
Neural Networks

Nicholas Ruozzi

University of Texas at Dallas

Handwritten Digit Recognition

• Given a collection of handwritten digits and

their corresponding labels, we’d like to be

able to correctly classify handwritten digits

– A simple algorithmic technique can

solve this problem with 95% accuracy

• This seems surprising, in fact, state-

of-the-art methods can achieve near

99% accuracy (you’ve probably seen

these in action if you’ve deposited a

check recently)

2

Digits from the MNIST
data set

Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

– The idea was to build mathematical models that might “compute”

in the same way that neurons in the brain do

– As a result, neural networks are biologically inspired, though

many of the algorithms that are used to work with them are not

biologically plausible

– Perform surprisingly well for the handwritten digit recognition task

3

Neural Networks

• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly studied

– The perceptron (one of the first studied)

– The sigmoid neuron (most common)

• A neural network is typically a directed graph consisting of a

collection of neurons (the nodes in the graph), directed edges (each

with an associated weight), and a collection of fixed binary inputs

4

The Perceptron

• A perceptron is an artificial neuron that takes a collection of binary

inputs and produces a binary output

– The output of the perceptron is determined by summing up the

weighted inputs and thresholding the result: if the weighted sum

is larger than the threshold, the output is one (and zero otherwise)

𝑦 =
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

5

𝑥3

𝑥2

𝑥1

𝑦

The Perceptron

𝑦 =
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The weights can be both positive and negative

• Many simple decisions can be modeled using perceptrons

– Example: AND, OR, NOT

6

𝑥3

𝑥2

𝑥1

𝑦

Perceptron for NOT

• Choose 𝑤 = −1, threshold = −.5

• 𝑦 =
1 −𝑥 > −.5
0 −𝑥 ≤ −.5

7

⌐𝑥 𝑦

Perceptron for OR

8

Perceptron for OR

• Choose 𝑤1 = 𝑤2 = 1, threshold = 0

• 𝑦 =
1 𝑥1 + 𝑥2 > 0
0 𝑥1 + 𝑥2 ≤ 0

9

ᴠ𝑥2

𝑥1
𝑦

Perceptron for AND

10

Perceptron for AND

• Choose 𝑤1 = 𝑤2 = 1, threshold = 1.5

• 𝑦 =
1 𝑥1 + 𝑥2 > 1.5
0 𝑥1 + 𝑥2 ≤ 1.5

11

ᴧ𝑥2

𝑥1
𝑦

Perceptron for XOR

12

Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

– Networks of perceptrons can encode any circuit!

13

ᴧ

ᴠ

𝑥2

𝑥1

⌐

ᴧ 𝑦

Perceptrons

• Perceptrons are usually expressed in terms of a collection of input

weights and a bias 𝑏 (which is the negative threshold)

𝑦 =
1 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

14

𝑥3

𝑥2

𝑥1

𝑦

Neural Networks

• Gluing a bunch of perceptrons together gives us a neural network

• In general, neural nets have a collection of binary inputs and a

collection of binary outputs

15

OutputsInputs

Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the weights

of the neural network so that we can correctly predict the ouput of an

unseen input

– We could try learning via gradient descent (e.g., by minimizing the

Hamming loss)

• This approach doesn’t work so well: small changes in the

weights can cause dramatic changes in the output

• This is a consequence of the discontinuity of sharp

thresholding (same problem we saw in SVMs)

16

The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of

inputs in the interval [0,1] and produces an output in the interval

[0,1]

– The output is determined by summing up the weighted inputs plus

the bias and applying the sigmoid function to the result

𝑦 = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 + 𝑏)

where 𝜎 is the sigmoid function

17

𝑥3

𝑥2

𝑥1

𝑦

The Sigmoid Function

• The sigmoid function is a continuous function that approximates a

step function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

18

Multilayer Neural Networks

19

from Neural Networks and Deep Learning by Michael Nielson

Multilayer Neural Networks

20

from Neural Networks and Deep Learning by Michael Nielson

NO intralayer connections

Neural Network for Digit Classification

21

from Neural Networks and Deep Learning by Michael Nielson

Neural Network for Digit Classification

22

from Neural Networks and Deep Learning by Michael Nielson

Why 10
instead of 4?

