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Supervised Learning
e

* |nput: labelled training data
— l.e., data plus desired output

* Assumption: there exists a function f that maps data
items x to their correct labels

* Goal: construct an approximation to f




Today

* We've been focusing on linear separators
— Relatively easy to learn (using standard techniques)
— Easy to picture, but not clear if data will be separable
* Nexttwo lectures we’'ll focus on other hypothesis spaces
— Decision trees

— Nearest neighbor classification




Application: Medical Diagnosis
-

e Suppose that you go to your doctor with flu-like symptoms

— How does your doctor determine if you have a flu that
requires medical attention?




Application: Medical Diagnosis
[

e Suppose that you go to your doctor with flu-like symptoms

— How does your doctor determine if you have a flu that
requires medical attention?

— Check a list of symptoms:
* Do you have a fever over 100.4 degrees Fahrenheit?
* Do you have a sore throat or a stuffy nose?

* Do you have a dry cough?




Application: Medical Diagnosis
e

* Just having some symptoms is not enough, you should also
not have symptoms that are not consistent with the flu

* Forexample,
— If you have a fever over 100.4 degrees Fahrenheit?
— And you have a sore throat or a stuffy nose?

* You probably do not have the flu (most likely just a cold)




Application: Medical Diagnosis
-

* In other words, you doctor will perform a series of tests and
ask a series of questions in order to determine the
likelihood of you having a severe case of the flu

 This is a method of coming to a diagnosis (i.e., a
classification of your condition)

* We can view this decision making process as a tree




Decision Trees

Outlook

Sunny Overcast Rain
/ \
Humidity Yes Wind
AN /N
High Normal Strong Weak
/ N\ / N\
No Yes No Yes

* Atree in which each internal (non-leaf) node tests the value
of a particular feature

e Each leaf node specifies a class label (in this case whether
or not you should play tennis)
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Decision Trees
e

Outlook
Sunny Overcast Rain
/ \
Humidity Yes Wind
AN /N
High Normal Strong Weak
/ N\ / N\
No Yes No Yes

* Features: (Outlook, Humidity, Wind)

 Classification is performed root to leaf

— The feature vector (Sunny, Normal, Strong) would be classified as

a yes instance
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Decision Trees

Outlook

Sunny Overcast Rain
/ \
Humidity Yes Wind
AN AN
>T75% <=75% > 20 <= 20
/ N / o,
No Yes No Yes

 (Can have continuous features too

— Internal nodes for continuous features correspond to
thresholds
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Decision Trees
|

* Decision trees divide the feature space into axis parallel

rectangles
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Decision Trees
|

* Decision trees divide the feature space into axis parallel

rectangles
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Decision Trees

* Decision trees divide the feature space into axis parallel

rectangles
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Decision Trees
|

* Decision trees divide the feature space into axis parallel

rectangles
X9 > 4
2 /\
8
<6 > 4
7 + B X1 X1
|+ N /\ /\
5 — _ Xy >5 = Xy >2 +
4
_|_
\ ANEEYAN
+ + + = + —
2 + B
1 _
0 X1

01 2 3 456 7 8
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Decision Trees
|

* Decision trees divide the feature space into axis parallel

rectangles
X9 > 4
2 /\
8
<6 > 4
7 + B X1 X1
|+ N /\ /L
5 — _ X, >5 — x;>2  +
4
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01 2 3 456 7 8
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Decision Trees
IS

* Worst case decision tree may require exponentially many
nodes

X2

1|+ —

16




Decision Tree Learning
N

* Basic decision tree building algorithm:
— Pick some feature/attribute
— Partition the data based on the value of this attribute

— Recurse over each new partition
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Decision Tree Learning
I

* Basic decision tree building algorithm:
— Pick some feature/attribute (how to pick the “best”?)
— Partition the data based on the value of this attribute

— Recurse over each new partition (when to stop?)

We’ll focus on the discrete case first (i.e., each feature takes
a value in some finite set)
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Decision Trees
IS

* What functions can be represented by decision trees?

