
Reinforcement Learning

Nicholas Ruozzi

University of Texas at Dallas

based on the slides of Ronald J. Williams

Reinforcement Learning

• Autonomous “agent” that interacts with an environment through a

series of actions

– E.g., a robot trying to find its way through a maze

• Actions include turning and moving through the maze

– The agent earns rewards from the environment under certain

(perhaps unknown) conditions

• The agent’s goal is to maximize the reward

– We say that the agent learns if, over time, it improves its

performance

2

Reinforcement Learning

• Often formalized (mathematically) as Markov Decision Processes
(MDPs) or Partially Observable Markov Decision Processes (POMDPs)

• MDPs are described by series of states (state of the environment) and
a collections of actions corresponding to each state (allowable
actions that change the state of the environment)

– The next state depends (perhaps probabilistically) on only the
current state and the chosen action

– Each state/action pair has an associated reward (possibly
probabilistic)

• Markov chains are a simple form of MDP with only one action and no
rewards

3

Example

goal

start

4

Example

goal

start

5

MDPs

• Rewards can be positive or negative

– E.g., the robot might receive a small penalty each time it takes a

step that does not reach the goal

• Objective of the learning process is to develop a policy (a way to

choose actions given the current state) to maximize the reward

– Could be difficult to do as rewards may be delayed

• E.g., the robot receives a reward for reaching the end of the

maze, but only penalties in-between

6

MDPs

• Agent at step 𝑡

– Observes the state of the system

– Selects an action to perform

– Receives some reward

• This process is repeated indefinitely

7

Policies

• A policy is the prescription by which the agent selects an action to

perform

– Deterministic: the agent observes the state of the system and

chooses an action

– Stochastic: the agent observes the state of the system and then

selects an action, at random, from some probability distribution

over possible actions

8

Applications of MDPs

• Robot pathfinding

• Planning

• Elevator scheduling

• Manufacturing processes

• Network routing

9

Formal Definition

• An MDP consists of the following

– A finite set of states 𝑆

– A set of allowable actions 𝐴𝑠 for each 𝑠 ∈ S

– A transition function 𝑇: 𝑆 × 𝐴 → 𝑆

– A reward function 𝑅: 𝑆 × 𝐴 → ℝ

• In the general case, 𝑇 and 𝑅 can be stochastic functions (we’ll worry

about the deterministic case today)

10

Cumulative Reward

• A policy is a mapping from states to actions, 𝜋: 𝑆 → 𝐴

– Policies can be deterministic or stochastic

• Let 𝑟(𝑡) denote the reward at time 𝑡

• The objective is to find a policy that maximizes the cumulative

(discounted) reward

𝑟 0 + 𝛾𝑟 1 + 𝛾2𝑟 2 +⋯

where 𝛾 ∈ (0,1) is a discount factor necessary to make the sum

converge (also applied in economic contexts to prefer future rewards at a

discounted rate)

11

Value Function

• How can we evaluate the quality of policy 𝜋?

12

Value Function

• How can we evaluate the quality of policy 𝜋?

• A value function 𝑉: 𝑆 → ℝ assigns a real number to each state

– A particular value function of interest will be the reward function

𝑉𝜋 𝑠 =

𝑡=0

∞

𝛾𝑡𝑟(𝑡)

where the state at time 𝑡 is generated from the state at time 𝑡 − 1
by applying the action dictated by the policy, 𝜋(𝑠𝑡−1)

13

Technical Notes

• In the case that the rewards, transitions, policy, etc. are stochastic

– Replace the reward, 𝑟 𝑡 , with the expected reward under the

policy

• An MDP has an absorbing state if there exists a state 𝑠 ∈ 𝑆 such

that, with probability one, 𝑇 𝑠, 𝑎 = 𝑠 for all 𝑎 ∈ 𝐴𝑠

– In this case, if the absorbing state can always be reached, the

discount factor is unnecessary

14

Objective

• Find a policy 𝜋∗: 𝑆 → 𝐴 such that

𝑉𝜋
∗
𝑠 ≥ 𝑉𝜋(𝑠)

for all 𝑠 ∈ 𝑆 and all policies 𝜋

• Any policy that satisfies this condition is called an optimal policy

(may not be unique)

• There always exists an optimal policy

– How do we find it?

15

Optimal Policies

• Can find an optimal policy via a dynamic programming approach

– Compute the optimal value, 𝑉𝜋
∗
(𝑠), for each state

– Greedily select the action that maximizes reward

• We can describe the optimal value via a recurrence relation

𝑉𝜋
∗
𝑠 = max

𝑎∈𝐴𝑠
𝑅 𝑠, 𝑎 + 𝛾𝑉𝜋

∗
𝑇(𝑠, 𝑎)

– This is one of the so-called Bellman equations

– Justifies the greedy strategy (all optimal strategies are “greedy” in

this sense)

16

Bellman Equations

𝑉𝜋 𝑠 = 𝑅 𝑠, 𝜋(𝑠) + 𝛾𝑉𝜋 𝑇(𝑠, 𝜋(𝑠))

𝑉𝜋
∗
𝑠 = max

𝑎∈𝐴𝑠
𝑅 𝑠, 𝑎 + 𝛾𝑉𝜋

∗
𝑇(𝑠, 𝑎)

• The first equation holds for any policy while the second must hold for

any optimal policy

– Why?

