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The Strategy So Far...

* Choose hypothesis space

e Construct loss function (ideally convex)

* Minimize loss to “learn” correct parameters



General Optimization

A mathematical detour, we’ll come back to SVMs soon!

min X
min fo(x)

subject to:

fi(x) <0, i=1,..,m
hl(X) =0, 1 =1, ey P



General Optimization

subject to:



General Optimization

min fo(x
min, fo(x)
subject to: Constraints do not need to
be linear
1=1,....,m



Example

subject to:

min x4 log x; + x5 log x,
XERS3

X1 +x, =1
x1 =0
X, = 0




Example

subject to:

min x4 log x; + x5 log x,
XERS3

1_x1_x2=0
—X1SO
—XZSO




Lagrangian

m b
LAY = fol0) + ) Lfil) + ) viki(x)
=1 =1

* Incorporate constraints into a new objective function

« A= 0andv are vectors of Lagrange multipliers

* The Lagrange multipliers can be thought of as enforcing soft
constraints



Example

min x4 log x; + x5 log x,
xER3

subject to:

1_x1_x2:()
—x1SO
—XZSO

L(xll xZJvliﬂ'li AZ)
= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Aoy



Duality

e Construct a dual function by minimizing the Lagrangian over the
primal variables

g4, v) =infL(x,A,v)
X

* g(4,v) = —oo whenever the Lagrangian is not bounded from
below for a fixed A and v
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Example

mﬁ%n xq log x1 + x, log x5
€

subject to:
l1—x1—x,=0
—x1 <0
—x, <0

L(xl) xZJvliﬂ'l) AZ)
= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Ay

oL

dx, =logxi+1-v =4 =0 x; =exp(vy + 44— 1)
—

oL Xy = eXp(Vl + AZ — 1)

axz =logx, +1—-v;—14,=0
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Example

min x4 log x; + x5 log x,
xER3

subject to:
l1—x1—x,=0
—x1 <0
—x, <0

L(xl) xZJvliﬂ'l) AZ)
= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Ay

g(v1, 44, 43)
=exp(vi+ A4 -1 (v +4,—-1)
+exp(vi+A,—1D)(vy+4,—-1)
+vi(1—exp(v;+A4;,—1) —exp(vi +4, — 1))
— A exp(v; +14, — 1) —1412 exp(vi + 1, — 1)



Example

min x4 log x; + x5 log x,
xER3

subject to:
l1—x1—x,=0
—x1 <0
—x, <0

L(xl) xz,Vl,Al, AZ)
= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Ay

g(vy,A1,4,) = —exp(v; +4; — 1) —exp(vy + 4, — 1) + 14
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The Primal Problem

min fo(x
min fo(x)
subject to:

fi(x) <0, i=1,..,m
hl(X) =0, 1 =1, ey P

Equivalently,

inf sup L(x,1,v)

X A1=0,v

Why are these equivalent?
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The Primal Problem

min X
xEIanfo( )

subject to:

filx) <0, i=1,..,m
hi(x) =0, i=1,..,p

Equivalently,

inf sup L(x,4,v)

X A1=0,v

m p
Sup lfo(x) + z Aifi(x) + z Vihi(x)] = 00
i=1

>0,V _
A=0 —

whenever x violates the constraints
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The Dual Problem

sup g(4,v)
A=0,v

Equivalently,
sup infL(x, A, v)

A=0,v X

* The dual problem is always concave, even if the primal problem
IS not convex

* Foreachx, L(x,A,v) is alinear functionin A and v

 Maximum (or supremum) of concave functions is concave!
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Primal vs. Dual

sup infL(x,4,v) < 1nf sup L(x,A,v)

A=0v X A=0,v

e Why?
« g4 v) < L(x,A,v) forall x

« L(x',A,v) < fo(x") for any feasible x’, 1 = 0
e x is feasible if it satisfies all of the constraints

* Let x™ be the optimal solution to the primal problem and
A=>0

gL v) < L(x*,Av) < f(x™)

17



Example

min x4 log x; + x5 log x,

x€ER3
subject to:
l1—x1—x,=0
—x1 <0
—x, <0
L(xl'xZJVbAl'AZ)

= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Ay

g(vy, A, A) = —exp(vy + 44 — 1) —exp(vy + 14, — 1) + v,
a—g=—exp(v1+/11—1)—exp(1/1+/12—1)+1=0

aVl

g is a decreasing function of A; and 4,,
so the optimum is achieved at the boundary 4; =4, =0
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Example

min x4 log x; + x5 log x,
xER3

subject to:
l1—x1—x,=0
—x1 <0
—x, <0

L(xl) xZJvliﬂ'l) AZ)
= xqlogxy + x,logx, +vi - (1 —x1 —x3) — Ayx1 — Ay

g(vy,A1,4,) = —exp(v; +4; — 1) —exp(vy + 4, — 1) + 14

;Tg=—exp(v1+/11—1)—exp(v1+/12 —1)+1=0
1
—exp(v; — 1) —exp(v; —1)+1=0
exp(v; —1) =.5
v; =log(.5) +1
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More Examples

* Minimize x* + y* subjecttox +y > 1

* Given a point z € R" and a hyperplane wx + b = 0, find the
projection of the point z onto the hyperplane
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. Duality

* Under certain conditions, the two optimization problems are
equivalent

sup infL(x,A,v) = 1nf sup L(x,A,v)

A=0,v X A=0,v
* This is called strong duality

e If the inequality is strict, then we say that there is a duality gap

* Size of gap measured by the difference between the two
sides of the inequality
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Slater’s Condition

