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Binary Variables

• Coin flipping: heads=1, tails=0 with bias 𝜇𝜇

𝑝𝑝 𝑋𝑋 = 1 𝜇𝜇 = 𝜇𝜇

• Bernoulli Distribution

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑥𝑥 𝜇𝜇 = 𝜇𝜇𝑥𝑥 ⋅ 1 − 𝜇𝜇 1−𝑥𝑥

𝐸𝐸 𝑋𝑋 = 𝜇𝜇

𝑣𝑣𝑣𝑣𝐵𝐵 𝑋𝑋 = 𝜇𝜇 ⋅ (1 − 𝜇𝜇)
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Binary Variables

• 𝑁𝑁 coin flips: 𝑋𝑋1, … ,𝑋𝑋𝑁𝑁

𝑝𝑝 ∑𝑖𝑖 𝑋𝑋𝑖𝑖 = 𝑚𝑚 𝑁𝑁, 𝜇𝜇 = 𝑁𝑁
𝑚𝑚 𝜇𝜇𝑚𝑚 1 − 𝜇𝜇 𝑁𝑁−𝑚𝑚

• Binomial Distribution

𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚 𝑁𝑁, 𝜇𝜇 = 𝑁𝑁
𝑚𝑚 𝜇𝜇𝑚𝑚 1 − 𝜇𝜇 𝑁𝑁−𝑚𝑚

𝐸𝐸 �
𝑖𝑖

𝑋𝑋𝑖𝑖 = 𝑁𝑁𝜇𝜇

𝑣𝑣𝑣𝑣𝐵𝐵 �
𝑖𝑖

𝑋𝑋𝑖𝑖 = 𝑁𝑁𝜇𝜇(1 − 𝜇𝜇)
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Binomial Distribution
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 
what the probability is that it will flip up heads

• How should we estimate the bias?
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 
what the probability is that it will flip up heads

• How should we estimate the bias?

• With these coin flips, our estimate of the bias is: ?
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Estimating the Bias of a Coin

• Suppose that we have a coin, and we would like to figure out 
what the probability is that it will flip up heads

• How should we estimate the bias?

• With these coin flips, our estimate of the bias is: 3/5

• Why is this a good estimate?
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Coin Flipping – Binomial Distribution

• 𝑃𝑃(𝐻𝐻𝐵𝐵𝑣𝑣𝐻𝐻𝐻𝐻) = 𝜃𝜃, 𝑃𝑃(𝑇𝑇𝑣𝑣𝐵𝐵𝑇𝑇𝐻𝐻) = 1 − 𝜃𝜃

• Flips are i.i.d.

• Independent events

• Identically distributed according to Binomial distribution

• Our training data consists of 𝛼𝛼𝐻𝐻 heads and 𝛼𝛼𝑇𝑇 tails  

𝑝𝑝 𝐷𝐷 𝜃𝜃 = 𝜃𝜃𝛼𝛼𝐻𝐻 ⋅ 1 − 𝜃𝜃 𝛼𝛼𝑇𝑇
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Maximum Likelihood Estimation (MLE)

• Data: Observed set of 𝛼𝛼𝐻𝐻 heads and 𝛼𝛼𝑇𝑇 tails  

• Hypothesis: Coin flips follow a Bernoulli distribution 

• Learning: Find the “best” 𝜃𝜃

• MLE: Choose θ to maximize probability of D given 𝜃𝜃
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First Parameter Learning Algorithm

Set derivative to zero, and solve!
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First Parameter Learning Algorithm

Set derivative to zero, and solve!
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Coin Flip MLE

�𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 =
𝛼𝛼𝐻𝐻

𝛼𝛼𝐻𝐻 + 𝛼𝛼𝑇𝑇
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Priors

• Suppose we have 5 coin flips all of which are heads

• Our estimate of the bias is?

13



Priors

• Suppose we have 5 coin flips all of which are heads

• MLE would give 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 1

• This event occurs with probability 1
25

= 1
32

for a fair coin

• Are we willing to commit to such a strong conclusion with 
such little evidence?
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Priors

• Priors are a Bayesian mechanism that allow us to take into 
account “prior” knowledge about our belief in the outcome

• Rather than estimating a single 𝜃𝜃, consider a distribution over 
possible values of 𝜃𝜃 given the data

• Update our prior after seeing data

Our best guess in the 
absence of any data

Our estimate after we 
see some data

Observe flips
e.g.: {tails, tails}
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Bayesian Learning

Apply Bayes rule:

• Or equivalently: 𝑝𝑝 𝜃𝜃 𝐷𝐷 ∝ 𝑝𝑝 𝐷𝐷 𝜃𝜃 𝑝𝑝 𝜃𝜃

• For uniform priors this reduces to the MLE objective

Prior

Normalization

Data Likelihood

Posterior 𝑝𝑝 𝜃𝜃 𝐷𝐷 =
𝑝𝑝 𝐷𝐷 𝜃𝜃 𝑝𝑝 𝜃𝜃

𝑝𝑝 𝐷𝐷

𝑝𝑝 𝜃𝜃 ∝ 1 ⇒ 𝑝𝑝 𝜃𝜃 𝐷𝐷 ∝ 𝑝𝑝(𝐷𝐷|𝜃𝜃)
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Picking Priors

• How do we pick a good prior distribution?

• Could represent expert domain knowledge

• Statisticians choose them to make the posterior 
distribution “nice” (conjugate priors)

• What is a good prior for the bias in the coin flipping 
problem?
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Picking Priors

• How do we pick a good prior distribution?

• Could represent expert domain knowledge

• Statisticians choose them to make the posterior 
distribution “nice” (conjugate priors)

• What is a good prior for the bias in the coin flipping 
problem?

• Truncated Gaussian (tough to work with)

• Beta distribution (works well for binary random variables)

18



Coin Flips with Beta Distribution

Likelihood function:

Prior: 

Posterior:

= 𝜃𝜃𝛼𝛼𝐻𝐻+𝛽𝛽𝐻𝐻−1(1 − 𝜃𝜃)𝛼𝛼𝑇𝑇+𝛽𝛽𝑇𝑇−1



MAP Estimation

• Choosing 𝜃𝜃 to maximize the posterior distribution is called 
maximum a posteriori (MAP) estimation

𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = arg max
𝜃𝜃

𝑝𝑝(𝜃𝜃|𝐷𝐷)

• The only difference between 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 is that one 
assumes a uniform prior (MLE) and the other allows an 
arbitrary prior
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Priors

• Suppose we have 5 coin flips all of which are heads

• MLE would give 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 1

• MLE with a 𝐵𝐵𝐵𝐵𝐵𝐵𝑣𝑣(2,2) prior gives 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 6
7
≈ .857

• As we see more data, the effect of the prior diminishes

• 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛼𝛼𝐻𝐻+𝛽𝛽𝐻𝐻−1
𝛼𝛼𝐻𝐻+𝛽𝛽𝐻𝐻+𝛼𝛼𝑇𝑇+𝛽𝛽𝑇𝑇−2

≈ 𝛼𝛼𝐻𝐻
𝛼𝛼𝐻𝐻+𝛼𝛼𝑇𝑇

for large # of 
observations
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Sample Complexity

• How many coin flips do we need in order to guarantee 
that our learned parameter does not differ too much 
from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

• Suppose 𝑌𝑌1, … ,𝑌𝑌𝑁𝑁 are i.i.d. random variables taking 
values in {0, 1} such that 𝐸𝐸𝑝𝑝 𝑌𝑌𝑖𝑖 = 𝑦𝑦.  For 𝜖𝜖 > 0,

𝑝𝑝 𝑦𝑦 −
1
𝑁𝑁
�
𝑖𝑖

𝑌𝑌𝑖𝑖 ≥ 𝜖𝜖 ≤ 2𝐵𝐵−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee 
that our learned parameter does not differ too much 
from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 iid coin 
flips and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −
1
𝑁𝑁
�
𝑖𝑖

𝑋𝑋𝑖𝑖 ≥ 𝜖𝜖 ≤ 2𝐵𝐵−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee 
that our learned parameter does not differ too much 
from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 iid coin 
flips and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝜖𝜖 ≤ 2𝐵𝐵−2𝑁𝑁𝜖𝜖2
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Sample Complexity

• How many coin flips do we need in order to guarantee 
that our learned parameter does not differ too much 
from the true parameter (with high probability)?

• Can use Chernoff bound (again!)

• For the coin flipping problem with 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 iid coin 
flips and 𝜖𝜖 > 0,

𝑝𝑝 𝜃𝜃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 𝜖𝜖 ≤ 2𝐵𝐵−2𝑁𝑁𝜖𝜖2

𝛿𝛿 ≥ 2𝐵𝐵−2𝑁𝑁𝜖𝜖2 ⇒ 𝑁𝑁 ≥
1
2𝜖𝜖2

ln
2
𝛿𝛿
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