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Last Time
=

* Probably approximately correct (PAC)

— The only reasonable expectation of a learner is that with
high probability it learns a close approximation to the
target concept

— Specify two small parameters, 0 < €,60 < 1
* ¢ isthe error of the approximation

* (1 — &) isthe probability that, given m i.i.d. samples, our
learning algorithm produces a classifier with error at most ¢
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Learning Theory
e

 We use the observed data in order to learn a classifier

 Want to know how far the learned classifier deviates from the
(unknown) underlying distribution

— With too few samples, we will with high probability learn a
classifier whose true error is quite high even though it may be a
perfect classifier for the observed data

— As we see more samples, we pick a classifier from the hypothesis
space with low training error & hope that it also has low true error

* Want this to be true with high probability - can we bound how
many samples that we need?




Haussler, 1988

-
* What we proved last time:

Theorem: For a finite hypothesis space, H, with m i.i.d.
samples, and 0 < € < 1, the probability that any
consistent classifier has true error larger than € is at most
|H|e—em

* We can turn this into a sample complexity bound




Sample Complexity

* Let 6 be an upper bound on the desired probability of not
e-exhausting the sample space

— The probability that the version space is not e-
exhausted isatmost |[H|e €™ < §

— Solving for m yields

- 1l )
m > Eong

1
= <log |H| + logg )/E




Generalizations
,ee e

 How do we handle the case that there is no consistent
classifier?

— Pick the hypothesis with the lowest error on the training
set, bound?

* What do we do if the hypothesis space isn't finite?
— Infinite sample complexity?

— Need a way to measure the complexity of the space that
isn’t based on its size




Chernoff Bounds

* Chernoff bound: SupposeY;, ..., Y,, arei.i.d. random
variables taking values in {0, 1} such that E,[V;] = .

Fore > 0,

p y—lZY- > e | < e72me’
m S
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Chernoff Bounds

* Forh € H, let Z]* be an indicator random variable that is
one if h misclassifies the it"* data point

p(Zlh — 1) — ZP(X,)’)lh(x)iy — €n
X,y

* Applying Chernoff bound to Z%, ..., Z gives

1 ne?
—— ) Zlze|<e e
p(eh mZ E) ©
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Chernoff Bounds

* Forh € H, let Z]* be an indicator random variable that is
one if h misclassifies the it"* data point

p(Zih — 1) — zp(x:y)lh(x)iy — €p
X,y

* Applying Chernoff bound to Z%, ..., Z gives

_ 2
p(eh > 6) < g 2me

This is the training error




PAC Bounds

Theorem: For a finite hypothesis space H, m i.i.d. samples,
and 0 < e < 1, the probability that true error of any of the
best classifiers (i.e., lowest training error) is larger than its

. . —_ 2
training error plus € is at most |H|e ~2™¢

« Sample complexity (for desired 6 = IHIe_szZ)

1
<log|H| + log — )/26
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PAC Bounds

* [fwe require that the previous error is bounded above by 9,
then with probability (1 — 6),forallh € H

. 1 1
< gtrain | H loo —
€p < €y, +V2m<og| | + og5)

\

— , |

“bias” “variance”

— Forsmall |H|
 High bias (may not be enough hypotheses to choose from)
* Low variance
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PAC Bounds

* [fwe require that the previous error is bounded above by 9,
then with probability (1 — 6),forallh € H

€ < €Lrain 4

A

1 | H| +1 1
2m ogl l 086
J

—

Ilbiasll

— Forlarge |H |

|

“variance”

 Low bias (lots of good hypotheses)

* High variance
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VC Dimension
_

* Our analysis for the finite case was based on |H |
— This translates into infinite sample complexity

— We can derive a different notion of complexity for infinite
hypothesis spaces by considering only the number of
points that can be correctly classified by some member
of H
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VC Dimension
I

* How many points in 1-D can be correctly classified by a
linear separator?

— 2 points:
':B:' _— Yes!
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VC Dimension
I

* How many points in 1-D can be correctly classified by a
linear separator?