For any optimization problem of the form

min X
xE[anfo( )

subject to:

fi(x) <0, i=1,..,m
Ax =D

where fy, ..., fi, are convex functions, strong duality holds if there
exists an x such that

fi(x) <0, i=1,..,m
Ax =D
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Dual SVM

: 2
min — (|W
in = Iw

such that
yi(wTx® + b) > 1,forall i

* Note that Slater’s condition holds as long as the data is linearly
separable
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Dual SVM

1 |
Lw,b,2) = 5w w + 2 2,1 — 3w x® + b))
[

Convex in w, so take derivatives to form the dual

-~ = Wi + z —Aiyix,g) =0

i

oL
v Z —Aiyi =0

i
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Dual SVM

1 |
Lw,b,2) = 5w w + 2 2,1 — 3w x® + b))
[

Convex in w, so take derivatives to form the dual

w = z Aiyix®

i

z/liYi =0

i
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Dual SVM

1 T g
w53 0 2 Ao+ )
i i
2 Aiyi =0
[

* By strong duality, solving this problem is equivalent to solving
the primal problem

such that

e Given the optimal A, we can easily construct w (b can be
found by complementary slackness...)
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Complementary Slackness

* Suppose that there is zero duality gap

* Letx™ be an optimum of the primal and (1%, v™) be an
optimum of the dual

folx) = g@v) p
= inf |foCO) + ) Afi) + ) viky <x>]
D
< fole) + ) Zifixe) + ) Vil
i=1 =1

= fole) + ) Aifix)
< fo(x") -
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Complementary Slackness

e This means that

z/l’{fi(x*) =0
i=1
« As1>0and f;(x;) <0, this can only happen if
Aifi(x*) =0foralli
« Put another way,

 If f;(x*) < 0 (i.e., the constraint is not tight), then
;=0

« If A7 >0, then f;(x*) =0
* ONLY applies when there is no duality gap
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Dual SVM

1 T g
w53 0 2 Ao+ )
i i
2 Aiyi =0
[

* By complementary slackness, A; > 0 means that xW s a
support vector (can then solve for b using w)

such that
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Dual SVM

1 T g
w53 0 2 Ao+ )
i i
2 Aiyi =0
[

 Takes O(n?) time just to evaluate the objective function

such that

» Active area of research to try to speed this up
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Dual SVM

1 T g
w53 0 2 Ao+ )
i i
2 Aiyi =0
[

* The dual formulation only depends on inner products between
the data points

such that

 Same thing is true if we use feature vectors instead
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Dual SVM

1 . .
R EZ 2 22y, ®(x ) & (xD) + z &
A | [

such that
2 Aiy; =0
i

* The dual formulation only depends on inner products between
the data points

 Same thing is true if we use feature vectors instead
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The Kernel Trick

* For some feature vectors, we can compute the inner products
quickly, even if the feature vectors are very large

* Thisis bestillustrated by example

_xlxz_
X2X1
* Let ¢(X1,X2) — x12

xZ
o d(x1, %) P(2q,22) = x727 + 2x1%221 2 + X525
= (X121 + x22)?

= (xT2)?
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The Kernel Trick

* For some feature vectors, we can compute the inner products
quickly, even if the feature vectors are very large

* Thisis bestillustrated by example

_xlxz_

* Let ¢(X1,X2) — x12

2.2
1X2Z1Zy + X5Z5

* ¢(X1, XZ)T(.b(Zli ZZ)

2
T+ X->Z
2 2) Reduces to a dot

— (xTZ)Z product in the original
space
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The Kernel Trick

* The same idea can be applied for the feature vector ¢ of all
polynomials of degree (exactly) d

* p() P(2) = (x"2)¢

* More generally, a kernel is a function
k(x,z) = ¢(x)T ¢p(2) for some feature map ¢

 Rewrite the dual objective

1 .
__ 7 @ ) .
Azo,g%{yﬁo ZZZAJJYLYJIC(X ,x97) + E A
] l

i
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Examples of Kernels

Polynomial kernel of degree exactly d

e k(x,2z) = (xTz)®

General polynomial kernel of degree d for some ¢

e k(x,2) = (xTz + ¢)?

Gaussian kernel for some o

e k(x,z) = exp (—||x—z||2)

202

* The corresponding ¢ is infinite dimensional!

So many more...
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Gaussian Kernels

« Consider the Gaussian kernel

(—le—ZHZ) (—(x—Z)T(x—Z)>
exp = exp

202 202

—|lx]|* + 2x"z — IIZII2>

1|1
=exp| — 55 |exp

« Use the Taylor expansion for exp()

(xTZ> - (xTz)"
exp =

gnn!

0-2
n=0

37

1z]|*

202

o

xTz

0-2
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Gaussian Kernels

Consider the Gaussian kernel

(—le—ZHZ) (—(x—Z)T(x—Z)>
exp = exp

202 202

(—IIXII2 +2x"z - I|Z||2>
= exp

202

1x]°
=exp| — 55 |exp

Use the Taylor expansion for e

38

1z]|*

202

ol

Polynomial kernels of
every degree!



Kernels

* Bigger feature space increases the possibility of overfitting
* Large margin solutions may still generalize reasonably well

* Alternative: add “penalties” to the objective to disincentivize
complicated solutions

minz lwl||? + ¢ - (# of misclassifications)
w

* Not a quadratic program anymore (in fact, it’s NP-hard)

* Similar problem to counting the number of misclassifications,
no notion of how badly the data is misclassified
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