

Variance Reduction and Ensemble Methods

Nicholas Ruozzi University of Texas at Dallas

Last Time

- PAC learning
- Bias/variance tradeoff
 - small hypothesis spaces (not enough flexibility) can have high bias
 - rich hypothesis spaces (too much flexibility) can have high variance
- Today: more on this phenomenon and how to get around it

Intuition

- Bias
 - Measures the accuracy or quality of the algorithm
 - High bias means a poor match
- Variance
 - Measures the precision or specificity of the match
 - High variance means a weak match
- We would like to minimize each of these
- Unfortunately, we can't do this independently, there is a tradeoff

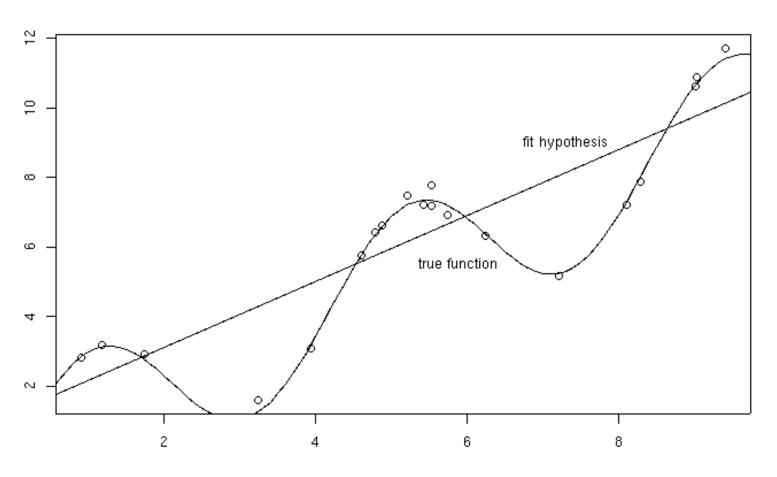
Bias-Variance Analysis in Regression

- True function is $y = f(x) + \epsilon$
 - Where noise, ϵ , is normally distributed with zero mean and standard deviation σ
- Given a set of training examples, $(x^{(1)}, y^{(1)}), \dots, (x^{(n)}, y^{(n)})$, we fit a hypothesis $g(x) = w^T x + b$ to the data to minimize the squared error

$$\sum_{i} \left[y^{(i)} - g(x^{(i)}) \right]^2$$

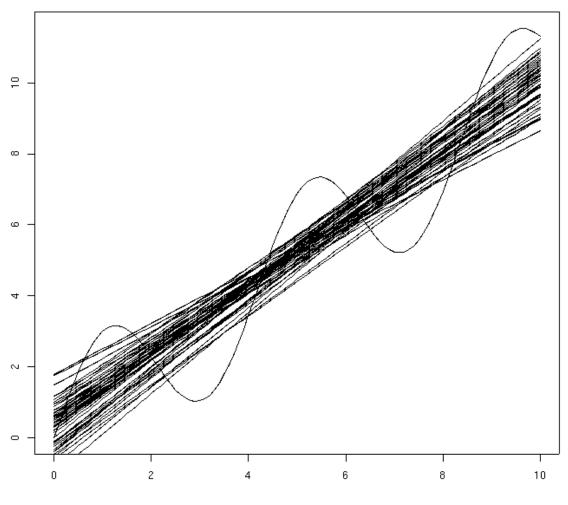
2-D Example

Sample 20 points from $f(x) = x + 2\sin(1.5x) + N(0.0.2)$



2-D Example

50 fits (20 examples each)



