
COMBINATORIAL TOOLS IN REPRESENTATION THEORY

1. Introduction

This proposal would fund a research program on new combinatorial tools with ap-
plications to representation theory, Macdonald theory, and Schubert Calculus. There
are many natural algebraic objects whose Hilbert or Frobenius series are known or ex-
pected to be indexed by purely combinatorial objects—the study of such indexing sets
is a rich field at the intersection of representation theory and algebraic combinatorics,
with connections to many different areas of mathematics (for example, cohomology of
Lie groups, the Hilbert scheme of points in the plane, Deligne-Lusztig varieties,. . . ).
There are, however, many remaining problems that lack a combinatorial understand-
ing. For example, the Macdonald polynomials Pµ are an important family of symmetric
functions that specialize to both the Hall-Littlewood polynomials and to the Jack poly-
nomials. As conjectured by Garsia and Haiman and proved by Haiman, the modified

Macdonald polynomials H̃µ(xn; q, t) are the Frobenius series of an Sn-module, and so
are Schur positive:

H̃µ(xn; q, t) =
∑
λ`n

K̃λ,µ(q, t)sλ(xn),

where the K̃λ,µ(q, t) are the (modified) (q, t)-Kostka polynomials. Although Haglund

found a combinatorial monomial expansion for H̃µ, it remains an outstanding problem
to find a combinatorial interpretation for their Schur expansion. One of the main goal
of this proposal is to attack this (q, t)-Kostka problem using the PI’s past experience
with zeta and sweep maps. There are many related and partial results to be proven
along the way:

• Study Hilbert series of coinvariant rings of complex reflection groups, finding
combinatorial interpretations (Problem 1) and invariant-theoretic refinements
(Problems 2 and 3).
• Study zeta/sweep maps from the point of view of Dynamical Algebraic Com-

binatorics (Problem 4).
• Search for bigraded Sn-modules that correspond to combinatorial Hilbert series

(Problem 7), with applications to rational Catalan combinatorics.
• Generalize zeta/sweep maps and related theorems (Problems 8 and 9), with

a goal of extending the combinatorics to other root systems (Problem 12),
studying (q, t)-symmetry (Problem 5), and finding the Frobenius expansion of
∇en (Problem 10).

The PI has introduced new techniques to resolve related problems, and has an
original toolkit and perspective that has yielded substantial new progress. This point
of view yields an interconnected library of concrete combinatorial problems especially
suitable for graduate and undergraduate students (see Section 7), while its broad
perspective allows for consequential results and relevance to other fields.



2. Coinvariant Rings and Combinatorial Statistics

2.1. Coinvariant Ring of the Symmetric Group. The Hilbert series for the space
of coinvariants is the generating function for two important statistics on the n! per-
mutations in Sn:

(1) Hilb
(
C[xn]/〈C[xn]Sn+ 〉; q

)
=
∑
w∈Sn

qinv(w) =
∑
w∈Sn

qmaj(w),

where C[xn] is shorthand for a polynomial ring in n variables and 〈C[xn]Sn+ 〉 is the
ideal of C[xn] generated by symmetric polynomials with no constant term.

Artin gave a basis for this space using the code of a permutation to reflect the first
generating function of Equation (1) [Art44], while Garsia and Stanton found a basis
using the descents of a permutation to explain the second [GS84]. In particular, for a
permutation π ∈ Sn, we write c(π)i = |{j < i : πj > πi}| and Des(π) = {i : πi > πi+1}.
Then the two bases—each indexed by permutations in Sn are

x
c(π)1
1 x

c(π)2
2 · · · · · xc(π)nn and

∏
i∈Des(π)

xπ1xπ2 · · · · · xπi

A statistic with the same distribution as inv or maj is called mahonian, after MacMa-
hon [Mac13], but Foata gave the first bijection sending one statistic to the other [Foa68],
explaining the equality in Equation (1). Exploiting the fact that this bijection preserves
descents of the inverse permutation, Foata and Schützenberger later found a series of
compositions of maps leading to an involution that interchanges inv and maj [FS78],
combinatorially proving

(2)
∑
w∈Sn

qinv(w)tmaj(w) =
∑
w∈Sn

tinv(w)qmaj(w).

Although inv generalizes naturally to all finite Coxeter groups using the corresponding
hyperplane arrangement and root system, there is no satisfactory definition of maj in
general—and no notion of inv for complex reflection groups.

2.2. Hilbert Series for Coinvariant Rings. Fix V a complex vector space of di-
mension n. A more general ring studied by, for example, Chevalley and Shephard-Todd
is the coinvariant algebra of a finite complex reflection group G ≤ GL(V )—that is, a
subgroup of GL(V ) generated by unitary reflections. Associated to this group is the
following ring. Let C[V ] := Sym(V ∗) be the symmetric algebra on the dual vector
space V ∗, and write C[V ]G for its G-invariant subring. The coinvariant algebra is
defined as the quotient C[V ]G := C[V ]/〈C[V ]G+〉, where 〈C[V ]G+〉 is the ideal generated
by all G-invariants with no constant term. The Hilbert series for the coinvariant ring
for any finite complex reflection group G satisfies

(3) Hilb
(
C[V ]/〈C[V ]G+〉; q

)
=

n∏
i=1

1− qdi
1− q

,

where d1 ≤ d2 ≤ · · · ≤ dn are the degrees of the homogenous generators of the G-
invariant ring C[V ]G. As an ungraded G-representation, the coinvariant algebra is



isomorphic to the regular representation of G (of dimension |G|)—as such, its Hilbert
series should be expressable as a sum over G:

(4) Hilb (C[V ]G; q) =
∑
i≥0

dimC[V ]iGq
i =

∑
g∈G

qstat(g),

where, in the case of real reflection groups, stat(g) can be taken to be the number of
inversions of g.

