
INDEPENDENCE POSETS

Introduction

Independent sets of graphs are ubiquitous objects in combinatorics with applica-
tions to complexity theory and statistical mechanics. The proposed research program
will develop new combinatorial structures on independent sets, focusing on problems
related to models of classical combinatorial objects, representation theory of finite-
dimensional algebras, statistical mechanics, and dynamical algebraic combinatorics.

Central to the proposal is the PI’s recent definition of independence posets (Section 1,
see Figure 1 for an example), which give a new partial ordering on the independence
sets of a directed acyclic graph G [TW20b]. When G is the comparability graph of a
poset P , the independence poset on G is isomorphic to the distributive lattice of order
ideals of P . Thus, an independence poset answers the question:

“What if a distributive lattice weren’t a lattice?”

The class of independence posets includes not only all distributive lattices, but
also (rational) Tamari lattices, Cambrian lattices of finite type, Fuss-Cambrian lat-
tices [STW15], torsion pairs of finite type tilted Artin algebras, and many other related
notions of both classical and current interest. Interesting research in those areas can
now be unified and generalized to the setting of independence posets. The specific
goals of the proposed research include:

• Extend the definition of independence posets to infinite digraphs, digraphs
with oriented cycles, and proper colorings guided by the representation the-
ory of certain classes of algebras, lattice theory, and symmetric function the-
ory [Asa16, RST19] (Section 1);
• Study derived equivalences of independence posets [Lad07]; develop a frame-

work for bijective proofs using independence posets (Section 2);
• Exploit the monotone structure on independent sets provided by independence

posets to extend the applicability of the Propp-Wilson coupling from the past
algorithm to randomly sample independent sets [PW98] (Section 3);
• Relate independence posets with integral points in dilations of polytopes con-

structed by Chvátal [Chv75], generalizing P -partitions from distributive lat-
tices to independence posets [Sta86]; generalize independence posets to any
convex lattice polytopes;
• Find new examples of relevance to Dynamical Algebraic Combinatorics; i.e.,

combinatorial, piecewise-linear, and birational rowmotion periodicity in the
generalized setting of independence posets [Rob16, Str17] (Section 4).

The PI’s related work in [SW12] has served as a catalyst for the involvement of
undergraduate and beginning graduate students in cutting-edge research at REUs and
doctoral programs. There have been many developments motivated by the appearance
of [SW12]—to name a few: [CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15,
GR16, PR15, Rob16, RS13, RW15, Rus16, DPS17, Str15, Str16, JR18, MR19, DSV19,
Jos19, JR20, Hop20, JR20]. In 2015, the PI, Striker, Propp, and Roby organized an
AIM workshop that launched a new field of combinatorics now termed “Dynamical
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Algebraic Combinatorics.” This same group is organizing a follow-up BIRS online
workshop for Fall 2020 (originally accepted in-person, but delayed due to COVID-
19; the PI is preparing his current undergraduate honors reading class to attend this
workshop). The PI has additionally organized several successful AMS and JMM special
sessions in this field. An integral part of this proposal is to continue supporting the
PI’s ongoing and future efforts to involve students in cutting-edge research in algebraic
combinatorics and related areas.

The PI has already laid some of the theoretical groundwork underpinning this pro-
posal in the two recent publications [TW19b, TW19a]. Over the course this previous
research, the PI has developed an original toolkit and perspective that has yielded
substantial new progress in related fields. Based on this new perspective, the PI has
created an interconnected library of concrete combinatorial problems especially suit-
able for early-stage students.
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Figure 1. Top left: acyclic digraph G whose independent sets encode
the 15 set partitions of {1, 2, 3, 4}. Bottom left: the tight orthogonal
pair in G (Definition 1) corresponding to the set partition 134|2 (boxed
on right). Right: the corresponding independence poset on set parti-
tions.

1. Definition and Motivation

1.1. Definition: Independence Posets. Let G be a finite acyclic directed graph
(without oriented cycles, loops, or multiple edges) so that the transitive closure of G
admits a partial order on its vertices called G-order. An independent set I⊆ G is a
set of pairwise non-adjacent vertices of G. Independence posets, introduced by the PI
in [TW19a], are a certain partial ordering on the independent sets of G—depending
on the orientation of G—whose cover relations are given by a novel definition of (non-
local) flips. For example, there are 126 acyclic orientations of the graph in Figure 1,
giving 126 different independence poset structures on the set partitions of {1, 2, 3, 4}.
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The notion of “independence poset” is a natural generalization of that of “distribu-
tive lattice,” but where the lattice requirement is eliminated. An independence poset
that is a graded lattice is a distributive lattice. Many other well-known posets (such
as Tamari and Cambrian lattices) turn out to be special cases of independence posets.
The definitions below can be explored using the PI’s FPSAC 2020 online interactive
poster [TW20b].

