state space, and
p(X;y1 = i|X; = j) is the probability of transitioning
from state i to state j atstep ¢




Markov Chains
_

* When the probability of transitioning between two states
does not depend on time, we call it a time homogeneous
Markov chain

— Representitbhy a |S| X |S| transition matrix A

* Ajj = p(Xir1 = JjlXe = 0)

* A is a stochastic matrix (all rows sum to one)




Hidden Markov Models

p(xq, o, X7, Y1, -, 1) = D) (X1 1Y1) HP()’t|)’t—1)P(xt|Yt)
t

* X’s are observed variables, Y’s are latent/hidden

* Time homogenous: p(y; = i|ly;_1 =) =pyy =i|y,—1 =)

* For learning, we are given sequences of observations




Hidden Markov Models

* Well suited to problems/models that evolve over time
* Examples:

— Observations correspond sizes of tree growth rings for
one year, the latent variables correspond to average
temperature

— Observations correspond to noisy missile location,
latent variables correspond to true missile locations




Learning HMMs

* Abit of notation:
—m; = p(Y; = i)
— A;j = p(Y; =jlYimq =10)
— bj(xt) = pXe = x¢|Y: =)
* These parameters describe an HMM, 8 = {m, A, b}

— We'll derive the updates in the case that the observations X, are
discrete random variables
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Learning HMMs
I

> b, y10%) log p(x, ¥10) =
y

T
= b y16%) log (za(yl)p(xnyl) ]_[p(ytm_l)p(xayt))
Y t=2

T
= Z p(x' y|05) log Ty, bJ’1 (xl) 1_[ AZVt;ZVt—lbLVt (xt)
y t=2
T T
=) p(xy16%)logmy, + Y p(x,y16) (2 log byt(xt)> + p(xy16%) <z logAyt,yt_1>
y y t=1 y t=2

Zp(x h = 116 logm, +22p(x ¥, = 116°) log by () +Ezzp(x e = i,Yer = 16 log Ay

t=1 i t=2 i
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Learning HMMs

T
pCey109) = w5 b ) | [ 45ed, st G
t=2

L, _plot: = i16%)
‘ p(x|6%)
bS (k) = ?=1p(x, Y, = i]0°)5(x, = k)
‘ Y1 p(x, Y, = i6%)
AS . ’11;=2 p(x, Yt — i, Yt—l =]|HS)
ij =

Z:z p(x, Y1 = jl6°)
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Prediction in HMMs

* Once we learn the model, given a new sequence of
observations, x4, ..., x7, we want to predict y

— In the tree application, this corresponds to finding the
temperature at a specific time given the rings of a tree

— In the missile tracking example, this corresponds to
finding the position of the missile at a particular time

* Wantto compute p(y+|x, 0)
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Prediction in HMMs

* Wantto compute p(yr|x, 8) = p(x,yr|0)/p(x|0)

— Direct approach:

p(xr YT — ll@) — Z p(x'yl' '"'yT—erT — lle)
yl""’yT_l

— Dynamic programming approach:

p(r Y = il6) = ) p(x Yy = LYr_y = )
j
= ZP(Xl, oy Xp—1, Yro1 = P, Yr = i|xq, o, X171, Y71 = )
j

= Zp(xl; o X7, Yroq = Pp(xrlYr = Dp(Yr = i|Yr—1 = j)
j
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Prediction in HMMs

* Wantto compute p(yr|x, 8) = p(x,yr|0)/p(x)

— Direct approach:

p(xr YT — ll@) — Z p(x'yl' '"'yT—erT — lle)
yl""’yT_l

— Dynamlc programming appmaCh: Called filtering: easy to implement

using dynamic programming

p(r Y = il6) = ) p(x Yy = LYr_y = )
j
= ZP(Xl, oy Xp—1, Yro1 = P, Yr = i|xq, o, X171, Y71 = )
j

= Zp(xl; o X7, Yroq = Pp(xrlYr = Dp(Yr = i|Yr—1 = j)
j
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Latent Variables & EM

* Previous updates derived for a single observation (to
simplify)

— Can get the general updates for multiple sequences by
adding sums in the appropriate places

* Same principle as EM for mixture models
— Also suffers from the existence of lots of local optima

* How do we handle missing data more generally?
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Missing Data

* Data can be missing from the model in many different ways

— Missing completely at random: the probability that a
data item is missing is independent of the observed
data and the other missing data

— Missing at random: the probability that a data item is
missing can depend on the observed data

— Missing not at random: the probability that a data item
Is missing can depend on the observed data and the
other missing data
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

p(xobs' Xmis» m) = p(mlxobs: xmis)p(xobs» Xmis)
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

p(xobs' Xmis» m) = p(mlxobs’ xmis)p(xobs» Xmis)

\ J
I

Explicit model of the missing data
(missing not at random)
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

p(xobs' Xmis» m) = p(mlxobs)p(xobs: xmis)

| J
|

Missing at
random

21




Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

p(xobs» Xmis» m) — p(m)p(xobs» xmis)
Missing
completely at
random
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Modelling Missing Data

* Add additional binary variable m; to the model for each
possible observed variable x; that indicates whether or not
that variable is observed

p(xobs» Xmis» m) = p(m)p(xobs» xmis)

How can you model latent
variables in this framework?
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Learning with Missing Data
e

* In orderto design learning algorithms for models with missing data,
we will make two assumptions

— The data is missing at random

— The model parameters corresponding to the missing data (6) are
separate from the model parameters of the observed data (0)

 Thatis
p(xobs: m|o, 5) = p(mlxobs» 5)p(xobs|9)

 Derivation of the algorithm in this case then follows similarly to the
previous discuss
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