Problem 1. Find a combinatorial proof of Equation (4) for all complex reflection
groups by defining a statistic on group elements.

A natural place to start would be to mirror the definition of inversions in real
groups using the construction of complex root systems for complex reflection groups,
as in Cohen’s reclassification of finite complex reflection groups [Coh76]. Another
approach which has seen some success for the infinite family is the construction of
normal forms for words in the “simple” braid generators of Bessis et al. It would
also be interesting to study this problem for the restriction to Shephard groups, which
satisfy some additional properties shared in the real case (they have an associated
Coxeter group and an analogue of the Coxeter complex). A first special case would
certainly be to study complex reflection groups whose braid group coincides with the
braid group of a real reflection group (and so has a well-defined length function for
the positive monoid). In this case, it would be reasonable to introduce a many-to-one
surjection from the complex reflection group to the real one.

2.3. Reflexponents. The fake degree of an m-dimensional simple G-module M is the
polynomial encoding the degrees M occurs in the coinvariant ring C[V ]G:

fM(q) =
∑
i

(C[V ]iG,M)qi =
m∑
i=1

qei(M),

where e1(M) ≤ e2(M) ≤ · · · ≤ em(M) are nonnegative integers called M-exponents.
We write ei := ei(V ) and e∗i := ei(V

∗) for the exponents and co-exponents. For g ∈ G,
write MM(g) for the codimension of the subspace of the G-module M fixed by g. The
following is well-known [ST54, Sol63, OS80].

Theorem 1. For G a finite irreducible complex reflection group,∑
g∈G

xMV (g) =
n∏
i=1

(1 + eix) .

As explained by Solomon and then Orlik and Solomon [Sol63, OS80], this follows

from a careful analysis of the space of differential invariants (C[V ]⊗ ∧M∗)G (for any
amenable representation M ; for example, Galois conjugates of the reflection repre-
sentation), which turns out to be an exterior algebra over C[V ]. This allows for the
specialization of the identity

(5) Hilb

((
C[V ]⊗

∧
M∗
)G

;x, y

)
=

n∏
i=1

(
1 + xei(M)y

1− xdi

)
,

where the x-variable keeps track of the grading from C[V ], while the y-variable keeps
track of the grading from

∧
M∗.



My main result in [Wil19] gives an analogue of Theorem 1 incorporating different
G-orbits of reflecting hyperplanes. The reflecting hyperplanes H of the group G are
broken into (at most three) G-orbits H/G = {Hε}ε∈{s,t,u}. Choose one such orbit Hε,
and let Rε be the associated set of reflections. For well-generated complex reflection
groups (those groups that are generated by n of their reflections), there always exists a
unique simple G-module Vε that restricts to the reflection representation of a parabolic
subgroup of G supported on Rε.

Theorem 2. For G a finite irreducible well-generated complex reflection group and
Hε a hyperplane orbit, there is a reindexing of the ε-(co)reflexponents (with undefined
ε-(co)reflexponents taken to be zero) giving the factorizations∑

g∈G

(x/y)MVε (g) yMV (g) =
n∏
i=1

(
1 + εix+ (ei − εi)y

)
.

One can forgo the well-generated hypothesis at the expense of some technical dif-
ficulties. More generally, for any Galois twist σ ∈ Gal(Q(|G|/Q), we may twist the
reflection representation V to obtain V σ. Orlik and Solomon proved that [OS80]

(6)
∑
g∈G

 ∏
λi(g) 6=1

1− λi(g)σ

1− λi(g)

 qMV (g) =
n∏
i=1

(1 + ei(V
σ)q) ,

where the product is over all eigenvalues of g not equal to 1 (in the reflection represen-
tation). Already in [Wil19], I have extended this for V σ = V ∗ the complex conjugate
of V . Following a suggestion of T. Douvropoulos, preliminary computations with the
infinite family G(ab, b, n) and a complete set of calculations for the exceptional types
suggests the following problem.

Problem 2. Find an invariant-theoretic framework in the style of Orlik and Solomon
that extends Equation (6) to orbits of hyperplanes.

I believe that I have a reasonable approach to this problem, obtained by generalizing
beyond the level of hyperplane orbits. B. Rhoades has asked for a characterization of
those irreducible representations U for which we have a factorization∑

g∈G

(x/y)MU (g) yMV (g) =
n∏
i=1

(
1 + ei(U)x+ (ei(V )− ei(U))y

)
.

Call such a representation factorizing.

