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Supervised Learning
N

 Input: (x1,v1), .., (X3, V1)

— x; isthe it" data item and y; is the it" label

* Goal: find a function f such that f (x;) is a “good
approximation” to y;

— Can use it to predict y values for previously unseen x values




Examples of Supervised Learning

Spam email detection

* Handwritten digit recognition

Stock market prediction

More?




Supervised Learning
... " " " "

* Hypothesis space: set of allowable functions f: X — Y
e Goal: find the “best” element of the hypothesis space

— How do we measure the quality of f?




Regression

Hypothesis class: linear functions f(x) = ax + b

Squared loss function used to measure the error of the
approximation




Linear Regression

* Intypical regression applications, measure the fit using a
squared loss function

L(f,y:) = (f (x) — y1)*
* Want to minimize the average loss on the training data

* Forlinearregression, the learning problem is then

1

in — . — v.)?

min E (ax; + b —y;)
l

For an unseen data point, x, the learning algorithm
predicts f(x)




Binary Classification
e

* Input (x(l), yl), v, (M y Ywithx; € R™and y; € {—1, +1)}

* We can think of the observations as points in R"* with an associated
sign (either +/- correspondingto 0/1)

* Anexample withm = 2
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In this case, we say that the observations are linearly separable

UT D




Linear Separators
I

* Inn dimensions, a hyperplane is a solution to the equation
wlix+b=0
withw € R, b € R

 Hyperplanes divide R" into two distinct sets of points
(called halfspaces)
wlix+b>0

wlix+b<0
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The Linearly Separable Case
N

* Input (x(l),yl), v, (xM y Ywithx; € R™and y; € {—1,1}

* Hypothesis space: separating hyperplanes
fx)=wlx+b»b

 How should we choose the loss function?




The Linearly Separable Case
-

* Input (x(l),yl), v, (xM y Ywithx; € R™and y; € {—1,1}

* Hypothesis space: separating hyperplanes

fW,b(x) = WT.X' + b

 How should we choose the loss function?

— Count the number of misclassifications
loss = " [yi = sign(fus(xO))]
i

* Tough to optimize, gradient contains no information




The Linearly Separable Case
-

* Input (x(l), yl), v, (xM y Ywithx; € R™and y; € {—1,1}

* Hypothesis space: separating hyperplanes

fW,b(x) = WT.X' + b

 How should we choose the loss function?

— Penalize each misclassification by the size of the violation

perceptron loss = 2 max{0, —y; fu,» (x")}
i

* Modified hinge loss (this loss is convex, but not differentiable)




The Perceptron Algorithm

* Try to minimize the perceptron loss using (sub)gradient
descent

Vv (perceptron loss) = 2 —yx®
i:=Yify p(x®)z0

Vp (perceptron loss) = z —y;
i:—yifw’b(x(i))zo




Subgradients

* For a convex function g (), a subgradient at a point x" is
any tangent line/plane through the point x° that
underestimates the function everywhere

g(x)
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Subgradients

* For a convex function g (), a subgradient at a point x" is
any tangent line/plane through the point x° that
underestimates the function everywhere

g(x)

1F0 is subgradient at
x?, then x% is a global
minimum




The Perceptron Algorithm

* Try to minimize the perceptron loss using (sub)gradient

descent
W(t+1) = W(t) + ‘}/t . Z yl.x(i)
i:_yifW(t),b(t) (X(i))ZO
pt+D) = p(O) 4y, . Z v,

i:—yifw(t),b(t) (x(i))zo

* With step size y; (sometimes called the learning rate)




Stochastic Gradient Descent

* To make the training more practical, stochastic gradient
descent is used instead of standard gradient descent

* Approximate the gradient of a sum by sampling a few indices
(as few as one) uniformly at random and averaging

- n . 1 K
7> 90| =% ) Vi, ()
Li=1 . k=1

here, each i* is sampled uniformly at random from {1, ..., n}

* Stochastic gradient descent converges under certain
assumptions on the step size
.




Stochastic Gradient Descent
_

e Setting K = 1, we can simply pick a random observation i
and perform the following update if the i*"* data point is

misclassified
W(t+1) — W(t) -|- 'ytyl.x(i)
b(t'l'l) — b(t) _|_ ytyi
and
wttD — 1, ©
pE+D) — p(O)
otherwise

* Sometimes, you will see the perceptron algorithm specified

withy, = 1forall ¢
:




Application of Perceptron
e

e Spam email classification

— Represent emails as vectors of counts of certain words (e.g., sir,
madam, Nigerian, prince, money, etc.)

— Apply the perceptron algorithm to the resulting vectors

— To predict the label of an unseen email:
 Construct its vector representation, x’

« Check whetherornotw” x’ + b is positive or negative




Perceptron Learning
-

 Drawbacks:

— No convergence guarantees if the observations are not linearly
separable

— Can overfit

* There are a number of perfect classifiers, but the perceptron algorithm
doesn’t have any mechanism for choosing between them




What If the Data Isn‘t Separable?
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Adding Features

* Perceptron algorithm only works for linearly separable data

Can add features to make the data linearly separable over a
larger space!




Adding Features

 Theidea:

— Given the observations x(1, ..., x(™_ construct a feature vector

¢ (x)

— Use ¢p(x@), ..., p(x™) instead of x V), ..., x (V) in the
learning algorithm

— Goal is to choose ¢ so that ¢ (x (D), ..., p(x ™) are linearly
separable

— Learn linear separators of the form w’ ¢p(x) (instead of w' x)

* Warning: more expressive features can lead to overfitting
UT D




Adding Features

 Examples
X
— ¢(xq,x3) = [x;]

 This is just the input data, without modification

— P (x1,x7) = [*2

* This corresponds to a second degree polynomial separator, or equivalently,
elliptical separators in the original space

UT D



Adding Features

(x;—1)?+(x,—1)2-1<0




Support Vector Machines
_

* How can we decide between two perfect classifiers?

* What is the practical difference between these two
solutions?