Bias-Variance Analysis

- Given a new data point x' with observed value $y' = f(x') + \epsilon$, want to understand the expected prediction error
- Suppose that training samples are drawn independently from a distribution p(S), want to compute the expected error of the estimator

$$E[(y'-g_S(x'))^2]$$

Probability Reminder

Variance of a random variable, Z

$$Var(Z) = E[(Z - E[Z])^{2}]$$

= $E[Z^{2} - 2ZE[Z] + E[Z]^{2}]$
= $E[Z^{2}] - E[Z]^{2}$

• Properties of Var(Z)

$$Var(aZ) = E[a^{2}Z^{2}] - E[aZ]^{2} = a^{2}Var(Z)$$

$$E[(y' - g_S(x'))^2] = E[g_S(x')^2 - 2g_S(x')y' + y'^2]$$

$$= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2]$$

$$= Var(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x')]f(x')$$

$$+ Var(y') + f(x')^2$$

$$= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + Var(\epsilon)$$

$$= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2$$

$$E\left[\left(y'-g_S(x')\right)^2\right] = E\left[g_S(x')^2 - 2g_S(x')y' + y'^2\right]$$

$$= E\left[g_S(x')^2\right] + 2E\left[g_S(x')\right]E\left[y'\right] + E\left[y'^2\right]$$
The samples S and the noise
$$\epsilon \text{ are } + Var(y') + E\left[g_S(x')\right]^2 - 2E\left[g_S(x')\right]f(x') + Var(y') + f(x')^2$$
independent
$$= Var(g_S(x')) + \left(E\left[g_S(x')\right] - f(x')\right)^2 + Var(\epsilon)$$

$$= Var(g_S(x')) + \left(E\left[g_S(x')\right] - f(x')\right)^2 + \sigma^2$$

$$E\left[\left(y'-g_{S}(x')\right)^{2}\right] = E[g_{S}(x')^{2} - 2g_{S}(x')y' + y'^{2}]$$

$$= E[g_{S}(x')^{2}] - 2E[g_{S}(x')]E[y'] + E[y'^{2}]$$
Follows from definition of variance
$$= Var(g_{S}(x')) + E[g_{S}(x')]^{2} - 2E[g_{S}(x')]f(x')$$

$$+ Var(y') + f(x')^{2}$$

$$= Var(g_{S}(x')) + \left(E[g_{S}(x')] - f(x')\right)^{2} + Var(\epsilon)$$

$$= Var(g_{S}(x')) + \left(E[g_{S}(x')] - f(x')\right)^{2} + \sigma^{2}$$

$$E[(y' - g_S(x'))^2] = E[g_S(x')^2 - 2g_S(x')y' + y'^2]$$

$$= E[g_S(x')^2] - 2E[g_S(x')]E[y'] + E[y'^2] \qquad E[y'] = f(x')$$

$$= Var(g_S(x')) + E[g_S(x')]^2 - 2E[g_S(x)]f(x')$$

$$+ Var(y') + f(x')^2$$

$$= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + Var(\epsilon)$$

$$= Var(g_S(x')) + (E[g_S(x')] - f(x'))^2 + \sigma^2$$

$$E\left[\left(y'-g_{S}(x')\right)^{2}\right] = E\left[g_{S}(x')^{2} - 2g_{S}(x')y' + y'^{2}\right]$$

$$= E\left[g_{S}(x')^{2}\right] - 2E\left[g_{S}(x')\right]E\left[y'\right] + E\left[y'^{2}\right]$$

$$= Var\left(g_{S}(x')\right) + E\left[g_{S}(x')\right]^{2} - 2E\left[g_{S}(x')\right]f(x')$$

$$+ Var(y') + f(x')^{2}$$

$$= Var\left(g_{S}(x')\right) + \left(E\left[g_{S}(x')\right] - f(x')\right)^{2} + Var(\epsilon)$$

$$= Var\left(g_{S}(x')\right) + \left(E\left[g_{S}(x')\right] - f(x')\right)^{2} + \sigma^{2}$$
Variance