Problem 3. Classify all factorizing representation U for complex reflection groups G.

Up to Galois automorphisms—other than the previously-considered representations
corresponding to hyperplane orbits—it seems that factorizing representations are rare
and are linked to normal reflection subgroups of reflection groups. My colleague Carlos
Arreche and I are working on resolving Problem 2 and Problem 3 by extending Equa-
tion (5) to nested chains of normal reflection subgroups Ns / · · ·/N1 /G. Some classifi-
cation work in this direction has been done by Bessis, Bonnafé, and Rouquier [BBR02].
Using this insight, we have already constructed 4-variable generalizations of Theorem 2
for certain normal chains of exceptional groups (ex: G(4, 2, 2) / G6 / G7 / G10), which



suggests that we are on the right track to finding a uniform statement and proof—for a
single normal subgroup N/G with H = G/N , the idea is to refine Orlik and Solomon’s
approach by taking successive invariants

(7) (C[V ]⊗ ∧M∗)G '
(

(C[V ]⊗ ∧M∗)N
)H

.

In particular, we will produce weighted versions of the usual coinvariant ring of a
Coxeter group, giving an invariant-theoretic proof of some results of Macdonald for
non-simply-laced Coxeter groups obtained by weighting different simple reflections
differently [Mac72]. As a bonus, such methods may also give a more algebraic (and
less combinatorial) approach to Problem 1.

3. Diagonal Coinvariant Rings

Motivated by the rich combinatorics of coinvariant spaces for Weyl and Coxeter
groups, Garsia and Haiman introduced the space of diagonal coinvariants [Hai94,
GH96], which has since been an extremely active area of research. Write

C[xn,yn] := C[x1, . . . , xn, y1, . . . , yn].

The ring of diagonal invariants C[xn,yn]Sn+ is the ring of Sn-invariant polynomials
(with no constant term) in two sets of commuting variables, where Sn acts diagonally
(permuting the x and y variables simultaneously). The space of diagonal coinvariants
is the quotient

DHn := C[xn,yn]/
〈
C[xn,yn]Sn+

〉
.

By a result of Weyl, it is known that
〈
C[xn,yn]Sn

〉
is generated by the polarized power

sums pk,l =
∑n

i=1 x
k
i y

l
i for k + l > 0.

The problem is to give combinatorial interpretations for the Hilbert or Frobenius
series of DHn. It is known that the Frobenius series related to the modified Macdonald
polynomials of Section 4 by:
(8)

Frob (DHn; q, t) =
∑
µ`n

H̃µt
n(µ)qn(µ

′)(1−q)(1−t)

(∑
x∈µ

qa
′
tl
′

)∏
x∈µ

(1− qa′tl′)
(qa − tl+1)(tl − qa+1)

,

where a (resp. a′) and l (resp. l′) stand for the (co)arm and (co)leg lengths of the
partition. But what we really want is a Schur or monomial expansion in terms of
familiar combinatorial objects. To relate back to usual coinvariants: while the space
of coinvariants C[xn]/〈C[xn]Sn+ 〉 is related to the symmetric group Sn, the diagonal

coinvariants turn out to be related to the affine symmetric group S̃n.

3.1. Zeta and sweep maps on lattice paths. Perhaps due to the relative complex-
ity of the underlying combinatorial objects, the combinatorics of diagonal coinvariants
was first understood, and generalized for the alternating subspace DHε

n of the space
of diagonal coinvariants [KOP02, Hag03, GH02, ALW15, TW18b].

Let Da,b be the set of lattice paths from (0, 0) to (b, a) that stay above the main
diagonal; write Dn = Dn+1,n. The classical zeta map ζ is a bijection from Dn to itself
developed by Garsia, Haglund, and Haiman to explain the equidistribution of area with



Haglund’s statistic bounce and Haiman’s statistic dinv in the combinatorial expansion
of the Hilbert series of DHε

n [GH02, Hai02, CM15, HX17]:

Hilb (DHε
n; q, t) =

∑
d∈Dn

qdinv(d)tarea(d) =
∑
d∈Dn

qarea(d)tbounce(d),

where q records the degree of the variables x and t the degree of y. Specifically, ζ has
the pleasant property of translating Haglund’s and Haiman’s (inspired) statistics into
the simple statistic area, so that [AKOP02, Hag03]:

Hilb (DHε
n; q, t) =

∑
w∈Dn

dinv︷ ︸︸ ︷
qarea(ζ

−1(w)) tarea(w) =
∑
w∈Dn

qarea(w)

bounce︷ ︸︸ ︷
tarea(ζ(w)) .

As Dyck paths have been generalized, so too have these zeta maps [Loe03, Egg03,
GM14, LLL14, ALW15]—but proving invertibility of these generalized zeta maps has
been a traditionally difficult problem [Xin15, CDH16b]. We note that the zeta map has
been rediscovered many times (often by accident)—perhaps most recently, it appeared
as an answer to a question on MathOverflow [Vat13, Stu14].

To state one reasonably general version, the sweep map from Da,b → Da,b rearranges
the steps of a path in Da,b according to the order in which they are encountered by a
line of slope a/b sweeping down from above [ALW15, Section 3.4]. Figure 1 computes
the sweep map on a lattice path in D4,7. My main result is the following.