Expressiveness of NNs

23

• Boolean functions

• Every Boolean function can be represented by a network with a

single hidden layer consisting of possibly exponentially many

hidden units

• Continuous functions

• Every bounded continuous function can be approximated up to

arbitrarily small error by a network with one hidden layer

• Any function can be approximated to arbitrary accuracy with two

hidden layers

Training Neural Networks

• To do the learning, we first need to define a loss function to minimize

𝐶 𝑤, 𝑏 =
1

2𝑀

𝑚

𝑦𝑚 − 𝑎(𝑥𝑚, 𝑤, 𝑏) 2

• The training data consists of input output pairs

(𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

• 𝑎(𝑥𝑚, 𝑤, 𝑏) is the output of the neural network for the 𝑚𝑡ℎ sample

• 𝑤 and 𝑏 are the weights and biases

24

Gradient of the Loss

• The derivative of the loss function is relatively straightforward to

calculate

𝜕𝐶(𝑤, 𝑏)

𝜕𝑤𝑘
=

1

𝑀

𝑚

𝑦𝑚 −
𝜕𝑎(𝑥𝑚, 𝑤, 𝑏)

𝜕𝑤𝑘

– To compute the derivative of 𝑎, use the chain rule and the

derivative of the sigmoid function

𝑑𝜎(𝑧)

𝑑𝑧
= 𝜎 𝑧 ⋅ (1 − 𝜎 𝑧)

– This gets complicated quickly with lots of layers of neurons

25

Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is

used instead of standard gradient descent

• The idea of stochastic gradient descent is to approximate the

gradient of a sum by sampling a few indices and averaging

𝛻𝑥

𝑖=1

𝑛

𝑓𝑖(𝑥) ≈
1

𝐾

𝑘=1

𝐾

𝛻𝑥𝑓𝑖𝑘(𝑥)

here, for example, each 𝑖𝑘 is sampled uniformly at random from

{1,… , 𝑛}

26

Computing the Gradient

• We’ll compute the gradient for a single sample

𝐶 𝑤, 𝑏 = 𝑦 − 𝑎(𝑥, 𝑤, 𝑏) 2

• Some definitions:

– 𝐿 is the number of layers

– 𝑎𝑗
𝑙 is the output of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

– 𝑧𝑗
𝑙 is the input of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

𝑧𝑗
𝑙 =

𝑘

𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

– 𝛿𝑗
𝑙 is defined to be

𝜕C

𝜕𝑧𝑗
𝑙

27

Computing the Gradient

For the output layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑗
𝐿 = − 𝑦𝑗 − 𝑎𝑗

𝐿
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿

𝜕𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

≡ 𝛿𝑗
𝐿

• For simplicity, we will denote the vector of all such partials for each node in
the 𝑙𝑡ℎ layer as 𝛿𝑙

28

Computing the Gradient

For the 𝐿 − 1 layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑘
𝐿−1 =

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

𝜕 𝑘′ 𝑤𝑗𝑘′
𝐿 𝑎𝑘′

𝐿−1 + 𝑏𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿 𝜎 𝑧𝑘

𝐿−1 1 − 𝜎 𝑧𝑘
𝐿−1 𝑤𝑗𝑘

𝐿

= (𝛿𝐿)𝑇𝑤∗𝑘
𝐿 1 − 𝜎 𝑧𝑘

𝐿−1 𝜎 𝑧𝑘
𝐿−1

29

Computing the Gradient

• We can think of 𝑤𝑙 as a matrix

• This allows us to write

𝛿𝐿−1 = (𝛿𝐿)𝑇𝑤𝐿 1 − 𝜎 𝑧𝐿−1 𝜎 𝑧𝐿−1

where 𝜎 𝑧𝐿−1 is the vector whose 𝑘𝑡ℎ component is 𝜎 𝑧𝑘
𝐿−1

• Applying the same strategy, for 𝑙 < 𝐿

𝛿𝑙 = (𝛿𝑙+1)𝑇𝑤𝑙+1 1 − 𝜎 𝑧𝑙 𝜎 𝑧𝑙

30

Computing the Gradient

• Now, for the partial derivatives that we care about

𝜕𝐶

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1

• We can compute these derivatives one layer at a time!

