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Handwritten Digit Recognition

• Given a collection of handwritten digits and 

their corresponding labels, we’d like to be 

able to correctly classify handwritten digits

– A simple algorithmic technique can 

solve this problem with 95% accuracy

• This seems surprising, in fact, state-

of-the-art methods can achieve near 

99% accuracy (you’ve probably seen 

these in action if you’ve deposited a 

check recently)
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Neural Networks

• The basis of neural networks was developed in the 1940s -1960s

– The idea was to build mathematical models that might “compute” 

in the same way that neurons in the brain do

– As a result, neural networks are biologically inspired, though 

many of the algorithms that are used to work with them are not 

biologically plausible

– Perform surprisingly well for the handwritten digit recognition task
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Neural Networks

• Neural networks consist of a collection of artificial neurons

• There are different types of neuron models that are commonly studied

– The perceptron (one of the first studied)

– The sigmoid neuron (most common)

• A neural network is typically a directed graph consisting of a 

collection of neurons (the nodes in the graph), directed edges (each 

with an associated weight), and a collection of fixed binary inputs
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The Perceptron

• A perceptron is an artificial neuron that takes a collection of binary 

inputs and produces a binary output

– The output of the perceptron is determined by summing up the 

weighted inputs and thresholding the result:  if the weighted sum 

is larger than the threshold, the output is one (and zero otherwise)  

𝑦 =  
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The Perceptron

𝑦 =  
1 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The weights can be both positive and negative

• Many simple decisions can be modeled using perceptrons

– Example:   AND, OR, NOT
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Perceptron for NOT

• Choose 𝑤 = −1, threshold = −.5

• 𝑦 =  
1 −𝑥 > −.5
0 −𝑥 ≤ −.5
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Perceptron for OR

8



Perceptron for OR

• Choose 𝑤1 = 𝑤2 = 1, threshold = 0

• 𝑦 =  
1 𝑥1 + 𝑥2 > 0
0 𝑥1 + 𝑥2 ≤ 0
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Perceptron for AND

10



Perceptron for AND

• Choose 𝑤1 = 𝑤2 = 1, threshold = 1.5

• 𝑦 =  
1 𝑥1 + 𝑥2 > 1.5
0 𝑥1 + 𝑥2 ≤ 1.5
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Perceptron for XOR
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Perceptron for XOR

• Need more than one perceptron!

• Weights for incoming edges are chosen as before

– Networks of perceptrons can encode any circuit!
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Perceptrons

• Perceptrons are usually expressed in terms of a collection of input 

weights and a bias 𝑏 (which is the negative threshold)

𝑦 =  
1 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Neural Networks

• Gluing a bunch of perceptrons together gives us a neural network

• In general, neural nets have a collection of binary inputs and a 

collection of binary outputs
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Beyond Perceptrons

• Given a collection of input-output pairs, we’d like to learn the weights 

of the neural network so that we can correctly predict the ouput of an 

unseen input

– We could try learning via gradient descent (e.g., by minimizing the 

Hamming loss)

• This approach doesn’t work so well:  small changes in the 

weights can cause dramatic changes in the output 

• This is a consequence of the discontinuity of sharp 

thresholding (same problem we saw in SVMs)
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The Sigmoid Neuron

• A sigmoid neuron is an artificial neuron that takes a collection of 

inputs in the interval [0,1] and produces an output in the interval 

[0,1]

– The output is determined by summing up the weighted inputs plus 

the bias and applying the sigmoid function to the result

𝑦 = 𝜎(𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 + 𝑏)

where 𝜎 is the sigmoid function
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The Sigmoid Function

• The sigmoid function is a continuous function that approximates a 

step function

𝜎 𝑧 =
1

1 + 𝑒−𝑧
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Multilayer Neural Networks
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from Neural Networks and Deep Learning by Michael Nielson  



Multilayer Neural Networks
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from Neural Networks and Deep Learning by Michael Nielson  

NO intralayer connections



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  



Neural Network for Digit Classification
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from Neural Networks and Deep Learning by Michael Nielson  

Why 10 
instead of 4?