* Are decision trees unique?
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Decision Trees
IS

* What functions can be represented by decision trees?

— Every function can be represented by a sufficiently
complicated decision tree

* Are decision trees unique?

— No, many different decision trees are possible

20




Choosing the Best Attribute

* Because the complexity of storage and classification
increases with the size of the tree, should prefer smaller
trees

— Simplest models that explain the data are usually
preferred over more complicated ones

— This is an NP-hard problem

— Instead, use a greedy heuristic based approach to pick
the best attribute at each stage
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Choosing the Best Attribute

—
x1,%; € {0,1}
Which attribute should you split on?
1 1 +
1 0 +
/ \ / \ 1 ; N
1 0 +
y = = = =2 0 1 -
= = = = +:2
Y 0 0
0 1
0 0
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Choosing the Best Attribute

I
x1,%, € {0,1}
Which attribute should you split on?
1 1 +
1 0 +
/ \ / \ 1 1 +
1 0 +
y = y = y = y=—iZ 0 1 +
y = y = Yy = y=+:2
0 0
0 1
0 0

Can think of these counts as
probability distributions over the
labels: if x = 1, the probability that
y =+isequaltol
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Choosing the Best Attribute

* The selected attribute is a good split if we are more
“certain” about the classification after the split

— If each partition with respect to the chosen attribute has a distinct
class label, we are completely certain about the classification
after partitioning

— If the class labels are evenly divided between the partitions, the
splitisn’t very good (we are very uncertain about the label for
each partition)

— What about other situations? How do you measure the
uncertainty of a random process?
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Discrete Probability
I
« Sample space specifies the set of possible outcomes

— Forexample, 2 = {H, T} would be the set of possible
outcomes of a coin flip

« Eachelement w € Q is associated with a number p(w) € [0,1]

called a probability
z p(w) =1

wE)

— Forexample, a biased coin might have p(H) = .6 and p(T) =
A4
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Discrete Probability

* Aneventis asubset of the sample space

— Let) = {1,2,3,4,5, 6} be the 6 possible outcomes of a dice
role

— A ={1,5,6} € Qwould be the event that the dice roll comes
up as a one, five, or six

* The probability of an event is just the sum of all of the outcomes that
it contains

—p(4) =p(1) +p(5) + p(6)
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Independence
e

* Two events A and B are independent if
p(ANnB) =p(A)P(B)
Let's suppose that we have a fairdie: p(1) = ... = p(6) =1/6

IfA ={1,2,5}and B = {3,4, 6} are A and B indpendent?
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Independence
[

* Two events A and B are independent if
p(ANnB) =p(A)P(B)
Let's suppose that we have a fairdie: p(1) = ... = p(6) =1/6

IfA ={1,2,5}and B = {3,4, 6} are A and B indpendent?

No/!
p(ANB) =0+ -
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Independence
-

 Now, suppose that Q = {(1,1), (1,2), ..., (6,6)} is the set of all
possible rolls of two unbiased dice

e LetA ={(1,1),(1,2),(1,3), ..., (1,6)} be the event that the first
dieisaoneandlet B = {(1,6), (2,6), ..., (6,6)} be the event that
the second die is a six

 Are A and B independent?
A




Independence
-

 Now, suppose that Q = {(1,1), (1,2), ..., (6,6)} is the set of all
possible rolls of two unbiased dice

e LetA ={(1,1),(1,2),(1,3), ..., (1,6)} be the event that the first
dieisaoneandlet B = {(1,6), (2,6), ..., (6,6)} be the event that
the second die is a six

 Are A and B independent?
A




Conditional Probability

* The conditional probability of an event A given an event B
with p(B) > 0 is defined to be

 This is the probability of the event A N B over the sample space
Q' =B

* Some properties:

— Zweﬂp(wlB) =1

— If A and B are independent, thenp(A|B) = p(A4)
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Discrete Random Variables
_

* Adiscrete random variable, X, is a function from the state space ()
into a discrete space D

— Foreachx € D,

pX=x) =p({lw € Q: X(w) =x})
is the probability that X takes the value x

— p(X) defines a probability distribution

° ZxEDp(X — X) =1

* Random variables partition the state space into disjoint events
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomesin ()

* Let X(w) be equal to the sum of the value showing on the pair of dice
in the outcome w

-pX=2)="?

