
Binary Classification / Perceptron

Nicholas Ruozzi

University of Texas at Dallas

Slides adapted from David Sontag and Vibhav Gogate

Supervised Learning

• Input: 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)

– 𝑥𝑖 is the 𝑖𝑡ℎ data item and 𝑦𝑖 is the 𝑖𝑡ℎ label

• Goal: find a function 𝑓 such that 𝑓 𝑥𝑖 is a “good

approximation” to 𝑦𝑖

– Can use it to predict 𝑦 values for previously unseen 𝑥 values

Examples of Supervised Learning

• Spam email detection

• Handwritten digit recognition

• Stock market prediction

• More?

Supervised Learning

• Hypothesis space: set of allowable functions 𝑓: 𝑋 → 𝑌

• Goal: find the “best” element of the hypothesis space

– How do we measure the quality of 𝑓?

Regression

𝑥

𝑦

Hypothesis class: linear functions 𝑓 𝑥 = 𝑎𝑥 + 𝑏

Squared loss function used to measure the error of the
approximation

Linear Regression

• In typical regression applications, measure the fit using a
squared loss function

𝐿 𝑓, 𝑦𝑖 = 𝑓 𝑥𝑖 − 𝑦𝑖
2

• Want to minimize the average loss on the training data

• For linear regression, the learning problem is then

min
𝑎,𝑏

1

𝑛

𝑖

𝑎𝑥𝑖 + 𝑏 − 𝑦𝑖
2

• For an unseen data point, 𝑥, the learning algorithm
predicts 𝑓(𝑥)

Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+
+

+
+

+

+

+

+

+

+

+

+
_

_

_ _

_

_

_

_ _

_

Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+
+

+
+

+

+

+

+

+

+

+

+
_

_

_ _

_

_

_

_ _

_

What is a good
hypothesis space for

this problem?

Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+
+

+
+

+

+

+

+

+

++ +

_

_

_ _

_

_

_

_ _

_

What is a good
hypothesis space for

this problem?

Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+
+

+
+

+

+

+

+

+

++ +

_

_

_ _

_

_

_

_ _

_

What is a good
hypothesis space for

this problem?

In this case, we say that the observations are linearly separable

Linear Separators

• In 𝑛 dimensions, a hyperplane is a solution to the equation

𝑤𝑇𝑥 + 𝑏 = 0

with 𝑤 ∈ ℝ𝑛, 𝑏 ∈ ℝ

• Hyperplanes divide ℝ𝑛 into two distinct sets of points

(called halfspaces)

𝑤𝑇𝑥 + 𝑏 > 0

𝑤𝑇𝑥 + 𝑏 < 0

Binary Classification

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+
+

+
+

+

+

+

+

+

++ +

_

_

_ _

_

_

_

_ _

_

What is a good
hypothesis space for

this problem?

In this case, we say that the observations are linearly separable

The Linearly Separable Case

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,1}

• Hypothesis space: separating hyperplanes

𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏

• How should we choose the loss function?

The Linearly Separable Case

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,1}

• Hypothesis space: separating hyperplanes

𝑓𝑤,𝑏 𝑥 = 𝑤
𝑇𝑥 + 𝑏

• How should we choose the loss function?

– Count the number of misclassifications

𝑙𝑜𝑠𝑠 =

𝑖

|𝑦𝑖 − 𝑠𝑖𝑔𝑛(𝑓𝑤,𝑏(𝑥
(𝑖)))|

• Tough to optimize, gradient contains no information

The Linearly Separable Case

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,1}

• Hypothesis space: separating hyperplanes

𝑓𝑤,𝑏 𝑥 = 𝑤
𝑇𝑥 + 𝑏

• How should we choose the loss function?

– Penalize each misclassification by the size of the violation

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 𝑙𝑜𝑠𝑠 =

𝑖

max 0,−𝑦𝑖𝑓𝑤,𝑏 𝑥
(𝑖)

• Modified hinge loss (this loss is convex, but not differentiable)

The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient

descent

𝛻𝑤(𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 𝑙𝑜𝑠𝑠) =

𝑖:−𝑦𝑖𝑓𝑤,𝑏 𝑥
(𝑖) ≥0

−𝑦𝑖𝑥
(𝑖)

𝛻𝑏(𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑟𝑜𝑛 𝑙𝑜𝑠𝑠) =

𝑖:−𝑦𝑖𝑓𝑤,𝑏 𝑥
(𝑖) ≥0

−𝑦𝑖

Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is

any tangent line/plane through the point 𝑥0 that

underestimates the function everywhere

𝑥

𝑔(𝑥)

𝑥0

Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is

any tangent line/plane through the point 𝑥0 that

underestimates the function everywhere

𝑥

𝑔(𝑥)

𝑥0

Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is

any tangent line/plane through the point 𝑥0 that

underestimates the function everywhere

𝑥

𝑔(𝑥)

𝑥0

Subgradients

• For a convex function 𝑔(𝑥), a subgradient at a point 𝑥0 is

any tangent line/plane through the point 𝑥0 that

underestimates the function everywhere

𝑥

𝑔(𝑥)

