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Announcements

• TA:  Baoye Xue

– Office hours:  Monday and Wednesday 5pm-6pm in the 
Clark Center CN 1.202D

– Email: bxx140230@utdallas.edu
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Learning Theory

• So far, we’ve been focused only on algorithms for finding 
the best hypothesis in the hypothesis space

– How do we know that the learned hypothesis will 
perform well on the test set?

– How many samples do we need to make sure that we 
learn a good hypothesis?

– In what situations is learning possible?
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Learning Theory

• If the training data was linearly separable, we saw that 
perceptron/SVMs will always perfectly classify the training 
data

– This does not mean that it will perfectly classify the test 
data

– Intuitively, if the true distribution of samples is linearly 
separable, then seeing more data should help us do 
better
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Problem Complexity

• Complexity of a learning problem depends on

– Size/expressiveness of the hypothesis space

– Accuracy to which a target concept must be 
approximated

– Probability with which the learner must produce a 
successful hypothesis

– Manner in which training examples are presented, e.g. 
randomly or by query to an oracle
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Problem Complexity

• Measures of complexity

– Sample complexity

• How much data you need in order to (with high probability) 
learn a good hypothesis

– Computational complexity 

• Amount of time and space required to accurately solve (with 
high probability) the learning problem

• Higher sample complexity means higher computational 
complexity
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PAC Learning

• Probably approximately correct (PAC)

– Developed by Leslie Valiant

– The only reasonable expectation of a learner is that with 
high probability it learns a close approximation to the 
target concept

– Specify two small parameters, 𝜖𝜖 and 𝛿𝛿, and require that 
with probability at least (1 − 𝛿𝛿) a system learn a 
concept with error at most 𝜖𝜖
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Consistent Learners

• Imagine a simple setting

– The hypothesis space is finite (i.e., 𝐻𝐻 = 𝑐𝑐)

– The true distribution of the data is 𝑝𝑝(𝑥⃗𝑥), no noisy labels

– We learned a perfect classifier on the training set, let’s 
call it ℎ ∈ H

• A learner is said to be consistent if it always outputs a perfect 
classifier on the training data assuming that one exists

– Want to compute the error of the classifier
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Notions of Error

• Training error of ℎ ∈ 𝐻𝐻

– The error on the training data

– Number of samples incorrectly classified divided by the 
total number of samples

• True error of ℎ ∈ 𝐻𝐻

– The error over all possible future random samples

– Probability that ℎmisclassifies a random data point

𝑝𝑝 ℎ 𝑥𝑥 ≠ 𝑦𝑦
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Learning Theory

• Let 𝑥𝑥 1 ,𝑦𝑦1 , … , (𝑥𝑥 𝑚𝑚 ,𝑦𝑦𝑚𝑚) be 𝑚𝑚 labelled data points 
sampled independently according to 𝑝𝑝

• Let 𝐶𝐶𝑖𝑖ℎ be a random variable that indicates whether or not 
the 𝑖𝑖𝑡𝑡𝑡 data point is correctly classified

• The probability that ℎ misclassifies the 𝑖𝑖𝑡𝑡𝑡 data point is

𝑝𝑝 𝐶𝐶𝑖𝑖ℎ = 0 = �
(𝑥𝑥,𝑦𝑦)

𝑝𝑝 𝑥𝑥,𝑦𝑦 1ℎ 𝑥𝑥 ≠𝑦𝑦 = 𝜖𝜖ℎ
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Learning Theory

• Let 𝑥𝑥 1 ,𝑦𝑦1 , … , (𝑥𝑥 𝑚𝑚 ,𝑦𝑦𝑚𝑚) be 𝑚𝑚 labelled data points 
sampled independently according to 𝑝𝑝

• Let 𝐶𝐶𝑖𝑖ℎ be a random variable that indicates whether or not 
the 𝑖𝑖𝑡𝑡𝑡 data point is correctly classified

• The probability that ℎ misclassifies the 𝑖𝑖𝑡𝑡𝑡 data point is

𝑝𝑝 𝐶𝐶𝑖𝑖ℎ = 0 = �
(𝑥𝑥,𝑦𝑦)

𝑝𝑝 𝑥𝑥,𝑦𝑦 1ℎ 𝑥𝑥 ≠𝑦𝑦 = 𝜖𝜖ℎ

This is the true error of ℎ
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Learning Theory

• Probability that all data points classified correctly?

