
Learning to Rank

Nicholas Ruozzi

University of Texas at Dallas

based on the slides of Tie-Yan Liu & Thorsten Joachims

Course Evaluations

• Take 5-10 minutes and go to

eval.utdallas.edu

2

Ranking

• In many “information retrieval” applications, the goal is, given a
query, to return relevant documents

– Application: search engines

• Lots of data

• Lots of available features: anchor texts, PageRank score, click
through data

• Most search companies use some form of ML to rank query
results

– Other applications: collaborative filtering, key term extraction,
sentiment analysis, product ratings

3

Ranking

• Early document retrieval systems used no learning at all

– Relevance of a query was determined purely by analyzing the

content of each document via some heuristic approach

– The difficulty: not clear in advance which features/document

properties are most relevant & parameter tuning non-trivial

• Different types of ranking systems

– Pointwise: learn a relevance score for each query/document pair

– Pairwise: learn the relative ordering of each pair of documents for

a given query

4

Generation of Labeled Data

• Human evaluators

– Set of queries is randomly selected from the query log

– Each query is associated with multiple documents

– Human judges are asked to evaluate relevance typically in five

levels, for example, perfect, excellent, good, fair, and bad

• Search log data (e.g., clickthroughs)

– Use the information about which links users have clicked on for

specific queries as a measure of relevance

5

Clickthroughs

6

Ranking presented for the query “support vector machine”. Marked in bold are the links the user
clicked on. [Joachims 2003]

Learning to Rank

• Supervised learning problem

– Training includes data queries and document relevance scores:

• Set of queries 𝑄 = {𝑞1, . . , 𝑞𝑚}

• Set of documents 𝐷

• Documents relevant to the 𝑖𝑡ℎ query 𝐷𝑖 = {𝑑𝑖,1, … , 𝑑𝑛𝑖}

• Vector of relevance scores 𝑦𝑖 = (𝑦𝑖,1, … , 𝑦𝑖,𝑛𝑖) for each

document relevant to query 𝑖

– Goal: Given a new query 𝑞, output a sorted list of (a permutation)
of relevant documents

7

Simple (Pointwise) Relevance

• Training data:

– Pairs of queries and documents with a corresponding plus or

minus one to indicate whether or not the document is relevant to

the query

– Typically, query/document pairs are converted into feature

vectors that include features such as PageRank score, number of

times the query keyword appears in the document, etc.

– Use SVMs to learn to predict which documents are relevant to

which queries

8

Mean Average Precision (MAP)

• Precision at position 𝑘 for query 𝑞 is the number of fraction of

relevant documents in the top 𝑘 results

𝑝𝑞,𝑘 =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑘

• Average precision

𝐴𝑃 𝑞 =
 𝑘 𝑝𝑞,𝑘 ⋅ 𝐼𝑘𝑡ℎ𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

• MAP =
 𝑞 𝐴𝑃 𝑞

𝑞𝑢𝑒𝑟𝑖𝑒𝑠

9

Pointwise Approach

• Training data:

– Pairs of queries and documents with a corresponding label

representing a score

• If 𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑1 > 𝑠𝑐𝑜𝑟𝑒(𝑞, 𝑑2), then 𝑑1 is more relevant to

query 𝑞 than 𝑑2

– As before, query-document pairs are converted into feature

vectors that include features such as PageRank score, number of

times the query keyword appears in the document, etc.