Expressiveness of NNs
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• Boolean functions

• Every Boolean function can be represented by a network with a 

single hidden layer consisting of possibly exponentially many 

hidden units

• Continuous functions

• Every bounded continuous function can be approximated up to 

arbitrarily small error by a network with one hidden layer

• Any function can be approximated to arbitrary accuracy with two 

hidden layers



Training Neural Networks

• To do the learning, we first need to define a loss function to minimize

𝐶 𝑤, 𝑏 =
1

2𝑀
 

𝑚

𝑦𝑚 − 𝑎(𝑥𝑚, 𝑤, 𝑏) 2

• The training data consists of input output pairs 

(𝑥1, 𝑦1), … , (𝑥𝑀, 𝑦𝑀)

• 𝑎(𝑥𝑚, 𝑤, 𝑏) is the output of the neural network for the 𝑚𝑡ℎ sample

• 𝑤 and 𝑏 are the weights and biases
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Gradient of the Loss

• The derivative of the loss function is relatively straightforward to 

calculate

𝜕𝐶(𝑤, 𝑏)

𝜕𝑤𝑘
=

1

𝑀
 

𝑚

𝑦𝑚 −
𝜕𝑎(𝑥𝑚, 𝑤, 𝑏)

𝜕𝑤𝑘

– To compute the derivative of 𝑎, use the chain rule and the 

derivative of the sigmoid function

𝑑𝜎(𝑧)

𝑑𝑧
= 𝜎 𝑧 ⋅ (1 − 𝜎 𝑧 )

– This gets complicated quickly with lots of layers of neurons
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Stochastic Gradient Descent

• To make the training more practical, stochastic gradient descent is 

used instead of standard gradient descent

• The idea of stochastic gradient descent is to approximate the 

gradient of a sum by sampling a few indices and averaging 

𝛻𝑥  

𝑖=1

𝑛

𝑓𝑖(𝑥) ≈
1

𝐾
 

𝑘=1

𝐾

𝛻𝑥𝑓𝑖𝑘(𝑥)

here, for example,  each 𝑖𝑘 is sampled uniformly at random from 

{1,… , 𝑛}
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Computing the Gradient

• We’ll compute the gradient for a single sample

𝐶 𝑤, 𝑏 = 𝑦 − 𝑎(𝑥, 𝑤, 𝑏) 2

• Some definitions:

– 𝐿 is the number of layers

– 𝑎𝑗
𝑙 is the output of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

– 𝑧𝑗
𝑙 is the input of the 𝑗𝑡ℎ neuron on the 𝑙𝑡ℎ layer

𝑧𝑗
𝑙 =  

𝑘

𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

– 𝛿𝑗
𝑙 is defined to be 

𝜕C

𝜕𝑧𝑗
𝑙
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Computing the Gradient

For the output layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑗
𝐿 = − 𝑦𝑗 − 𝑎𝑗

𝐿
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿

𝜕𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

= − 𝑦𝑗 − 𝑎𝑗
𝐿 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

≡ 𝛿𝑗
𝐿

• For simplicity, we will denote the vector of all such partials for each node in 
the 𝑙𝑡ℎ layer as 𝛿𝑙
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Computing the Gradient

For the 𝐿 − 1 layer, we have the following partial derivative

𝜕C

𝜕𝑧𝑘
𝐿−1 =  

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=  

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗

𝜕𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=  

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

𝜕𝑧𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=  

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

𝜕  𝑘′ 𝑤𝑗𝑘′
𝐿 𝑎𝑘′

𝐿−1 + 𝑏𝑗
𝐿

𝜕𝑧𝑘
𝐿−1

=  

𝑗

𝑎𝑗
𝐿 − 𝑦𝑗 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿 𝜎 𝑧𝑘

𝐿−1 1 − 𝜎 𝑧𝑘
𝐿−1 𝑤𝑗𝑘

𝐿

= (𝛿𝐿)𝑇𝑤∗𝑘
𝐿 1 − 𝜎 𝑧𝑘

𝐿−1 𝜎 𝑧𝑘
𝐿−1
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Computing the Gradient