Bias

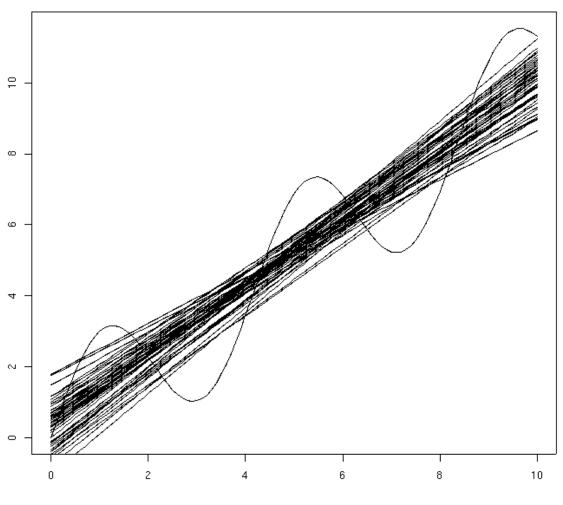
Noise

Bias, Variance, and Noise

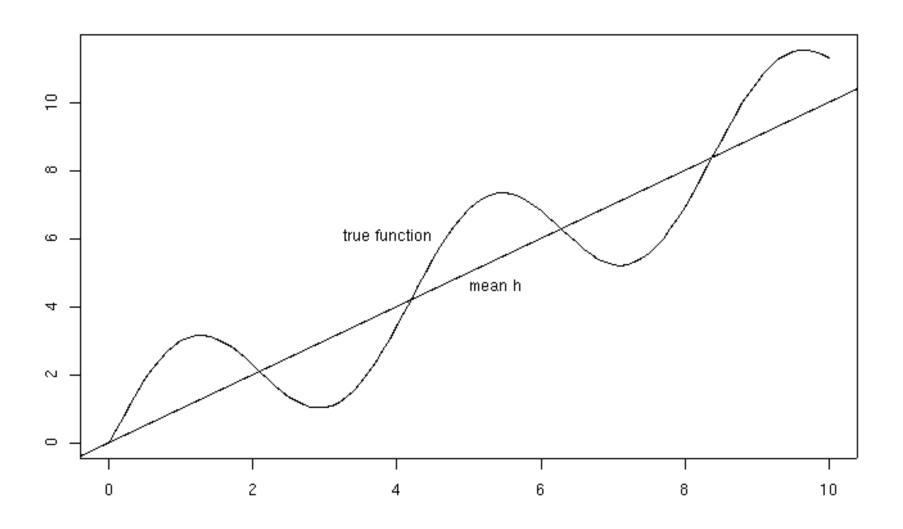
- Variance: $E[(g_S(x') E[g_S(x')])^2]$
 - Describes how much $g_S(x')$ varies from one training set S to another
- Bias: $E[g_S(x')] f(x')$
 - Describes the average error of $g_S(x')$
- Noise: $E\left[\left(y'-f(x')\right)^2\right]=E\left[\epsilon^2\right]=\sigma^2$
 - Describes how much y' varies from f(x')

2-D Example

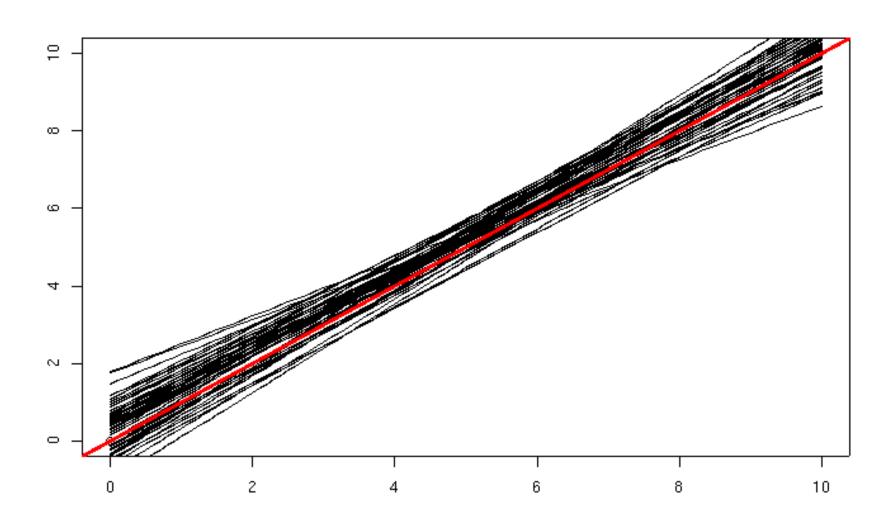
50 fits (20 examples each)