𝑥0

If 0 is subgradient at
𝑥0, then 𝑥0 is a global

minimum

The Perceptron Algorithm

• Try to minimize the perceptron loss using (sub)gradient

descent

𝑤(𝑡+1) = 𝑤(𝑡) + 𝛾𝑡 ⋅

𝑖:−𝑦𝑖𝑓𝑤 𝑡 ,𝑏(𝑡)
𝑥(𝑖) ≥0

𝑦𝑖𝑥
(𝑖)

𝑏(𝑡+1) = 𝑏(𝑡) + 𝛾𝑡 ⋅

𝑖:−𝑦𝑖𝑓𝑤 𝑡 ,𝑏(𝑡)
𝑥(𝑖) ≥0

𝑦𝑖

• With step size 𝛾𝑡 (sometimes called the learning rate)

Stochastic Gradient Descent

• To make the training more practical, stochastic gradient

descent is used instead of standard gradient descent

• Approximate the gradient of a sum by sampling a few indices

(as few as one) uniformly at random and averaging

𝛻𝑥

𝑖=1

𝑛

𝑔𝑖(𝑥) ≈
1

𝐾

𝑘=1

𝐾

𝛻𝑥𝑔𝑖𝑘(𝑥)

here, each 𝑖𝑘 is sampled uniformly at random from {1, … , 𝑛}

• Stochastic gradient descent converges under certain

assumptions on the step size
22

Stochastic Gradient Descent

• Setting 𝐾 = 1, we can simply pick a random observation 𝑖
and perform the following update if the 𝑖𝑡ℎ data point is

misclassified
𝑤(𝑡+1) = 𝑤(𝑡) + 𝛾𝑡𝑦𝑖𝑥

(𝑖)

𝑏(𝑡+1) = 𝑏(𝑡) + 𝛾𝑡𝑦𝑖

and
𝑤(𝑡+1) = 𝑤(𝑡)

𝑏(𝑡+1) = 𝑏(𝑡)

otherwise

• Sometimes, you will see the perceptron algorithm specified

with 𝛾𝑡 = 1 for all 𝑡
23

Application of Perceptron

• Spam email classification

– Represent emails as vectors of counts of certain words (e.g., sir,

madam, Nigerian, prince, money, etc.)

– Apply the perceptron algorithm to the resulting vectors

– To predict the label of an unseen email:

• Construct its vector representation, 𝑥′

• Check whether or not 𝑤𝑇𝑥′ + 𝑏 is positive or negative

Perceptron Learning

• Drawbacks:

– No convergence guarantees if the observations are not linearly

separable

– Can overfit

• There are a number of perfect classifiers, but the perceptron algorithm

doesn’t have any mechanism for choosing between them

+
+

+
+

+

+

+

+

+

++ +

_

_

_ _

_

_

_

_ _

_

What If the Data Isn‘t Separable?

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+

+

+
+

+

+

+
+

+

+

+

+

_

_

_ _
_ _

_

_ _

_

What is a good
hypothesis space for

this problem?

What If the Data Isn‘t Separable?

• Input 𝑥(1), 𝑦1 , … , (𝑥
(𝑛), 𝑦𝑛) with 𝑥𝑖 ∈ ℝ

𝑚 and 𝑦𝑖 ∈ {−1,+1}

• We can think of the observations as points in ℝ𝑚 with an associated

sign (either +/- corresponding to 0/1)

• An example with 𝑚 = 2

+

+

+
+

+

+

+
+

+

+

+

+

_

_

_ _
_ _

_

_ _

_

What is a good
hypothesis space for

this problem?

Adding Features

• Perceptron algorithm only works for linearly separable data

+

+

+
+

+

+

+
+

+

+

+

+

_

_

_ _
_ _

_

_ _

_

Can add features to make the data linearly separable over a
larger space!

Adding Features

• The idea:

– Given the observations 𝑥(1), … , 𝑥(𝑛), construct a feature vector

𝜙(𝑥)

– Use 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) instead of 𝑥(1), … , 𝑥(𝑛) in the

learning algorithm

– Goal is to choose 𝜙 so that 𝜙 𝑥(1) , … , 𝜙 𝑥(𝑛) are linearly

separable

– Learn linear separators of the form 𝑤𝑇𝜙 𝑥 (instead of 𝑤𝑇𝑥)

• Warning: more expressive features can lead to overfitting

Adding Features

• Examples

– 𝜙 𝑥1, 𝑥2 =
𝑥1
𝑥2

• This is just the input data, without modification

– 𝜙 𝑥1, 𝑥2 =

1
𝑥1
𝑥2
𝑥1
2

𝑥2
2

• This corresponds to a second degree polynomial separator, or equivalently,

elliptical separators in the original space

Adding Features

𝑥1

𝑥2

𝑥1 − 1
2 + 𝑥2 − 1

2 − 1 ≤ 0

Support Vector Machines

+
+

+
+

+

+

+

+

+

++ +

_

_

_
_

_

_

_

_ _

_

• How can we decide between two perfect classifiers?

• What is the practical difference between these two

solutions?