31

Backpropagation: Putting it all together

• Compute the inputs/outputs for each layer by starting at the input layer and
applying the sigmoid functions

• Compute 𝛿𝐿 for the output layer

𝛿𝐿 = − 𝑦𝑗 − 𝑎𝑗
𝐿 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

• Starting from 𝑙 = 𝐿 − 1 and working backwards, compute

𝛿𝑙 = (𝛿𝑙+1)𝑇𝑤𝑙+1 𝜎 𝑧𝑙 1 − 𝜎 𝑧𝑙

• Perform gradient descent

𝑏𝑗
𝑙 = 𝑏𝑗

𝑙 − 𝛾 ⋅ 𝛿𝑗
𝑙

𝑤𝑗𝑘
𝑙 = 𝑤𝑗𝑘

𝑙 − 𝛾 ⋅ 𝛿𝑗
𝑙𝑎𝑘

𝑙−1

32

Backpropagation

• Backpropagation converges to a local minimum (loss is not convex in the

weights and biases)

– Like EM, can just run it several times with different initializations

– Training can take a very long time (even with stochastic gradient

descent)

– Prediction after learning is fast

– Sometimes include a momentum term 𝛼 in the gradient update

𝑤𝑗𝑘
𝑙 𝑡 = 𝑤𝑗𝑘

𝑙 𝑡 − 1 − 𝛾 ⋅ 𝛻𝑤𝐶 𝑡 − 1 + 𝛼 −𝛾 ⋅ 𝛻𝑤𝐶(𝑡 − 2)

33

Overfitting

34

Overfitting

35

Neural Networks in Practice

• Many ways to improve weight learning in NNs

– Use a regularizer! (better generalization)

– Try other loss functions

– Initialize the weights of the network more cleverly

• Random initializations are likely to be far from optimal

– etc.

• The learning procedure can have numerical difficulties if there are a

large number of layers

36

Regularized Loss

• Penalize learning large weights

𝐶′ 𝑤,𝑏 =
1

2𝑀

𝑚

𝑦𝑚 − 𝑎 𝑥𝑚, 𝑤, 𝑏 2 +
𝜆

2
𝑤 2

2

• Can still use the backpropagation algorithm in this setting

• ℓ1 regularization can also be useful

• Regularization can significantly help with overfitting, but 𝜆 will often

need to be quite large as the size of the training set is typically much

larger than what we have been working with

– How to choose 𝜆?

37

Dropout

• A heuristic bagging-style approach applied to neural networks to

counteract overfitting

– Randomly remove a certain percentage of the neurons from the

network and then train only on the remaining neurons

– The networks are recombined using an approximate averaging

technique (keeping around too many networks and doing proper

bagging is too costly in practice)

38

Other Techniques

• Early stopping

– Stop the learning early in the hopes that this prevents overfitting

• Parameter tying

– Assume some of the weights in the model are the same to reduce

the dimensionality of the learning problem

– Also a way to learn “simpler” models

39

Other Ideas

• Convolutional neural networks

– Instead of the output of every neuron at layer 𝑙 being used as an

input to every neuron at layer 𝑙 + 1, the edges between layers are

chosen more locally

– Many tied weights and biases (i.e., convolution nets apply the

same process to many different local chunks of neurons)

– Often combined with pooling layers (i.e., layers that, say, half the

number of neurons by replacing small regions of neurons with

their maximum output)

– Used extensively in neural nets for image classification tasks

40