— 2 points:
':B:' E:}' Yes!
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VC Dimension
I

* How many points in 1-D can be correctly classified by a
linear separator?

— 2 points:
—_— EBj Yes!
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VC Dimension
I

* How many points in 1-D can be correctly classified by a
linear separator?

— 3 points:

o '{b ';l:b Yes!
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VC Dimension
I

* How many points in 1-D can be correctly classified by a
linear separator?

— 3 points:
ﬂj — E[b NO!
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VC Dimension
_

* How many points in 1-D can be correctly classified by a
linear separator?

— 3 points:

ﬂj -:55 NO!

— 3 points and up: for any collection of three or more there
is always some choice of pluses and minuses such that
that the points cannot be classified with a linear
separator
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VC Dimension

* Aset of points is shattered by a hypothesis space H if and
only if for every partition of the set of points into positive

and negative examples, there exists some consistent h €
H

* The Vapnik-Chervonenkis (VC) dimension of H over inputs

from X is the size of the /argest finite subset of X shattered
by H
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VC Dimension
e

e Common misconception:

— VC dimension is determined by the largest shattered set
of points, not the highest number such that all sets of
points that size can be shattered

NP = o

Cannot be shattered by a line
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VC Dimension
S

e Common misconception:

— VC dimension is determined by the largest shattered set
of points, not the highest number such that all sets of
points that size can be shattered

ok
-

Can be shattered by a line (no
matter the labels), so VC
dimension is at least 3
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VC Dimension
S

* What is the VC dimension of 2-D space under linear
separators?

— |tis at least three from the last slide

— Can some set of four points be shattered?

-
-
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VC Dimension
S

* What is the VC dimension of 2-D space under linear
separators?

— |tis at least three from the last slide

— Can some set of four points be shattered?

- o
o
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VC Dimension
S

* What is the VC dimension of 2-D space under linear
separators?

— |tis at least three from the last slide

— Can some set of four points be shattered?

NO! This means that
== the VC dimension is at
most 3
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VC Dimension

* There exists a linear separator that can shatter any set of
sized + 1inad — dimensional space, but notd + 2

* The larger the subset of X that can be shattered, the more
expressive the hypothesis space is

* If arbitrarily large finite subsets of X can be shattered, then
VC(H) = ©
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Axis Parallel Rectangles

e Let X be the set of all points in R?
* Let H be the set of all axis parallel rectangles in 2-D

— WhatisVC(H)?
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Axis Parallel Rectangles
|

e Let X be the set of all points in R?
* Let H be the set of all axis parallel rectangles in 2-D

—VC(H) = 4
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Axis Parallel Rectangles
-

e Let X be the set of all points in R?
* Let H be the set of all axis parallel rectangles in 2-D
—-VC(H) =4

— A rectangle can contain at most 4 extreme points, the
fifth point must be contained within the rectangle
defined by these points I

b

b

0
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PAC Bounds with VC Dimension

e VC dimension can be used to construct PAC bounds
>1 41 2+8 VC(H)I 13
m = - og6 0g -

 With probability at least (1 — &) every h € H satisfies

. 1 2m 4
< gtrain —
€Ep < €y, +V (VC(H)<IH(VC(H)>+1>+IH5>

* These bounds (and the preceding discussion) only work for
binary classification, but there are generalizations
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PAC Learning

* Given:
— Set of data X
— Hypothesis space H
— Set of target concepts C

— Training instances from unknown probability distribution
over X of the form (x, c(x))

e Goal:
— Learn the target concept ¢ € C
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PAC Learning
e

* Given:
— A concept class C over n instances from the set X

— Alearner L with hypothesis space H

— Two constants, €, 0 € (0, %)

e ( issaidto be PAC learnable by L using H iff for all
distributions over X, learner L by sampling n instances,
will with probability at least 1 — 6 output a hypothesis h €

H such that
— €p < €

e .11 .
— Running time is polynomial in s size(c)
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