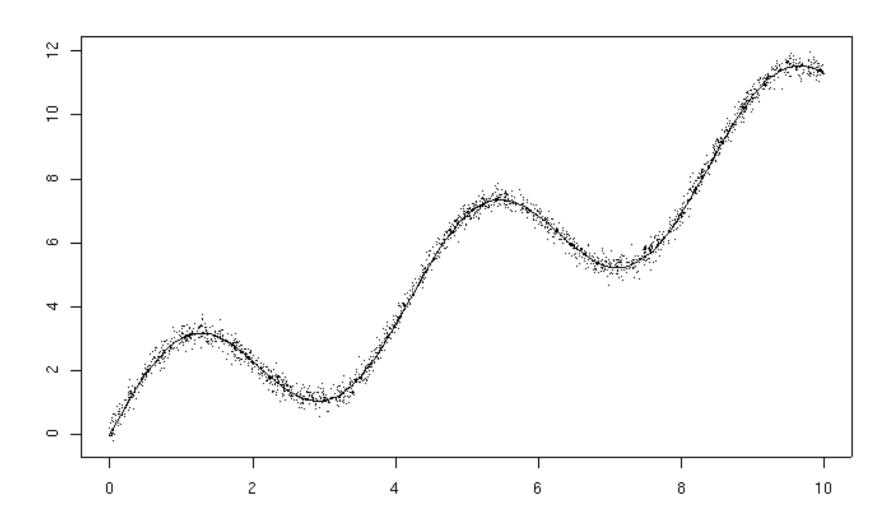
Bias



Variance



Noise



Bias

- Low bias
 - 3
- High bias
 - [

Bias

- Low bias
 - Linear regression applied to linear data
 - 2nd degree polynomial applied to quadratic data
- High bias
 - Constant function
 - Linear regression applied to highly non-linear data

Variance

- Low variance
 - ?
- High variance
 - 7

Variance

- Low variance
 - Constant function
 - Model independent of training data
- High variance
 - High degree polynomial

Bias/Variance Tradeoff

- (bias²+variance) is what counts for prediction
- As we saw in PAC learning, we often have
 - Low bias ⇒ high variance
 - Low variance ⇒ high bias
 - Is this a firm rule?

Reduce Variance Without Increasing Bias

• Averaging reduces variance: let $Z_1, ..., Z_N$ be i.i.d random variables

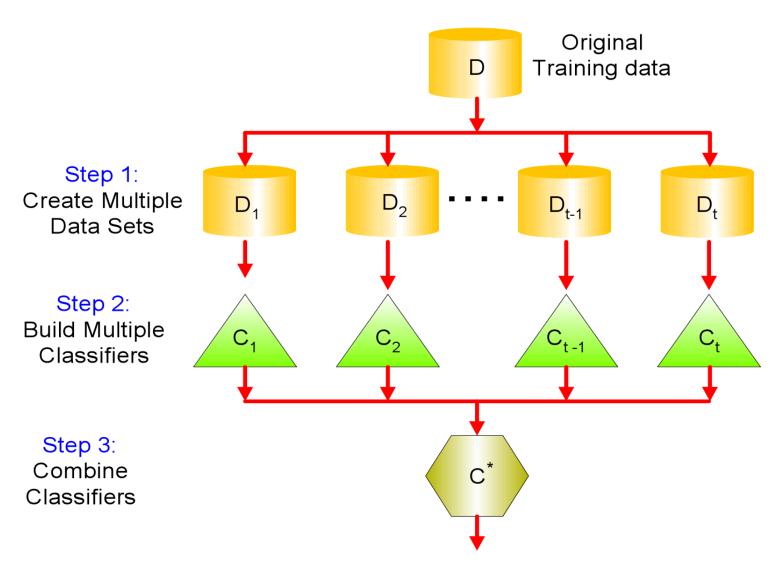
$$Var\left(\frac{1}{N}\sum_{i}Z_{i}\right) = \frac{1}{N}Var(Z_{i})$$

- Idea: average models to reduce model variance
- The problem
 - Only one training set
 - Where do multiple models come from?

