Lagrange Multipliers
Kernel Trick

Nicholas Ruozzi
University of Texas at Dallas

Based roughly on the slides of David Sontag



General Optimization
I ——

A mathematical detour, we’ll come back to SVMs soon!

min X
min fo(x)

subject to:

fi(x) <0, i=1,..,m
hl(X) = 0, [ =1, ey P




General Optimization
I —

i fo is not necessarily convex
min
xERM

subject to:




General Optimization
I ——

min X
xXxERMN fO( ) Constraints do not need to
. be I
subject to: e near
(1=1,..,m




Lagrangian

vih;(x)

N

=1

LG AY) = fol0) + ) Aifil) +
=1

* Incorporate constraints into a new objective function
A = 0and v are vectors of Lagrange multipliers

* The Lagrange multipliers can be thought of as soft
constraints




Duality

e Construct a dual function by minimizing the Lagrangian
over the primal variables

g4, v) =infL(x,A,v)
X

* g(A,v) = —oo whenever the Lagrangian is not bounded
from below for a fixed A and v




The Primal Problem
IS

min fo(x)
subject to:
fi(x) <0, i=1,..,m
hl(X) = 0, [ =1, ey P
Equivalently,

inf sup L(x,A,v)

X A1=0,v




The Dual Problem

sup g(4,v)
A=0,v

Equivalently,
sup infL(x, A,v)

A=0,v X

* The dual problem is always concave, even if the primal
problem is not convex




Primal vs. Dual
e

sup infL(x,A,v) < inf sup L(x, 4,v)

A=0,v X X A=20,v

* Why?
— g4, v) < L(x,A,v) forall x

— L(x',A,v) < fo(x") foranyfeasible x', 1 = 0
e x is feasible if it satisfies all of the constraints

— Let x™ be the optimal solution to the primal problemand A > 0

g4, v) < L(x", 4 v) < fo(x7)

:




Duality

* Under certain conditions, the two optimization problems
are equivalent

sup infL(x,A,v) = inf sup L(x,A,v)

A=0,v X X A1=0,v

— This is called strong duality

 Ifthe inequality is strict, then we say that there is a duality
gap

— Size of gap measured by the difference between the two sides of
the inequality
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Slater’s Condition
[

For any optimization problem of the form

min X
min fo(x)

subject to:

fi(x) <0, i=1,..,m
Ax = b

where f,, ..., f,,, are convex functions, strong duality holds if
there exists an x such that

fi(x) <0, i=1,..,m
Ax =D




Dual SVM

: 2
min — ||W
in = Iw

such that
yi(wTx® + b) > 1,forall i

* Note that Slater’s condition holds as long as the data is
linearly separable




Dual SVM

1 |
Lw,b,2) = w'w + z 2,71 — v, wTx® + b))
[

Convex in w, so take derivatives to form the dual

oL (D) _
- = Wg + —Aiyixk =0

aWk .
l
oL
ET z —Aiyi =0
l




Dual SVM

1 |
Lw,b,2) = w'w + Z 2,71 — v, wTx® + b))
[

Convex in w, so take derivatives to form the dual

w = 2 Aiyix®
i
2/11'371' =0
i




Dual SVM
1 1. ", 1
max —- L iAjYiYjxXt XY+ e

i i

such that
z/li:)’i =0
i

* By strong duality, solving this problem is equivalent to
solving the primal problem

— Given the optimal A, we can easily construct w (b can be found by

complementary slackness)
:




Complementary Slackness

* Suppose that there is zero duality gap

* Letx™ be an optimum of the primal and (A", v™) be an optimum
of the dual

folx") = g, v")

m p
= inf [fo () + ) Xifi)+ ) v:him]
=1

=1

m 4
< fo(x*) + z Aifi(x™) + z v hi(x")
i=1 (=1

= for) + ) Aifilx)
=1
< fo(x)




Complementary Slackness

* This means that

=1

— As A = 0 and f;(x;), this can only happen if A} f;(x*) = 0 for
all {

— Put another way,
* If f;(x*) < O (i.e., the constraint is not tight), then A7 = 0
* IfA; > 0,then f;(x*) =0

* ONLY applies when there is no duality gap
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Dual SVM

1 ST
w3 2 2 Ao+ )
A L

such that
z/li:)’i =0
i

* By complementary slackness, A} > 0 means that x(!) is a
support vector (can then solve for b using w)
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Dual SVM

1 ST
T3 2, QAT+ )
i i

such that
z/li:)’i =0
i

* Takes O (n?) time just to evaluate the objective function

— Active area of research to try to speed this up
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The Kernel Trick

1 ST
T3 2, QAT+ )
i i

such that
z/li:)’i =0
i

e The dual formulation only depends on inner products
between the data points

— Same thing is true if we use feature vectors instead




The Kernel Trick
e

* Forsome feature vectors, we can compute the inner
products quickly, even if the feature vectors are very large

* This is best illustrated by example

_xlxz_
X2X1
_ Letcp(xl'xZ) — x12

— P (x1,x2) - P(21,2,) = x72F + 2x1%22, 2, + X575

= + x,2,)*
Reduces to a dot
product in the original

space -




The Kernel Trick

* The same idea can be applied for the feature vector ¢ of all
polynomials of degree (exactly) d

~ ¢(x) - P(2) = (x - 2)*

* More generally, a kernel is a function
k(x,z) = ¢p(x) - ¢p(z) for some feature map ¢

* Rewrite the dual objective

1 . .
_ i PN (D) + () .
1503 ZEZMWJ"“ X ”Z 4
] l

l
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Examples of Kernels
e

* Polynomial kernel of degree exactly d
— k(x,2) = (x - 2)¢
* General polynomial kernel of degree d for some ¢

—k(x,2) = (x-z+ )4

e (Gaussian kernel for some o

— k(x,z) = exp (—||x—z||2)

202

— The corresponding ¢ is infinite dimensional!

* S0 many more...




Kernels
-

* Bigger feature space increases the possibility of overfitting

— Large margin solutions should still generalize reasonably well

 Alternative: add “penalties” to the objective to
disincentivize complicated solutions

minz Iwll? + ¢ - (# of misclassifications)
w

— Not a quadratic program anymore (in fact, it's NP-hard)

— Similar problem to Hamming loss, no notion of how badly the
data is misclassified
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