Theorem 3 ([TW18b]). For a, b ∈ N, the sweep map is a bijection on Da,b.

In fact, we prove a substantially more general form of the theorem above, which
has already inspired several related papers, including [GX16a, GX16b]. In particular,
our theorem covers the traditional case when m and n are coprime, but also the more
recently considered (and more difficult) case when gcd(m,n) > 1 [GMV17]. It would
be very interesting to study these results from the point of view of dynamical algebraic
combinatorics.

Problem 4. Study instances of homomesy and other dynamical algebraic combinato-
rial notions with respect to the sweep map.

Wide open remains the problem of combinatorially explaining (q, t)-symmetry.

Problem 5. Combinatorially prove (q, t)-symmetry of Hilb (DHn; q, t) or the alternat-
ing subspace Hilb (DHε

n; q, t) .

Although it has proven to be notoriously difficult, I would like to try to apply our
techniques and perspective to this problem. There are a number of approaches to Prob-
lem 5 that seem fruitful. Most people concentrate on limiting the number of rows or
columns of a path; this approach seems to run out of steam around 4 or 5 rows. It is
also very tempting to try to construct an sl2 action that essentially give a symmetric
chain decomposition with respect to the q and t statistics. But the approach that seems
to have the most merit is to try to generalize the Foata-Schützenberger involution by
composing zeta with its inverse, with a few other nontrivial involutions thrown in. This
approach leads, for example, to the construction of an area-preserving involution for
rational Dyck paths (which is not simply transposition of core partitions) [CDH16a].
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Figure 1. An illustration of the geometric interpretation of sweep. To
form the right path, the steps of the left path are rearranged according to
the order in which they are encountered by a line of slope 4/7 sweeping
down from above.

3.2. Rational Parking Spaces. The most general rational (m,n) version of the the-
ory of diagonal coinvariants comes from Hikita’s study of the Borel-Moore homology of
affine type A Springer fibers, which has a natural basis indexed by the mn−1 elements

of the affine symmetric group S̃n lying inside an m-fold dilation of the fundamental
alcove [Hik14, Che03, Shi87, CP02, Hai94, Som05, GMV16a, Thi16].

There is another indexing combinatorial set for this space. For m,n ∈ N, the (m,n)-
parking functions Pn

m are those words p = p0 · · · pn−1 ∈ [m]n = {0, 1, . . . ,m−1}n such
that

(9)
∣∣∣{j : pj < i

}∣∣∣ ≥ in

m
for 1 ≤ i ≤ m.

Write Pn = Pn
n+1. Just as Dyck paths encoding the Hilbert series of the alternating

subspace of the space of diagonal coinvariants, the full Hilbert series of DHn is encoded
by parking functions.

(10) Hilb (DHn; q, t) =
∑
p∈Pn

qdinv(p)tarea(p) =
∑
p∈Pn

qarea(p)tdinv(p),

where area and dinv are certain statistics on parking functions. Carlsson and Mellit’s
proof of the shuffle conjecture and very recent work of Carlsson and Oblonkov on
an explicit basis for the ring of diagonal harmonics [HHL+05, CM15, HX17, CO18]
implies the long-suspected fact that the bigraded Hilbert series of the space of diag-
onal coinvariants is encoded as a positive sum over the (n+1)n−1 parking functions
Pn [Hai02, HL05]. In fact, Carlsson and Oblonkov’s basis is a wonderful interpolation
between the Artin and Garsia-Stanton bases for the usual coinvariant ring, which is



recovered when one of the sets of variables xn or yn are forgotten (or, equivalently,
one of q or t is set to 0), expressing the equality

(11) Hilb (DHn; q, t) =
∑
π∈Sn

tmaj(π)

n∏
i=1

[wi(π)]q,

where wi(π) counts the number of elements in the jth consecutive increasing sub-
sequence of π larger than πi. It would be very interesting if their basis actually is
predicted by zeta maps.

Problem 6. Check if the Carlsson–Oblonkov basis for DHn can be replaced with the

set of monomials
{

xp
ny

ζ(p)
n

}
p∈Pn

, where xp
n :=

∏
i x

pi
i and y

ζ(p)
n :=

∏
i y

ζ(p)i
i .

The upshot of such a result would be to suggest a reasonable basis for hypothetical
more general bigraded rings (see Problem 7).

The classical parking words Pn, their statistics area and dinv, and the shuffle con-
jecture have all been (at least combinatorially) generalized to the (m,n)-parking
words Pn

m [BGLX15, ALW16, GMV16a, GN15, Thi16, GMV17]. Armstrong found
natural interpretations of area and dinv in terms of affine permutations for the Fuss
case [Arm13], and his work was extended to the rational case by Gorsky, Mazin, and
Vazirani [GMV16a, GMV17]. Gorsky and Negut formulated the rational shuffle con-
jecture in [GN15]—that Hikita’s polynomial was given by an operator from an elliptic
Hall algebra (see also [BGLX15]). This operator formulation leads to a q, t-symmetric
bivariate polynomial generalizing Equation (10):

(12)
∑
p∈Pnm

qarea(p)tdinv(p) =
∑
p∈Pnm

qdinv(p)tarea(p).