-p(X =8) =7
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomesin ()

* Let X(w) be equal to the sum of the value showing on the pair of dice
in the outcome w

1
-p(X =2) =

-p(X =8) =7
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Example: Pair of Dice
-

* Let () be the set of all possible outcomes of rolling a pair of dice

* Letp be the uniform probability distribution over all possible
outcomesin ()

* Let X(w) be equal to the sum of the value showing on the pair of dice
in the outcome w

1
- p(X =2) = 3¢

5
— p(X =8) = 36
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Discrete Random Variables
[

* We can have vectors of random variables as well
X(w) = [X1(w), ..., Xp(w)]
* The jointdistributionis p(X; = x¢, ..., X;; = x;,) is
p(X1 =x N NXy =xp)
typically written as
P(X1, ) Xp)

* Because X; = x; is an event, all of the same rules from basic
probability apply
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Entropy

* Astandard way to measure uncertainty of a random
variable is to use the entropy

H(Y)=— z p(Y =y)logp(Y =y)
Y=y

* You showed (I hope) on the homework that entropy is
maximized for uniform distributions

* Entropy is minimized for distributions that place all their
probability on a single outcome
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Entropy of a Coin Flip

H(X) X = outcome of coin flip with probability of heads p

104

+0.3

+0.2

0.2 0.4 0.6 0.8 1

+-0.1
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Conditional Entropy

* We can also compute the entropy of a random variable
conditioned on a different random variable

H(Y|X) = —ZP(X = X)ZP(Y =ylX =x)logp(Y = y|X = x)
X y

— This is called the conditional entropy

— This is the amount of information needed to quantify the
random variable Y given the random variable X
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Information Gain
,ee e

* Using entropy to measure uncertainty, we can greedily
select an attribute that guarantees the largest expected
decrease in entropy (with respect to the empirical
partitions)

IG(X) =H(Y) —H(Y|X)
— Called information gain

— Larger information gain corresponds to less uncertainty
about Y given X

* Notethat H(Y|X) < H(Y)
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Decision Tree Learning
e

* Basic decision tree building algorithm:

— Pick the feature/attribute with the highest information
gain

— Partition the data based on the value of this attribute

— Recurse over each new partition
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Choosing the Best Attribute

I
x1,%, € {0,1}
Which attribute should you split on?
1 1 +
1 0 +
/ \ / \ 1 1 +
1 0 +
y = y = y = y=—iZ 0 1 +
y = y = Yy = y=+:2
0 0
0 1
0 0

What is the information
gain in each case?
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Choosing the Best Attribute

X1, %o € {0,1}

Which attribute should you split on? oy | x|y

y

1 1 +

1 0 +

/ \ / \ R —

1 0 +

y=—=0 y="=s y=- y=- 0 1 +
y=+:4 y=+1 y=+ y=+

0 0 =

0 1 —

HY) = —ElogE—ElogE 0 0 B

8 °8 8 °8

H(Y|X;) =.5[-0log0 — 1log1] + .5[—.75log.75 — .251og .25]|
H(Y|X,) = .5[-.5log.5 —.5log.5] +.5[—.751og.75 — .25 log.25]

H(Y) — H(Y|X,) — H(Y) + H(Y|X,) = —log.5 > 0

Should split on x




When to Stop

 Ifthe current setis “pure” (i.e., has a single label in the
output), stop

* Ifyou run out of attributes to recurse on, even if the current
data set isn’t pure, stop and use a majority vote

* |f a partition contains no data items, nothing to recurse on
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Decision Trees
-

* Because of speed/ease of implementation, decision trees
are quite popular

— Can be used for regression too!
* Decision trees will always overfit!

— Itis always possible to obtain zero training error on the
input data with a deep enough tree (if there is no noise
in the labels)

— Solution?
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