Bagging: Bootstrap Aggregation

- Take repeated bootstrap samples from training set D (Breiman, 1994)
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D
- Bagging:
 - Create k bootstrap samples D_1, \dots, D_k
 - Train distinct classifier on each D_i
 - Classify new instance by majority vote / average

Bagging: Bootstrap Aggregation



Bagging

Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability $\left(1-\frac{1}{N}\right)^N$ of not being selected
 - Expected number of distinct data points in each sample is then

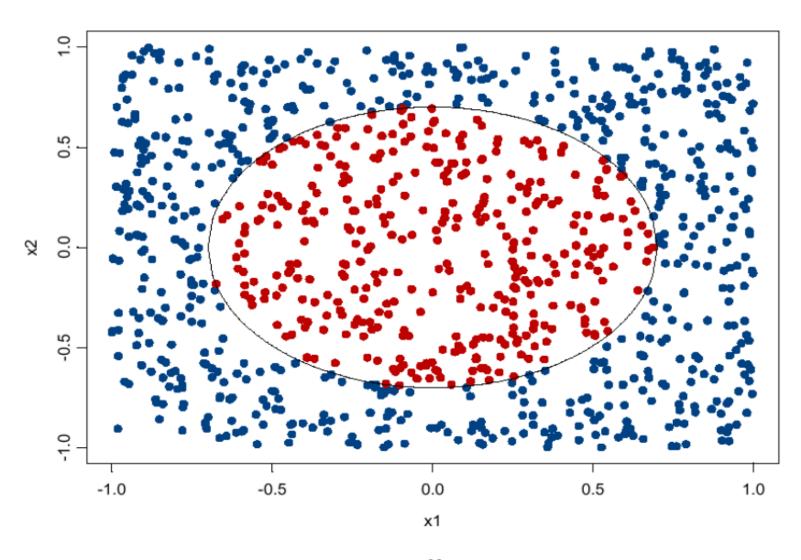
$$N \cdot \left(1 - \left(1 - \frac{1}{N}\right)^N\right) \approx N \cdot (1 - \exp(-1)) = .632 \cdot N$$

Bagging

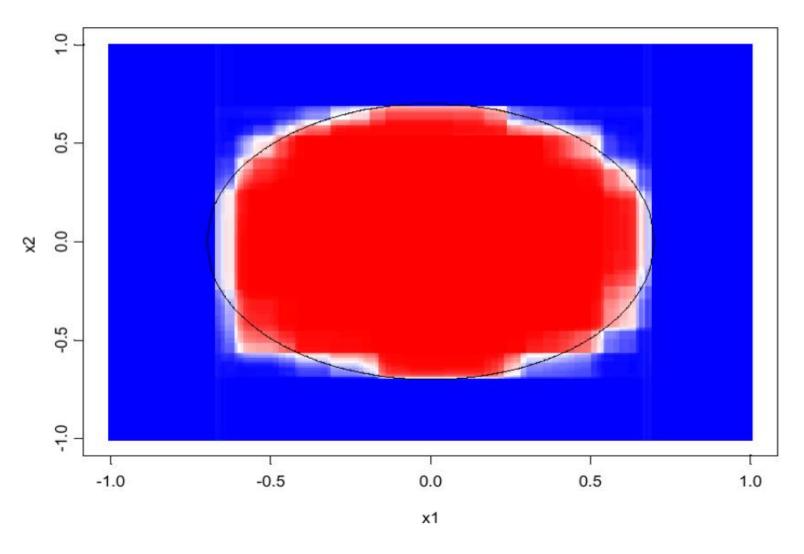
Data	1	2	3	4	5	6	7	8	9	10
BS 1	7	1	9	10	7	8	8	4	7	2
BS 2	8	1	3	1	1	9	7	4	10	1
BS 3	5	4	8	8	2	5	5	7	8	8

- Build a classifier from each bootstrap sample
- In each bootstrap sample, each data point has probability $\left(1-\frac{1}{N}\right)^N$ of not being selected
 - If we have 1 TB of data, each bootstrap sample will be ~ 632GB (this can present computational challenges)

Decision Tree Bagging



Decision Tree Bagging (100 Bagged Trees)