Something is lost, however, in the rational case: one statistic remains the degree,
but the second statistic now appears only using a filtration.

Problem 7. Find a bigraded Sn-module whose Hilbert series is given by Equa-
tion (12).

Note that the algebraic parking spaces of [ARR15]—defined using a homogeneous
system of parameters (θ1, . . . , θn) coming from the theory of rational Cherednik al-
gebras and work of Gordon and Griffeths give bigraded [GG09]—give singly-graded
such Sn-modules. Related to this is the problem of giving uniform constructions of
rational noncrossing objects. As the Catalan numbers of Gordon and Griffeth seem
to depend on Galois twists, it is natural to wonder if (at least in the real case) there
isn’t a definition involving powers of a Coxeter element. If Problem 6 works out, we
would have a guess for a basis of such a space and might be able to reverse engineer
the underlying ideal.

3.3. Zeta map on rational parking functions. We recently developed simple com-
binatorics governing the (q, t)-statistics on rational parking functions [MTW17]. The
previous state-of-the art was work of Gorsky, Mazin, and Vazirani, who used the
affine symmetric group to define the zeta map on Pn

m, which takes area to dinv. They



conjectured that it was a bijection by providing what they believed to be an inverse
map [GMV16b]. In [MTW17], we invert their zeta by having parking functions act on
V := 1m\Rm/Sm (that is, Rm up to permutation of coordinates and addition of mul-
tiples of the all-ones vector) and applying the Brouwer fixed point theorem—a letter
i ∈ [m] acts on x ∈ V by adding m to the ith smallest coordinate of x, and a word
w ∈ [m]n acts on x ∈ V by acting by its letters from left to right. Writing y := sort(x)
for the increasing rearrangement of a point x ∈ Rm

t , define i(x) := sort(x + ei − 1m)
for x ∈ V.

123

024

226

015134

000 010 100
110 200 210

0000 0010 0100 0110
0200 0210 1000 1010
1100 2000 2010 2100

001 020 101
110 200 210

0001 0020 0101
1001 1020 1200

011 021 101
110 201 210

002 020 102
120 200 210

0011 0021 0201 2001

0002 0102 0120 1002

012 021 102
120 201 210

0012

Figure 2. The dominant part of the S̃3 Shi arrangement. Each region
is labeled by a coordinate corresponding to the one-line notation of the
affine permutation whose alcove is lowest in the region. The words on
the left are the (3, 3)-parking words that fix every point of the (closed)
region to which they point; the words on the right are the (4, 3)-parking
words that fix precisely the coordinate to which they point.

Theorem 4 ([MTW17]). The action of w ∈ [m]n on V :

• has a unique fixed point iff w ∈ Pn
m and gcd(m,n) = 1;

• has infinitely many fixed points iff w ∈ Pn
m and gcd(m,n) > 1; and

• has no fixed points iff w ∈ [m]n \Pn
m.

In fact, one can even speak about the “dimension” of the various fixed spaces. As
a corollary of Theorem 4, we show that dinv and area are equidistributed on coprime
(m,n)-parking functions.

Theorem 5. For m and n relatively prime,∑
p∈Pnm

qdinv(p) =
∑
p∈Pnm

qarea(p).



3.4. Non-coprime case. We have recently begun work on extending Theorem 5 to
understand what happens when gcd(m,n) > 1, generalizing the setup in [GMV17]
to parking functions (our work on sweep maps of lattice paths already provides the
inverse to the zeta map on paths in the non-coprime case). Interestingly, the regions of
the Shi arrangement and its Fuss generalizations may be described as the points fixed
by some (n, kn)-parking function; more generally, we have a gcd(m,n)-dimensional
collection of fixed points living in Rm that warrants further investigation.

Problem 8. Generalize the Shi arrangement by explicitly describing the points in V
fixed by some element of Pn

m for gcd(m,n) > 1.

Loehr and Warrington’s sweep maps on lattice paths are quite general, while the
zeta maps on parking functions (thought of as labeled Dyck paths) seem rather more
specialized—for example, sweep maps have no restriction on the number of different
directions for steps, while zeta maps only allow two so that the paths must lie in a
plane.

Problem 9. Find a common generalization of sweep maps on lattice paths, and the
zeta map on rational parking functions.

3.5. Frobenius Expansion. Although we now know the monomial expansion of the
Frobenius series of DHn as well as its Hilbert series, an outstanding problem remains
to find its Schur expansion (stated here only for the case of usual parking spaces).

Problem 10. Find a combinatorial intepretation of Frob (DHn; x; q, t).

My experience with zeta maps should provide a useful perspective, as I now explain.
The special case of the coefficient s(1,1,...,1) recovers the (q, t)-Catalan numbers, and it
is reasonable to search for related zeta maps. It is not hard to check that at q = t = 1,
the coefficient of sλ is counted by 1

n+1
sλ′(1, 1, . . . , 1). This is counted by the number

of semistandard tableaux of shape λ whose content is a parking function—that is,
when rearranged, the content forms the columns of a Dyck path. The q-weight of such
a parking tableau is given by

(
n+1
2

)
minus its content. For example, for n = 3 and

λ = (2, 1), we have the five parking tableaux

1 1
2

1 2
2

1 1
3

1 3
2

1 2
3 .

