
CS6375:  Recap

Nicholas Ruozzi
University of Texas at Dallas



Supervised Learning

• Regression & classification

• Discriminative methods
– k-NN
– Decision trees
– Perceptron
– SVMs & kernel methods
– Logistic regression

• Parameter learning
– Maximum likelihood estimation
– Expectation maximization



Bayesian Approaches

• MAP estimation

• Prior/posterior probabilities

• Bayesian networks
– Naive Bayes
– Hidden Markov models
– Structure learning via Chow-Liu Trees

• Latent Dirichlet Allocation (LDA)



Unsupervised Learning

• Clustering

• 𝑘𝑘-means

• Spectral clustering

• Hierarchical clustering

• Expectation maximization

– Soft clustering

– Mixtures of Gaussians



Learning Theory

• PAC learning

• VC dimension

• Bias/variance tradeoff

• Chernoff bounds

• Sample complexity



Optimization Methods

• Gradient descent
– Stochastic gradient descent
– Subgradient methods

• Coordinate descent

• Lagrange multipliers and duality



Matrix Based Methods

• Dimensionality Reduction
– PCA
– Matrix Factorizations

• Collaborative Filtering
– Semisupervised learning



Ensemble Methods

• Bootstrap sampling

• Bagging

• Boosting



Other Learning Topics

• Active learning

• Reinforcement learning

• Learning to rank

• Neural networks
– Perceptron and sigmoid neurons
– Backpropagation



Questions about the course content?

(Reminder:  I do not have office hours this week)



For the final...

• You should understand the basic concepts and theory of all 
of the algorithms and techniques that we have discussed in 
the course

• There is no need to memorize complicated formulas, etc.

– For example, if I ask for the sample complexity of a scheme, I will 
give you the generic formula

• However, you should be able to derive the algorithms and 
updates

– E.g., Lagrange multipliers and SVMs, the EM algorithm, etc.



For the final...

• No calculators, books, notes, etc. will be permitted

– As before, if you need a calculator, you have done something 
terribly wrong

• The exam will be in roughly the same format

– Expect true/false questions, short answers, and two-three long 
answer questions

• Exam will emphasize the new material, but ALL material will 
be tested

• Take a look at the practice exams!



Final Exam

Wednesday, 12/16/2015

11:00AM - 1:45PM

ECSS 2.410



Related Courses at UTD

• Natural Language Processing (CS 6320)

• Statistical Methods in Artificial Intelligence and Machine 
Learning (CS 6347)

• Artificial Intelligence (CS 6364)

• Information Retrieval (CS 6322)

• Intelligent Systems Analysis (ACN 6347)

• Intelligent Systems Design (ACN 6349)



ML Related People

• Vincent Ng (NLP)

• Yang Liu (NLP)

• Vibhav Gogate (MLNs, Sampling, Graphical Models)

• Sanda Harabagiu (NLP & Health)

• Dan Moldovan (NLP)

• Nicholas Ruozzi (Graphical Models & Approx. Inference)



Matrix Decomposition

• PCA is a dimensionality reduction technique that is based 
on matrix factorizations

– Drawback:  PCA returns the eigenvectors of a matrix as the most 
relevant vectors (many applications need subsets of the data that 
best describe it)

• Feature selection / matrix factorization using Bayesian 
networks

• Input:  data points as rows of a 𝑚𝑚 × 𝑛𝑛 matrix 𝑋𝑋

• Output:  𝑋𝑋~𝐶𝐶𝐶𝐶 where 𝐶𝐶 is a 𝑚𝑚 × 𝑘𝑘 matrix of columns 
selected from 𝑋𝑋 and 𝑈𝑈 is an arbitrary matrix



Airplane Health

• Collaboration with Southwest airlines

– Pilots/maintenance crews perform physical inspections of planes 
and are asked to translate observations into maintenance codes

– The observations (symptoms) and the codes (diagnoses) typically 
are mismatched (inspections performed quickly and too 
expensive to train everyone)

– Multiclass classification problem:  given as input correctly 
labeled training data, learn to predict the codes for new 
symptoms



Parameter Tying

• We saw 𝑙𝑙2 regularization as a way to prefer simpler models

• Another type of simple model might be a Bayesian network 
in which many of the parameters (i.e., the conditional 
probability distributions) are the same

• This type of parameter tying is used in neural networks as 
well (though it is typically done by hand)

• Study the design of regularization based methods for 
parameter tying and improved inference/sampling 
methods for models with tied parameters



Graphical Models

• Generalization of Bayesian networks very popular in the 
machine learning community (take the class!)

• Lower bounds for continuous “partition functions”

• Theoretical guarantees on the exactness of inference in 
continuous graphical models

• Faster algorithms (via Frank-Wolfe) for learning in latent 
variable models



Please evaluate the course!

eval.utdallas.edu
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