Reinforcement Learning

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Ronald J. Williams

Reinforcement Learning
e

e Autonomous “agent” that interacts with an environment through a
series of actions

— E.g., arobot trying to find its way through a maze
 Actions include turning and moving through the maze

— The agent earns rewards from the environment under certain
(perhaps unknown) conditions

* The agent’s goal is to maximize the reward

— We say that the agent learns if, over time, it improves its
performance

Reinforcement Learning
e

» Often formalized (mathematically) as Markov Decision Processes
(MDPs) or Partially Observable Markov Decision Processes (POMDPSs)

 MDPs are described by series of states (state of the environment) and
a collections of actions corresponding to each state (allowable
actions that change the state of the environment)

— The next state depends (perhaps probabilistically) on only the
current state and the chosen action

— Each state/action pair has an associated reward (possibly
probabilistic)

* Markov chains are a simple form of MDP with only one action and no
rewards

Example

goal

start

Example

goal

start

MDPs

* Rewards can be positive or negative

— E.g., the robot might receive a small penalty each time it takes a
step that does not reach the goal

* Obijective of the learning process is to develop a policy (a way to
choose actions given the current state) to maximize the reward

— Could be difficult to do as rewards may be delayed

 E.g., the robot receives a reward for reaching the end of the
maze, but only penalties in-between

MDPs

I
 Agentatstept
— Observes the state of the system
— Selects an action to perform
— Receives some reward

 This process is repeated indefinitely

Policies
-

* Apolicy is the prescription by which the agent selects an action to
perform

— Deterministic: the agent observes the state of the system and
chooses an action

— Stochastic: the agent observes the state of the system and then
selects an action, at random, from some probability distribution
over possible actions

Applications of MDPs

* Robot pathfinding

* Planning

* Elevator scheduling

» Manufacturing processes

* Network routing

Formal Definition
_

e An MDP consists of the following
— Afinite set of states S
— A set of allowable actions A foreach s € S
— Atransition function7: S X A —» S
— Areward functionR: S X A - R

* Inthe general case, T and R can be stochastic functions (we’ll worry
about the deterministic case today)

10

Cumulative Reward
_

e Apolicy is a mapping from states to actions, 7: S — A
— Policies can be deterministic or stochastic
* Letr(t) denote the reward attime t

* The objective is to find a policy that maximizes the cumulative
(discounted) reward

r(0) +yr(1) + yr(2) + -

wherey € (0,1) is a discount factor necessary to make the sum
converge (also applied in economic contexts to prefer future rewards at a
discounted rate)

UT D

11

Value Function
I

* How can we evaluate the quality of policy ?

12

Value Function

* How can we evaluate the quality of policy ?
e AvaluefunctionV:S — R assigns a real number to each state

— A particular value function of interest will be the reward function
VT(s) =) yir(e)
t=0

where the state at time t is generated from the state attime ¢t — 1
by applying the action dictated by the policy, T(s;_1)

13

Technical Notes
_

* Inthe case that the rewards, transitions, policy, etc. are stochastic

— Replace the reward, (t), with the expected reward under the
policy

 An MDP has an absorbing state if there exists a state s € S such
that, with probability one, T (s,a) = sforalla € A,

— In this case, if the absorbing state can always be reached, the
discount factor is unnecessary

14

Objective

* Findapolicyn™: S — A such that
V™ (s) = VT(s)
forall s € S and all policies

* Any policy that satisfies this condition is called an optimal policy
(may not be unique)

* There always exists an optimal policy

— How do we find it?

15

Optimal Policies
e

e (Canfind an optimal policy via a dynamic programming approach
— Compute the optimal value, £ (s), foreach state

— Greedily select the action that maximizes reward

* We can describe the optimal value via a recurrence relation

V™ (s) = max (R (s,a) +yV™ (T(s, a)))

A€

— This is one of the so-called Bellman equations

— Justifies the greedy strategy (all optimal strategies are “greedy” in
this sense)

UT D

16

Bellman Equations
[

V™(s) = R(s,m(s)) + yV™(T(s,(s)))

VT (s) = max (R(s,@) +yV™ (T(s,a)))

» The first equation holds for any policy while the second must hold for
any optimal policy

— Why?