From the Catalan case for λ = (1, 1, . . . , 1), we know the zeta map is given by
acting by the letters of the parking tableau from left to right. It makes sense for
more general shapes to act using the columns of the tableau (in the same way as
in Theorem 4), realizing the tyep A crystal Vλ for λ = (λ1, . . . , λk) as a connected
component of Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλk (which is typically picked out by applying RSK).
Small preliminary calculations suggest that this generalized zeta map is not only a
bijection, but also gives correct statistics—at least for certain special shapes (like
hooks). One can still prove an analogous fixed-point theorem; the problem now is to
match this up with the representation theory by establishing suitable recursions on
both the ring of diagonal harmonics and the combinatorial objects.



3.6. Other Cartan Types. The definition of rational parking functions as the ba−1

alcoves in the b-fold dilation of the fundamental alcove in S̃a easily extends to other
Cartan types. And yet, the combinatorics of parking functions for other root systems
is almost completely undeveloped (see also Problem 1).

Problem 11. Find statistics to explain (q, t)-Catalan numbers in other Cartan types.

As suggested by the interpretation in Section 3.5, our Theorem 4 shows that rational
parking functions in type A may also be characterized as those words of length a− 1
whose action on Rb has a fixed point. This new characterization suggests a novel way
to approach Problem 11—by finding the right set of steps and the right space in which

to act. Since S̃n is interchanged with S̃m, there may be some sort of Howe duality
involved. More generally, one might expect a generalization of Theorem 4 to hold.

Problem 12. Fix a complex simple Lie algebra g with weight lattice Λ ⊂ V . Let
(p1, . . . , pk) ∈ Λk be a path in V , and write wt(p) =

∑
pi. The path p acts on a

dominant point x ∈ V : for 1 ≤ i ≤ k, add pi to x and reflect whenever a simple
hyperplane is crossed. Show that p has a fixed point if and only if (wt(p), λi) ≤ 0 for
all fundamental weights λi.

A second approach comes from a different characterization of rational parking fuc-
ntions I have found. The classical cycle lemma can be generalized to other Cartan
types using the image Ω in the Weyl group of the quotient group of the coroot by
the coweight lattice. In more detail, let Λmin be the set of fundamental weights in
the orbit of 0 (the minuscule weights). Define the usual dot action of Ω on V by
g · x = g(x + ρ/h) − ρ/h, where ρ is the half sum of the positive roots and h is the
Coxeter number.

Theorem 6 (The Cycle Lemma). A fundamental domain for the dot action of Ω on
V is given by {x ∈ V : (x, ω) ≥ 0, ω ∈ Λmin}.

By applying this theorem to the natural Weyl group action on crystals, I am able to
give a unified framework for many combinatorial results in the literature. For example,
let Vω1 be the fundamental representation for slb. Then for a coprime to b, slb(ω1)

⊗a

has a tableau model in bijection with arbitrary words of length a with entries in [b].
The action of Ω on slb(ω1)

⊗a has free orbits and each orbit contains exactly one of the
ba−1 rational parking functions. It is reasonable to wonder if this construction can be
extended to give a definition of parking functions in other Cartan types.

4. Macdonald Polynomials

The modfied Macdonald polynomials H̃µ(xn; q, t) are the unique polynomials in the
algebra of symmetric functions in infinitely many variables x = {x1, x2, . . .} with
coefficients in Q(q, t) satisfying the triangularity conditions

(1) H̃µ[X(1− q); q, t] =
∑

λ≥µ aλ,µ(q, t)sλ,

(2) H̃µ[X(1− t); q, t] =
∑

λ≥µ′ bλ,µ(q, t)sλ, and

(3)
〈
H̃µ, s(n)

〉
= 1,



where we use the usual plethystic notation with X = x1 + x2 + · · · , 〈·, ·〉 is the Hall
inner product defined by orthonormality of Schur functions, ≥ is dominance order on
integer partitions, and µ′ is the tranpose of the partition µ. They are related to the

usual Macdonald polynomials Pµ by H̃µ(xn; q, t) = tn(µ)Pµ

[
X

1−1/t ; q, t
−1
]
.

Lascoux and Schutzenberger’s famous charge/cocharge statistic on semistandard
tableaux gives the coefficients Kλ,µ(t) in the expansion of the Hall-Littlewood polyno-
mials Pλ into Schur polynomials sµ:

Pλ(xn; q) := Hλ(xn; q, 0) =
∑
µ

Kλ,µ(t)sµ(xn).

For the modified Macdonald polynomials, we have a similar expansion

H̃λ(xn; q, 1) =
∑
µ

K̃λ,µ(q)sµ(xn),

where the expansion K̃λ,µ(q) =
∑

T∈SYT(µ) q
comajλ(T ) is due to Macdonald. It makes

sense that the t-statistic ought to come from some sort of zeta map—by symmetry,

the t-statistic matches the q-satistics in the coefficient K̃λ,µ′(q, t).