17

The Greedy Strategy

• Given a value function 𝑉: 𝑆 → ℝ, we say that 𝜋 is greedy for 𝑉 if

𝜋 𝑠 ∈ argmax
𝑎
𝑅 𝑠, 𝑎 + 𝛾𝑉 𝑇(𝑠, 𝑎)

• If 𝜋 is not an optimal policy, then 𝜋′ which is greedy for 𝑉𝜋 must

satisfy 𝑉𝜋 𝑠 ≤ 𝑉𝜋
′
(𝑠) for all 𝑠 ∈ 𝑆

– This suggests that we can, starting from any policy, obtain a
better policy (similar to coordinate ascent)

– Two questions:

• Does this process converge?

• If it converges, is the converged policy optimal?

18

Value Iteration

• Choose an initial value function 𝑉0 (could be anything)

• Repeat until convergence

– For each 𝑠

𝑉𝑡+1 𝑠 = max
𝑎∈𝐴𝑠
𝑅 𝑠, 𝑎 + 𝛾𝑉𝑡 𝑇(𝑠, 𝑎)

• This process always converges to the optimal value, 𝑉∗, as long as

𝛾 ∈ (0,1),

𝑉𝑡+1 − 𝑉∗ ∞ ≤ 𝛾 𝑉𝑡 − 𝑉∗ ∞ ≤ 𝛾
𝑡+1 𝑉0 − 𝑉∗ ∞

19

Policy Iteration

• Choose an initial policy 𝜋0 (could be anything)

• Repeat until convergence

– Compute 𝑉𝜋𝑡

– Choose 𝜋𝑡+1 to be a greedy policy with respect to 𝑉𝜋𝑡

• This process always converges to an optimal policy

20

Example (100 reward at goal, -1 for each step)

87 88 89 90 91 99 100

88 89 90 91 92 98 99

87 88 92 93 97 98

86 87 93 94 95 96 97

85 86 92 93 94 95 96

86 87 91 92 93 94 95

87 88 89 90 91 92 93 94

86 87 88 89 90 91 92 93

21

Q-Values

• For learning, it will be useful to express value functions in terms of Q-

value functions

• For a policy 𝜋, 𝑄𝜋: 𝑆 × 𝐴 → ℝ is defined to be the value of the

policy 𝜋 starting from state 𝑠 where the first action is taken to be 𝑎

𝑄𝜋 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉𝜋(𝑇 𝑠, 𝑎)

• For any optimal policy 𝜋∗, 𝑉𝜋
∗
𝑠 = max

𝑎
𝑄𝜋
∗
𝑠, 𝑎

• A policy 𝜋 is said to be greedy with respect to 𝑄 if

𝜋 𝑠 ∈ arg max
𝑎
𝑄 𝑠, 𝑎

22

Reinforcement Learning

• The above is simply the theory of MDPs

– We haven’t seen any “learning” yet

• All transition and reward functions were assumed to be known

in advance

• The setting for reinforcement learning:

– The agent is the learner whose task is to maximize its respective

rewards

– All rewards and transitions are unknown and must be learned

through trial and error (key complication in the learning setting)

23

Approaches to RL

• Learn the MDP first, then use value/policy iteration

• Learn only the values (don’t learn the MDP or explicitly model it)

– Can be advantageous in practice as MDPs can require a

significant amount of storage to specify completely

• Hybrid approaches of learning and planning...

24

Q-Learning

• Choose an initial state-value function 𝑄(𝑠, 𝑎)

• Let 𝑠 be the initial state of the environment

• Repeat until convergence

– Choose an action 𝑎 for the current state 𝑠 based on 𝑄

– Take action 𝑎 and observe the reward 𝑟 and the new state 𝑠′

– Set 𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′)

– Set 𝑠 = 𝑠′

25

Q-Learning

• Choose an initial state-value function 𝑄(𝑠, 𝑎)

• Let 𝑠 be the initial state of the environment

• Repeat until convergence

– Choose an action 𝑎 for the current state 𝑠 based on 𝑄

– Take action 𝑎 and observe the reward 𝑟 and the new state 𝑠′

– Set 𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′)

– Set 𝑠 = 𝑠′

26

𝛼 is called the learning rate

Q-Learning

• How should we pick an action to take based on 𝑄?

27

Q-Learning

• How should we pick an action to take based on 𝑄?

– Shouldn’t always be greedy (we won’t explore much of the state

space this way)

– Shouldn’t always be random (will take a long time to generate a

good 𝑄)

• 𝜖-greedy strategy: with some small probability choose a random

action, otherwise select the greedy action

28

Reinforcement Learning

• If the state space is large, these techniques are intractable (what if it

is continuous?)

– Need different algorithms for this setting, but we already know a

few!

– If the goal is to learn 𝑄(𝑠, 𝑎), we could use techniques from

supervised learning

• Generate a collection of noisy observations using Q-learning

• Use a supervised learning algorithm (e.g., a neural network,

𝑘 − 𝑁𝑁, etc.) to approximate the 𝑄 function

29