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1 = �
𝑖𝑖=1

𝑚𝑚

𝑝𝑝(𝐶𝐶𝑖𝑖ℎ = 1) = 1 − 𝜖𝜖ℎ 𝑚𝑚

• Probability that a hypothesis ℎ ∈ H whose true error is at 
least 𝜖𝜖 correctly classifies the 𝑚𝑚 data points is then

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1 ≤ 1 − 𝜖𝜖 𝑚𝑚 ≤ 𝑒𝑒−𝜖𝜖𝜖𝜖

for 𝜖𝜖 ≤ 1
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Learning Theory

• The version space (set of consistent hypotheses) is said to 
be 𝜖𝜖-exhausted if and only if every consistent hypothesis 
has true error less than 𝜖𝜖

– Enough samples to guarantee that every consistent 
hypothesis has error at most 𝜖𝜖

• We’ll show that w.h.p. every hypothesis with true error at 
least 𝜖𝜖 is not consistent with the data
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The Union Bound

• Let 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 ⊆ 𝐻𝐻 be the set of all hypotheses that have true 
error at least 𝜖𝜖

• From before for each ℎ ∈ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵, 
𝑝𝑝 ℎ correctly classifies all 𝑚𝑚 data points ≤ 𝑒𝑒−𝜖𝜖𝜖𝜖

• So, the probability that some ℎ ∈ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 correctly 
classifies all of the data points is

𝑝𝑝 �
ℎ∈𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵

𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1 ≤ �
ℎ∈𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵

𝑝𝑝 𝐶𝐶1ℎ = 1, … ,𝐶𝐶𝑚𝑚ℎ = 1

≤ 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 𝑒𝑒−𝜖𝜖𝜖𝜖
≤ 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖
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Haussler, 1988

• What we just proved:

– Theorem: For a finite hypothesis space, 𝐻𝐻, with 𝑚𝑚 i.i.d. 
samples, and 0 < 𝜖𝜖 < 1, the probability that the 
version space is not 𝜖𝜖-exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖

• We can turn this into a sample complexity bound
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Sample Complexity

• Let 𝛿𝛿 be an upper bound on the desired probability of not 
𝜖𝜖-exhausting the sample space

– The probability that the version space is not 𝜖𝜖-
exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖 ≤ 𝛿𝛿

– Solving for 𝑚𝑚 yields

𝑚𝑚 ≥ −
1
𝜖𝜖

log
𝛿𝛿
𝐻𝐻

= log |𝐻𝐻| + log
1
𝛿𝛿

/𝜖𝜖
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Sample Complexity

• Let 𝛿𝛿 be an upper bound on the desired probability of not 
𝜖𝜖-exhausting the sample space

– The probability that the version space is not 𝜖𝜖-
exhausted is at most 𝐻𝐻 𝑒𝑒−𝜖𝜖𝜖𝜖 ≤ 𝛿𝛿

– Solving for 𝑚𝑚 yields

𝑚𝑚 ≥ −
1
𝜖𝜖

log
𝛿𝛿
𝐻𝐻

= log |𝐻𝐻| + log
1
𝛿𝛿

/𝜖𝜖

This is sufficient, 
but not necessary 
(union bound is 
quite loose)
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean 
function given 𝑛𝑛 Boolean features

• Hypothesis space consists of all decision trees

– Size of this space = ?

• How many samples are sufficient?
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Decision Trees

• Suppose that we want to learn an arbitrary Boolean 
function given 𝑛𝑛 Boolean features

• Hypothesis space consists of all decision trees

– Size of this space = 22𝑛𝑛 = number of Boolean 
functions on 𝑛𝑛 inputs

• How many samples are sufficient?

𝑚𝑚 ≥ log 22𝑛𝑛 + log
1
𝛿𝛿

/𝜖𝜖
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Generalizations

• How do we handle the case the there is no perfect 
classifier?

– Pick the hypothesis with the lowest error on the training 
set

• What do we do if the hypothesis space isn’t finite?

– Infinite sample complexity?