Problem 13. Define a zeta map ζ on the set of tableaux of shape λ so that

K̃λ,µ(q, t) =
∑

T∈SYT(µ)

qcomajλ(T )tcomajλ(ζ(T )).

Although some partial progress has been made on finding combinatorial expansions

for K̃λ,µ′(q, t) (for example, Fishel has an expansion for tableaux with at most two
rows), it would be a natural first step to try partitions µ of the form (k, k), since
there are Catalan-many such standard Young tableaux—thus, there ought to be a
connection with the zeta map coming from the alternating component of the ring of
diagonal coinvariants DHn. Again, this is a notoriously difficult open problem, but I
think that this zeta map apporoach is novel; since such a technique works in the closely
related problem of studying diagonal harmonics, it seems reasonable to try it here—as
usual, one statistic was easy to find, suggesting that the correct way to proceed is not
to produce a difficult second statistic, but rather a bijection under which the second
statistic becomes mapped to the first statistic.

4.1. k-Schur Expansion. By Haiman’s n! theorem, the modified Macdonald polyno-
mials expand positively into the Schur basis. One of the reasons that k-Schur polyno-
mials were introduced is that modified Macdonald polynomials still expand positively

into k-Schur polynomials s
(k)
µ :

H̃λ(xn; q, t) =
∑
µ

K
(k)
λµ

(q, t)s(k)µ (xn),

and when k is taken to be big enough, this recovers the usual Schur expansion. By
work of Morse and Lapointe, Kλµ(1, 1) counts the number of reduced words for the
dominant affine symmetric group element whose corresponding k-bounded partition is
λ. This generalizes the result of Macdonald using standard Young tableaux, since all
elements will be fully commutative for k large, so that their reduced words correspond
to tableaux. In the general case, these reduced words are chains of elements of the affine



symmetric group for which Hugh Thomas and I constructed a zeta map in [TW14].
A first guess to try to extend our zeta map would be to apply it to each element of
such a chain separately. Recent work of Ceballos, Mühle, and Fang proves bijectivity
for a two-step chain (motivated by work on Hopf algebras of subword complexes by
Bergeron, Ceballos, and Pilaud [BCP18]), and it would be interesting to consider
extensions to longer chains [CFM19].

5. Prior Support: Not Applicable

I have not held an NSF grant before.

6. Intellectual Merit

My research is in algebraic combinatorics, with a broad interest in motivation from
other areas of mathematics such as Lie theory, geometric group theory and Artin/braid
groups, and reflection groups. I believe that my research has had a positive effect on the
combinatorics community, and many results have applied to research problems outside
of the context in which they originally arose. I have a record of producing problems
and research areas accessible to beginning researchers. I have given over 60 invited
seminars and talks. I have been selected five times as a speaker at the week-long
refereed international conference Formal Power Series and Algebraic Combinatorics
(FPSAC). While at FPSAC in 2019, I was asked by the executive committee to give
one of the plenary talks, as the original speaker was unable to attend. I was one of four
invited speakers at the University of Michigan for ALGECOM 2018, an invited speaker
at the 50th anniversary conference of the Centre de Recherches Mathématiques, and I
will be an invited speaker at the 10th Discrete Geometry and Algebraic Combinatorics
conference in 2019 as well as Open Problems in Algebraic Combinatorics 2020.

My work with J. Striker in [SW12] has served as a catalyst for the involvement of
undergraduate and young graduate students in cutting-edge research at REUs and
doctoral programs—there were many developments motivated by the appearance of
our paper [SW12]: [CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16,
PR15, Rob16, RS13, RW15, Rus16, DPS17, Str15, Str16]. In 2015, Striker, Propp,
Roby and I organized an AIM workshop that launched a new field of combinatorics
that J. Propp has termed “Dynamical Algebraic Combinatorics”, and many papers
have resulted from and been inspired by our workshop, including [DPS17, EFG+15,
JR17, STWW17, HMP16, GHMP17b, GHMP17a, GP17]. We organized a successful
session at the Joint Mathematics Meetings in 2018, and J. Striker and M. Arnold and
I organized an AMS special session in Hawaii in Spring 2019; M. Arnold and I are
organizing a follow-up special session at the 2020 JMM in Denver. I revisited this area
with Thomas this past year in two papers [TW17, TW18a].

My work with Z. Hamaker, R. Patrias, and O. Pechenik [HPPW16]—using K-
theoretic Schubert calculus to resolve a long-standing open bijective problem involving
plane partitions—led to two separate REU projects over the past two years: one at
Morrow’s REU at the University of Washington mentored by Hamaker and Griffith,
and one supervised by Pechenik [BHK16, BHK17].



My work with H. Thomas inverting sweep and zeta maps [TW18b] solved a long-
standing problem in the field of diagonal coinvariants, and has already found appli-
cations outside of the field [HV17, Proposition 4.4]. Our follow-up project extending
this work to resolving conjectures from [GMV16b] has led to further interesting prob-
lems [LLP12].