– Use multiclass SVMs to learn to predict the labels for query-

document pairs

10

Simple (Pointwise) Relevance

• Can also solve this as a regression task

– Instead of ordered labels, use real numbers

– Minimize the squared loss between the estimated relevance score

and the true relevance score

11

Drawbacks of Pointwise Ranking

• Ignores the fact that some documents are associated with the same

query and some are not

• If the number of documents varies largely for different queries, the

overall loss function will be dominated by those queries with a large

number of documents

• The position of documents in the ranked list is not factored into the

loss function(s)

12

Pairwise Approach

• Consider pairs of documents at a time

– We are really interested in the ranking of documents for each

query which corresponds to a permutation of the documents

– Can recover the permutation if we know the relative ordering of

pairs of documents for a given query

13

Ranking SVM

• A ranking matrix 𝑟 for a query 𝑞 is a 𝐷 × |𝐷|matrix whose 𝑖, 𝑗 𝑡ℎ

entry is a 1 if 𝑑𝑖 is ranked higher than 𝑑𝑗for the query 𝑞 and 0

otherwise

• Training data: 𝑞1, 𝑟1 , … , (𝑞𝑚, 𝑟𝑚)

• Objective: given a new 𝑞, predict its corresponding 𝑟

• This can be approximated as a convex optimization problem similar

to the SVM objective...

14

Kendall’s Tau

• Measures the difference between two rankings

• Consider two rankings 𝑟 and 𝑟′

– The pair 𝑑𝑖 ≠ 𝑑𝑗 is concordant if 𝑟 and 𝑟′ agree on the relative

ordering of 𝑑𝑖 and 𝑑𝑗

– Else the pair 𝑑𝑖 and 𝑑𝑗 are said to be discordant

𝜏 𝑟, 𝑟′ =
#𝑐𝑜𝑛𝑐. 𝑝𝑎𝑖𝑟𝑠 − #𝑑𝑖𝑠𝑐. 𝑝𝑎𝑖𝑟𝑠

#𝑐𝑜𝑛𝑐. 𝑝𝑎𝑖𝑟𝑠 + #𝑑𝑖𝑠𝑐. 𝑝𝑎𝑖𝑟𝑠

15

Ranking SVM

• The Ranking SVM algorithm attempts to minimize the following loss

function

1

𝑚

𝑖

𝑚

−𝜏(𝑟𝑓 𝑞𝑖 , 𝑟𝑖)

where 𝑟𝑓 𝑞𝑖 is the predicted ranking for the query 𝑞𝑖

• When 𝑟 is thought of as a strict ordering, minimizing this loss is

equivalent to minimizing the number of discordant pairs for each

query

16

Ranking SVM

• The idea, express the ordering relations using linear inequalities

𝑑𝑘𝑖 >𝑞𝑘 𝑑𝑘𝑗 ↔ 𝑤
𝑇𝜙 𝑞𝑘 , 𝑑𝑘𝑖 > 𝑤

𝑇𝜙 𝑞𝑘, 𝑑𝑘𝑗

• Formulating this (approximately) as a max margin optimization
problem (with slack):

min
𝑤

1

2
𝑤𝑇𝑤 + 𝐶

𝑖,𝑗,𝑘

𝜖𝑖,𝑗,𝑘

∀𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑗 ∈ 1,… , 𝑛𝑘 𝑤𝑖𝑡ℎ 𝑑𝑘𝑖 >𝑞𝑘 𝑑𝑘𝑗 ,

𝑤𝑇𝜙 𝑞𝑘 , 𝑑𝑘𝑖 ≥ 𝑤
𝑇𝜙 𝑞𝑘, 𝑑𝑘𝑗 + 1 − 𝜖𝑖,𝑗,𝑘

𝜖𝑖,𝑗,𝑘 ≥ 0

• Can take the dual and apply the kernel trick...

17

Ranking SVM

18[Joachims 2003]

Ranking SVM

19[Joachims 2003]

Pairwise Summary

• Predicting relative order is more like the ranking problem than

considering query-document pairs

• The number of document pairs per query is quadratic in the number

of documents for that query

– Means that queries with many relevant documents account for

most of the loss

– Heuristic fix: introduce a normalizing constant into the SVM

objective per query

• Seems to work well in practice

20

Listwise Ranking

• The training data and loss function operate specifically over ordered

lists in which each document related to a particular query receives a

score

• One then develops a metric to evaluate the quality of a chosen

permutation based on these scores

– This generates a new loss function to minimize (SVM based

methods can also be applied here)

21