• We can think of 𝑤𝑙 as a matrix

• This allows us to write

𝛿𝐿−1 = (𝛿𝐿)𝑇𝑤𝐿 1 − 𝜎 𝑧𝐿−1 𝜎 𝑧𝐿−1

where 𝜎 𝑧𝐿−1 is the vector whose 𝑘𝑡ℎ component is 𝜎 𝑧𝑘
𝐿−1

• Applying the same strategy, for 𝑙 < 𝐿

𝛿𝑙 = (𝛿𝑙+1)𝑇𝑤𝑙+1 1 − 𝜎 𝑧𝑙 𝜎 𝑧𝑙
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Computing the Gradient

• Now, for the partial derivatives that we care about

𝜕𝐶

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 ⋅

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
𝑙 = 𝛿𝑗

𝑙𝑎𝑘
𝑙−1

• We can compute these derivatives one layer at a time!
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Backpropagation:  Putting it all together

• Compute the inputs/outputs for each layer by starting at the input layer and 
applying the sigmoid functions

• Compute 𝛿𝐿 for the output layer

𝛿𝐿 = − 𝑦𝑗 − 𝑎𝑗
𝐿 𝜎 𝑧𝑗

𝐿 1 − 𝜎 𝑧𝑗
𝐿

• Starting from 𝑙 = 𝐿 − 1 and working backwards, compute

𝛿𝑙 = (𝛿𝑙+1)𝑇𝑤𝑙+1 𝜎 𝑧𝑙 1 − 𝜎 𝑧𝑙

• Perform gradient descent

𝑏𝑗
𝑙 = 𝑏𝑗

𝑙 − 𝛾 ⋅ 𝛿𝑗
𝑙

𝑤𝑗𝑘
𝑙 = 𝑤𝑗𝑘

𝑙 − 𝛾 ⋅ 𝛿𝑗
𝑙𝑎𝑘

𝑙−1
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Backpropagation

• Backpropagation converges to a local minimum (loss is not convex in the 

weights and biases)

– Like EM, can just run it several times with different initializations

– Training can take a very long time (even with stochastic gradient 

descent)

– Prediction after learning is fast

– Sometimes include a momentum term 𝛼 in the gradient update

𝑤𝑗𝑘
𝑙 𝑡 = 𝑤𝑗𝑘

𝑙 𝑡 − 1 − 𝛾 ⋅ 𝛻𝑤𝐶 𝑡 − 1 + 𝛼 −𝛾 ⋅ 𝛻𝑤𝐶(𝑡 − 2)
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Overfitting
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Overfitting
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Neural Networks in Practice

• Many ways to improve weight learning in NNs

– Use a regularizer!   (better generalization)

– Try other loss functions

– Initialize the weights of the network more cleverly

• Random initializations are likely to be far from optimal

– etc.

• The learning procedure can have numerical difficulties if there are a 

large number of layers
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Regularized Loss

• Penalize learning large weights

𝐶′ 𝑤,𝑏 =
1

2𝑀
 

𝑚

𝑦𝑚 − 𝑎 𝑥𝑚, 𝑤, 𝑏 2 +
𝜆

2
𝑤 2

2

• Can still use the backpropagation algorithm in this setting

• ℓ1 regularization can also be useful

• Regularization can significantly help with overfitting, but 𝜆 will often 

need to be quite large as the size of the training set is typically much 

larger than what we have been working with

– How to choose 𝜆?
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Dropout

• A heuristic bagging-style approach applied to neural networks to 

counteract overfitting

– Randomly remove a certain percentage of the neurons from the 

network and then train only on the remaining neurons

– The networks are recombined using an approximate averaging 

technique (keeping around too many networks and doing proper 

bagging is too costly in practice)
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Other Techniques

• Early stopping

– Stop the learning early in the hopes that this prevents overfitting

• Parameter tying

– Assume some of the weights in the model are the same to reduce 

the dimensionality of the learning problem

– Also a way to learn “simpler” models
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Other Ideas

• Convolutional neural networks

– Instead of the output of every neuron at layer 𝑙 being used as an 

input to every neuron at layer 𝑙 + 1, the edges between layers are 

chosen more locally

– Many tied weights and biases (i.e., convolution nets apply the 

same process to many different local chunks of neurons)

– Often combined with pooling layers (i.e., layers that, say, half the 

number of neurons by replacing small regions of neurons with 

their maximum output)

– Used extensively in neural nets for image classification tasks
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