As detailed in my proposal, I have recently been working on some projects related
to invariant theory of reflection groups (recently with C. Arreche) [Wil19], and I am
organizing two minisymposia at the 2nd Annual Meeting of the SIAM Texas-Louisiana
Section in November 2019 on this topic.

7. Broader Impacts

I have two Ph.D. students (Amit Kaushal and Priyojit Palit) who are currently
pursuing research with me. As the only combinatorialist at UT Dallas, I have designed
new undergraduate and graduate courses in combinatorics; due to the success of my
undergraduate Discrete Math and Combinatorics class, I was asked by the honors
college to teach an honors reading course in fall 2019.

I served on the program committe of FPSAC, organized the Graduate Student Com-
binatorics Conference at UT Dallas in 2018 (which hosted over 75 graduate students
from around the country) and appeared as a mathematical consultant in a 2018 tele-
vised report (WFAA) regarding the NCAA basketball bracket, which since aired in
over 15 cities nationwide. I am interested in continuing to increase the visibility and
participation of women in mathematics at UT Dallas by establishing an AWM chapter.

7.1. Mentoring and REUs. Because of its many elementary problems, combina-
torics is a discipline in which undergraduate and graduate students can immediately
become involved in research-level mathematics. I have formulated a large intercon-
nected library of concrete combinatorial problems especially suitable for graduate and
undergraduate students, and I have substantial past experience in involving students
and underrepresented students in research. I will continue to seek out such opportu-
nities with the goal to eventually build a strong combinatorics program at UT Dallas.

While at UT Dallas I have worked with graduate students in the following ways:

• Currently the thesis advisor of Amit Kaushal (since Fall 2018);
• Currently the thesis advisor of Priyojit Palit (since Spring 2019);
• Organized the 2018 Graduate Student Combinatorics Conference;
• Supervised two independent study courses with graduate students. In Spring

2019, I worked with Barbara Melillio, suggesting a reading program of recent
papers and textbooks to learn material required to solve the problem. In Fall
2017, I supervised a reading course with Austin Marstaller on the theory of
root systems.

While at UT Dallas I have worked with undergraduates in the following ways:

• Supervised Kevin Zimmer’s senior honors thesis in spring 2018;
• Mentored rising senior Robert Hubbard for eight weeks in the summer of 2018

as part of the Pioneer REU program;
• Supervised independent research with junior Joshua Marsh in the spring

semester of 2019;



• Supervised independent research with undergraduates Christian Kondor
and Michelle Patten in the spring semester and summer of 2019; and
• Due to the success of the Discrete Math and Combinatorics course I designed

for the new BS in Data Science program, I was asked by the honors college to
teach a reading course in fall 2019 for 10 students.

My past experience in involving undergraduate students in research includes:

• In 2016, I co-mentored Florence Maas-Gariepy on a research/study project
involving finite reflection groups, which led to her project report (in French)
being featured on the funding agency’s website [MG16].
• In 2014, I mentored Stephanie Schanack, Fatiha Djermane, and Sarah Ouahib

on an original research problem involving the characterization of the fixed
points of a certain combinatorial set under a cyclic group action. I guided them
through a case-by-case analyses which the three wrote up (in French) [SSD14].
• At the 2011 University of Minnesota REU, I provided support to David B Rush

and XiaoLin Shi [RS13], who found a generalization of my work in [SW12].
• For the 2010 Minnesota REU, I helped direct Gaku Liu’s research in partition

identities [Liu] and helped a second group formulate and computationally test
conjectures on a combinatorial reformulation of the four-color theorem [CSS14].

7.2. Conferences and Workshops Organized. I have also been very active in
organizing conferences and workshops:

• I organized a week-long workshop at the American Institute of Mathematics;
• I organized the 2018 Graduate Student Combinatorics Conference at UT Dal-

las, with over 75 attendees (also obtaining $20,000 of NSF funding);
• I served on the program committee for FPSAC in 2019 and I will serve in

2020–2022 as its NSF/NSA PI for funding;
• I have organized four AMS special sessions. My UT Dallas colleague M. Arnold

and I organized a special session in Hawaii in 2019, and we are organizing
another special session at the 2020 Joint Mathematical Meetings in Denver,
both relating to the interactions between dynamical systems and combinatorics;
• I am also currently organizing a minisymposium on “Coinvariant Spaces and

Parking Functions” for the 2019 SIAM Texas Louisiana Section at Southern
Methodist University under the meta-organization of Dr. F. Sottile;
• In October 2018, I organized a two-week “research-in-pairs” program at Ober-

wolfach, resulting in a 132-page preprint; and
• My workshop proposal with Drs. J. Propp, T. Roby, and J. Striker for a week-

long program on “Dynamical Algebraic Combinatorics” was accepted by BIRS
for 2020.

7.3. Referee Activities. As a member of the mathematical community, I have
refereed for over twenty journals, including Proceedings of the American Mathemat-
ical Society, Selecta Mathematica, and Transactions of the AMS. I also served as a
referee for UT Dallas’ own undergraduate research journal The Exley.

In 2019, I refereed two mathematical grants: one for the state of Texas in ConTex,
and one for the French National Research Agency.
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