Bagging Experiments

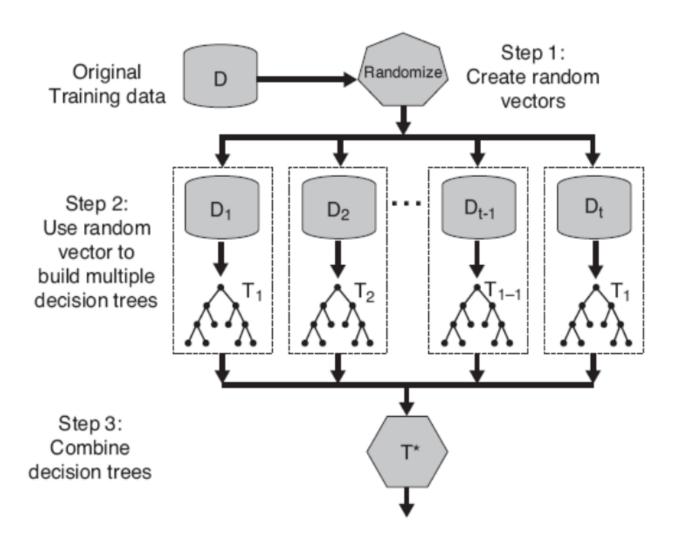
- i) The data set is randomly divided into a test set \mathcal{T} and a learning set \mathcal{L} . In the real data sets \mathcal{T} is 10% of the data. In the simulated waveform data, 1800 samples are generated. \mathcal{L} consists of 300 of these, and \mathcal{T} the remainder.
- ii) A classification tree is constructed from \mathcal{L} using 10-fold cross-validation. Running the test set \mathcal{T} down this tree gives the misclassification rate $e_S(\mathcal{L}, \mathcal{T})$.
- iii) A bootstrap sample \mathcal{L}_B is selected from \mathcal{L} , and a tree grown using \mathcal{L}_B . The original learning set \mathcal{L} is used as test set to select the best pruned subtree (see Section 4.3). This is repeated 50 times giving tree classifiers $\phi_1(\mathbf{x}), \dots, \phi_{50}(\mathbf{x})$.
- iv) If $(j_n, x_n) \in \mathcal{T}$, then the estimated class of x_n is that class having the plurality in $\phi_1(x_n), \ldots, \phi_{50}(x_n)$. If there is a tie, the estimated class is the one with the lowest class label. The proportion of times the estimated class differs from the true class is the bagging misclassification rate $e_B(\mathcal{L}, \mathcal{T})$.
- v) The random division of the data into \mathcal{L} and \mathcal{T} is repeated 100 times and the reported \bar{e}_S , \bar{e}_B are the averages over the 100 iterations. For the waveform data, 1800 new cases are generated at each iteration. Standard errors of \bar{e}_S and \bar{e}_B over the 100 iterations are also computed.

Bagging Results

Data Set	$ar{e}_S$	$ar{e}_B$	Decrease
waveform	29.1	19.3	34%
heart	4.9	2.8	43%
breast cancer	5.9	3.7	37%
ionosphere	11.2	7.9	29%
diabetes	25.3	23.9	6%
glass	30.4	23.6	22%
soybean	8.6	6.8	21%

Breiman "Bagging Predictors" Berkeley Statistics Department TR#421, 1994

Random Forests



Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "bagging" and "random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: best split at each node is chosen from a random sample of m attributes instead of all attributes

Random Forest Algorithm

- For b = 1 to B
 - Draw a bootstrap sample of size N from the data
 - Grow a tree T_b using the bootstrap sample as follows
 - ullet Choose m attributes uniformly at random from the data
 - Choose the best attribute among the m to split on
 - Split on the best attribute and recurse (until partitions have fewer than s_{min} number of nodes)
- Prediction for a new data point x
 - Regression: $\frac{1}{B}\sum_b T_b(x)$
 - Classification: choose the majority class label among $T_1(x), ..., T_B(x)$

Random Forest Demo

A <u>demo</u> of random forests implemented in JavaScript

When Will Bagging Improve Accuracy?

- Depends on the stability of the base-level classifiers
- A learner is unstable if a small change to the training set causes a large change in the output hypothesis
 - If small changes in D cause large changes in the output, then there will likely be an improvement in performance with bagging
- Bagging can help unstable procedures, but could hurt the performance of stable procedures
 - Decision trees are unstable
 - k-nearest neighbor is stable