Bayesian Methods

Nicholas Ruozzi
University of Texas at Dallas

based on the slides of Vibhav Gogate



Binary Variables
1

e Coin flipping: heads=1, tails=0 with bias u
p(X =1|u) =u
e Bernoulli Distribution

Bern(x|w) = p*- (1 —pu)'=*
E[X]=pn

var(X) = pu- (1 —p)



Binary Variables
]
e N coinflips: X4, ..., Xy

P = miN, ) = (j, ) (@ =

e Binomial Distribution

Bin(m|N, 1) = (71:’1) (1 — N
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Binomial Distribution
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Estimating the Bias of a Coin

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

e How should we estimate the bias?
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Estimating the Bias of a Coin

e Suppose that we have a coin, and we would like to figure out
what the probability is that it will flip up heads

e How should we estimate the bias?

e With these coin flips, our estimate of the bias is: 3/5

 Why is this a good estimate?



Coin Flipping — Binomial Distribution

e P(Heads) =0, P(Tails) = 1—-206

e Flipsarei.i.d.
* Independent events
e |dentically distributed according to Binomial distribution

e Qur training data consists of ay heads and a; tails

p(D|6) = 6% - (1 —6)T



Maximum Likelihood Estimation (MLE)

e Data: Observed set of ay heads and a tails
e Hypothesis: Coin flips follow a Bernoulli distribution
e Learning: Find the “best” 0

e MLE: Choose O to maximize probability of D given 8

0

arg m@ax P(D | 0)

arg m@ax In P(D | 0)



First Parameter Learning Algorithm

P

6 = argmax InP(D|0)

= arg mZax INO*H(1 — 0)°T
Set derivative to zero, and solve!
dilﬁ InP(D|0) = dil@ [INO“H (1 —0)T]
= dilﬁ [ In8 + arIn(l — 6)]
= osz% In6 + oszilH In(1 —80)
aH T

=5 1-¢g =0
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First Parameter Learning Algorithm

P

6 = argmax InP(D|0)

0
= argm@ax INO*H(1 — 0)°T
Set derivative to zero, and solve!
d d
= — — [IngoH (1 — )T
dQInP(D\H) 5 [In 07 (1 — 0)7]
d
:@[OzglnH%—olen(l—é’)]
d d
_a_H_ ar O Ql
9 1-6 OvLe = 7
ap + ar
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Coin Flip MLE

L(6:D)
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Priors

e Suppose we have 5 coin flips all of which are heads

e Qur estimate of the bias is?
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Priors

e Suppose we have 5 coin flips all of which are heads

e MLE would give Oy, = 1

: : .1 1 L
e This event occurs with probability = = 35 for a fair coin

 Are we willing to commit to such a strong conclusion with
such little evidence?
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Priors

* Priors are a Bayesian mechanism that allow us to take into
account “prior” knowledge about our belief in the outcome

e Rather than estimating a single 8, consider a distribution over
possible values of 8 given the data

e Update our prior after seeing data

Our best guess in the Our estimate after we
absence of any data see some data
16 | Beta(2,2) | | Beta(3,2)
14 ] Observe flips ol
y | e.g.: {tails, tails}
- 2l
E-O.Sf ) % !
g 0.6F @
0.5-
04} ]
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0 0
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0 0.2 04 0.6 0.8 1 arameter value
parameter value P !
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Bayesian Learning

Apply Bayes rule: Data Likelihood
_ p(D|9)p(6) S
Ifosterior/ p(0|D) = D)
\ Normalization

0.4 08
arameter vallie

e Orequivalently: p(@|D) < p(D|8)p(0)
* For uniform priors this reduces to the MLE objective
p() x1 = p(0|D) x p(D|6)
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Picking Priors

e How do we pick a good prior distribution?
e Could represent expert domain knowledge

e Statisticians choose them to make the posterior
distribution “nice” (conjugate priors)

e What is a good prior for the bias in the coin flipping
problem?
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Picking Priors

e How do we pick a good prior distribution?
e Could represent expert domain knowledge

e Statisticians choose them to make the posterior
distribution “nice” (conjugate priors)

e What is a good prior for the bias in the coin flipping
problem?

e Truncated Gaussian (tough to work with)

e Beta distribution (works well for binary random variables)
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Coin Flips with Beta Distribution

Likelihood function: P(D|0) = 6%H(1 — )T
9Pn—1(1 — 9)fr—1
B(By, Br)

Beta(1,1) e Beta(2,2) Beta(3,2) . Beta(30,20)

Prior: p(@) — ~ Beta,(BH,ﬁT)

ta pdf
o o
[=2]
pdf
ta pdf
@ »

PO | D) x 6% (1 — )T go~1(1 — 9)Pr—1
— HaH+,8H—1(1 _ H)aT+ﬁT—1

= Beta(ag+8u, ar+0r)



MAP Estimation

e Choosing 6 to maximize the posterior distribution is called
maximum a posteriori (MAP) estimation

Omap = argmaxp(6|D)
 The only difference between 6,;; r and 8y, 4p is that one

assumes a uniform prior (MLE) and the other allows an
arbitrary prior
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Priors

e Suppose we have 5 coin flips all of which are heads

e MLE would give Oy, = 1

 MLE with a Beta(2,2) prior gives Oy 4p = = = .857

N o

* As we see more data, the effect of the prior diminishes

ayg+ -1 a
* Ouap = H+bn ~ —=— for large # of
CZH+,BH+CZT+ﬁT—2 aygt+ar

observations
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Sample Complexity

e How many coin flips do we need in order to guarantee
that our learned parameter does not differ too much

from the true parameter (with high probability)?

e Can use Chernoff bound (again!)

e SupposeY;, ..., Yy arei.i.d. random variables taking
values in {0, 1} such that E,,[V;] = y. Fore > 0,

p(y——zY ZE>S2€_2N62
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Sample Complexity

e How many coin flips do we need in order to guarantee
that our learned parameter does not differ too much

from the true parameter (with high probability)?

e Can use Chernoff bound (again!)

e For the coin flipping problem with X4, ..., X,, iid coin
flipsande > O,

1
p( Orrye _Nz Xi| = e) < 2 2N€’
L
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Sample Complexity
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Sample Complexity

e How many coin flips do we need in order to guarantee
that our learned parameter does not differ too much

from the true parameter (with high probability)?

e Can use Chernoff bound (again!)

e For the coin flipping problem with X4, ..., X,, iid coin
flipsande > O,

p(10true — Oprel =€) < 2e2N€’

1 2

§>2e2Ne* = N > _—In=
= =225
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