– Next time…
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Chernoff Bounds

• Chernoff bound:  Suppose 𝑌𝑌1, … ,𝑌𝑌𝑚𝑚 are i.i.d. random 
variables taking values in {0, 1} such that 𝐸𝐸𝑝𝑝 𝑌𝑌𝑖𝑖 = 𝑦𝑦.  
For 𝜖𝜖 > 0,

𝑝𝑝 𝑦𝑦 −
1
𝑚𝑚
�
𝑖𝑖

𝑌𝑌𝑖𝑖 ≥ 𝜖𝜖 ≤ 𝑒𝑒−2𝑚𝑚𝜖𝜖2

• Applying this to 1 − 𝐶𝐶1ℎ , … , 1 − 𝐶𝐶𝑚𝑚ℎ gives

𝑝𝑝 𝜖𝜖ℎ −
1
𝑚𝑚
�
𝑖𝑖

(1 − 𝐶𝐶𝑖𝑖ℎ) ≥ 𝜖𝜖 ≤ 𝑒𝑒−2𝑚𝑚𝜖𝜖2
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Chernoff Bounds

• Chernoff bound:  Suppose 𝑌𝑌1, … ,𝑌𝑌𝑚𝑚 are i.i.d. random 
variables taking values in {0, 1} such that 𝐸𝐸𝑝𝑝 𝑌𝑌𝑖𝑖 = 𝑦𝑦.  
For 𝜖𝜖 > 0,

𝑝𝑝 𝑦𝑦 −
1
𝑚𝑚
�
𝑖𝑖

𝑌𝑌𝑖𝑖 ≥ 𝜖𝜖 ≤ 𝑒𝑒−2𝑚𝑚𝜖𝜖2

• Applying this to 1 − 𝐶𝐶1ℎ , … , 1 − 𝐶𝐶𝑚𝑚ℎ gives

𝑝𝑝 𝜖𝜖ℎ −
1
𝑚𝑚
�
𝑖𝑖

(1 − 𝐶𝐶𝑖𝑖ℎ) ≥ 𝜖𝜖 ≤ 𝑒𝑒−2𝑚𝑚𝜖𝜖2

This is the training error
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PAC Bounds

• Theorem: For a finite hypothesis space H finite, 𝑚𝑚 i.i.d. 
samples, and 0 < 𝜖𝜖 < 1, the probability that true error of 
any of the best classifiers (i.e., lowest training error) is 
larger than its training error plus 𝜖𝜖 is at most |𝐻𝐻|𝑒𝑒−2𝑚𝑚𝜖𝜖2

– Sample complexity (for desired 𝛿𝛿 ≥ |𝐻𝐻|𝑒𝑒−2𝑚𝑚𝜖𝜖2 )

𝑚𝑚 ≥ log 𝐻𝐻 + log
1
𝛿𝛿

/2𝜖𝜖2
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
1
2𝑚𝑚

log |𝐻𝐻| + log
1
𝛿𝛿

– For small |𝐻𝐻|
• High bias (may not be enough hypotheses to choose from)
• Low variance

“bias” “variance”
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PAC Bounds

• If we require that the previous error is bounded above by 𝛿𝛿, 
then with probability (1 − 𝛿𝛿), for all ℎ ∈ 𝐻𝐻

𝜖𝜖ℎ ≤ 𝜖𝜖ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
1
2𝑚𝑚

log |𝐻𝐻| + log
1
𝛿𝛿

– For large |𝐻𝐻|
• Low bias (lots of good hypotheses)
• High variance

“bias” “variance”
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PAC Learning

• Given:
– Set of data 𝑋𝑋
– Hypothesis space 𝐻𝐻
– Set of target concepts 𝐶𝐶
– Training instances from unknown probability distribution 

over 𝑋𝑋 of the form (𝑥𝑥, 𝑐𝑐 𝑥𝑥 )

• Goal:
– Learn the target concept 𝑐𝑐 ∈ C
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PAC Learning

• Given:
– A concept class 𝐶𝐶 over 𝑛𝑛 instances from the set 𝑋𝑋
– A learner 𝐿𝐿 with hypothesis space 𝐻𝐻

– Two constants, 𝜖𝜖, 𝛿𝛿 ∈ (0, 1
2
)

• 𝐶𝐶 is said to be PAC learnable by 𝐿𝐿 using 𝐻𝐻 iff for all 
distributions over 𝑋𝑋, learner 𝐿𝐿 by sampling 𝑛𝑛 instances, 
will with probability at least 1 − 𝛿𝛿 output a hypothesis ℎ ∈
H such that
– 𝜖𝜖ℎ ≤ 𝜖𝜖

– Running time is polynomial in 1
𝜖𝜖

, 1
𝛿𝛿

,𝑛𝑛, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)
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PAC Learning

• PAC concerned about computational resources required for 
learning

– In practice, we are often only concerned about the 
number of training examples required

– The two are related

• The computational limitation also imposes a polynomial 
constraint on the training set size, since a learner can process 
at most polynomial data in polynomial time

• The learner must visit each example at least once 
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