17

The Greedy Strategy

-
* Given avalue functionV:S — IR, we say that iz is greedy for V' if

n(s) € arg mgx(R (s,a) + yV(T(s, a)))

* [f r is not an optimal policy, then 7z* which is greedy for V™ must
satisfy V' (s) < V™ (s)foralls € S

— This suggests that we can, starting from any policy, obtain a
better policy (similar to coordinate ascent)

— Two questions:
* Does this process converge?

* Ifit converges, is the converged policy optimal?

18

Value Iteration
[

* Choose an initial value function V, (could be anything)
* Repeat until convergence

— Foreachs

Viei1(s) = max(R (s,a) + yV.(T(s, a)))

a€A;

* This process always converges to the optimal value, V,, as long as
y € (0,1),

WVerr = Velloo < ¥IIVe = Villoo < ¥ HIVo — Villoo

19

Policy Iteration
N

* Choose an initial policy 1t (could be anything)
* Repeat until convergence
— Compute V™t
— Choose ;. 1 to be a greedy policy with respect to V"¢

* This process always converges to an optimal policy

20

Example (100 reward at goal, -1 for each step)

87 88 89 90 91 99 -
88 89 90 91 92 98 99
87 88 92 93 97 98
86 87 93 94 95 96 97
85 86 92 93 94 95 96
86 87 91 92 93 94 95
87 88 89 90 91 92 93 94
86 87 88 89 90 91 92 93

21

Q-Values

* Forlearning, it will be useful to express value functions in terms of Q-
value functions

* Forapolicym,Q™:S X A — Ris defined to be the value of the
policy mr starting from state s where the first action is taken to be a

Q"(s,a) = R(s,a) +yV™(T(s,a))

« Forany optimal policy 7*, V™ (s) = max QT (s, a)
a

* Apolicy T is said to be greedy with respect to Q if

n(s) € arg max Q(s,a)

22

Reinforcement Learning
e

* The above is simply the theory of MDPs
— We haven’t seen any “learning” yet

* All transition and reward functions were assumed to be known
in advance

* The setting for reinforcement learning:

— The agent is the learner whose task is to maximize its respective
rewards

— All rewards and transitions are unknown and must be learned
through trial and error (key complication in the learning setting)

s

Approaches to RL

e Learnthe MDP first, then use value/policy iteration
e Learn only the values (don’t learn the MDP or explicitly model it)

— Can be advantageous in practice as MDPs can require a
significant amount of storage to specify completely

 Hybrid approaches of learning and planning...

24

Q-Learning

 Choose an initial state-value function Q (s, a)
* Lets be the initial state of the environment
* Repeat until convergence
— Choose an action a for the current state s based on

— Take action a and observe the reward and the new state s’

—SetQ(s,a) =(1—a)0Q(s,a) + a (r + y max Q(s), a’))

— Sets = &'

25

Q-Learning

 Choose an initial state-value function Q (s, a)
* Lets be the initial state of the environment
* Repeat until convergence
— Choose an action a for the current state s based on

— Take action a and observe the reward and the new state s’

—SetQ(s,a) =(1—a)0Q(s,a) + a (r + y max Q(s), a’))

— Sets = s’ /

« is called the learning rate

26

Q-Learning

* How should we pick an action to take based on Q?

27

Q-Learning

* How should we pick an action to take based on Q?

— Shouldn’t always be greedy (we won’t explore much of the state
space this way)

— Shouldn’t always be random (will take a long time to generate a
good Q)

* e-greedy strategy: with some small probability choose a random
action, otherwise select the greedy action

28

Reinforcement Learning
e

 |f the state space is large, these techniques are intractable (what if it
is continuous?)

— Need different algorithms for this setting, but we already know a
few!

— Ifthe goal is to learn Q (s, a), we could use techniques from
supervised learning

 Generate a collection of noisy observations using Q-learning

* Use a supervised learning algorithm (e.g., a neural network,
k — NN, etc.) to approximate the Q function

29