Definition 1 (Tight Orthogonal Pairs). A pair (D, U) of disjoint independent sets
of G is called orthogonal if there is no edge in G from an element of D to an element
of U. An orthogonal pair of independent sets (D, U) is called tight if whenever any
element of D is increased (removed and replaced by a larger element with respect to
G-order) or any element of U is decreased, or a new element is added to either D

or U, then the result is no longer an orthogonal pair of independent sets. We write
top(G) for the set of all tight orthogonal pairs of G.

One can show that for any independent set I, there is a unique (I, U) ∈ top(G)
and a unique (D,I) ∈ top(G). Tight orthogonal pairs now allow us to define a non-
local flip operation, which generate the cover relations of a partial order we call the
independence poset.

Definition 2 (Flips). The flip of (D, U) ∈ top(G) at an element g ∈ G is the tight
orthogonal pair flipg(D, U) defined as follows: if g 6∈ D and g 6∈ U, the flip does
nothing. Otherwise, preserve all elements of D that are not less than g and all elements
of U that are not greater than g (and delete all other elements); after switching the set
to which g belongs, then greedily add elements to D and U (respecting the conditions
to form an orthogonal pair) in reverse G-order and G-order, respectively.

Figure 2 illustrates a flip on a tight orthogonal pair in an orientation of [7] × [7].
For G an acyclic directed graph, the independence relations on top(G) are the reflexive
and transitive closure of the relations (D, U) < (D′, U′) if there is some g ∈ U such
that flipg(D, U) = (D′, U′).

Theorem 3 (Independence Posets). Independence relations are antisymmetric, and
hence define an independence poset, denoted top(G). Flips and cover relations of
top(G) coincide.

There is an obvious partial order I(G) on independent sets of G defined by simple
inclusion: I ≤I(G) I′ iff I ⊆ I′. In [TW19a], we left open the following natural
question relating I(G) and top(G) (generalizing the corresponding property from
noncrossing partition lattices and Cambrian lattices; see [Rea11, BB09]).

Problem 1. Show that the map I(G) → top(G) defined by I 7→ (I, U) is order
preserving: if I≤I(G) I

′, then (I, U) ≤top(G) (I′, U).

1.2. Motivation I: Representation Theory. The representation theory of finite-
dimensional algebras provides a first motivation for independence posets. Let k be a
field, and A a finite-dimensional k-algebra such that the module category modA has
no cycles. Examples include Dynkin path algebras (here, a module assigns a vector
space to each vertex of the Dynkin quiver, and a linear map to each edge; by Gabriel’s
theorem, the indecomposable modules are in bijection with positive roots); as well as
all quotients of Dynkin path algebras.
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Figure 2. A flip on a top (D, U) in the 7 × 7 grid oriented from top
left to bottom right. The blue vertices correspond to the elements of
D, while the orange vertices correspond to the elements of U. Flipping
at the vertex g changes its color, and divides the grid into 5 connected
regions (delineated by the dotted lines): the blue vertices not less than
g (i.e., not in the bottom right) and the orange vertices not greater than
g (i.e., not in the top left) are preserved by the flip. The orange vertices
in the top left are filled in greedily from bottom right to top left; the
blue vertices in the bottom right are filled in greedily from top left to
bottom right.

Define a directed graph G with vertices indexed by the indecomposable A-modules
and an arrow from M to N if and only if Hom(M,N) 6= 0. A simple-minded collection
for A is a collection of objects X1, . . . , Xr in the derived category of Db(A) such
that [KY14]:

(1) Hom(Xi, Xj[m]) = 0 for m < 0,
(2) End(Xi) is a division algebra and Hom(Xi, Xj) = 0 unless i = j,
(3) X1, . . . , Xr generate Db(A) in the sense that the smallest thick subcategory

containing all of them is Db(A) itself,

A 2-simple-minded collection additionally satisfies Hj(Xi) = 0 for j 6= 0,−1 and for
each Xi. It follows from work of Asai [Asa16] that tight orthogonal pairs on the
directed graph G defined above (with vertices the indecomposable A-modules) are in
bijection with 2-simple-minded collections.

Theorem 4. Let A be a representation-finite k-algebra with no cycles in modA.
There is a bijection from tight orthogonal pairs to 2-simple-minded collections, sending
(D, U) to D∪ U[1].

Relaxing the property that the module category is finite suggests the following
problem regarding the definition of infinite independence posets and independence
posets associated to directed graphs with oriented cycles. Any such definition should be
guided by developing a combinatorial understanding of the special case when G arises
from the representation theory of more general module categories (the first example to
work out would be affine quivers), following similar arguments as in [TW19a, Section
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7] (see also [RST19]), and should have connections to the combinatorics of cluster
algebras of infinite type.

Problem 2. Extend the construction of independence posets to infinite acyclic di-
graphs and digraphs with oriented cycles.

1.3. Motivation II: Lattice Theory. Birkhoff’s well-known fundamental theorem
of finite distributive lattices proves that finite distributive lattices are parametrized by
finite posets P (as the lattice J(P ) of order ideals under inclusion). Markowsky (a
student of Birkhoff) generalized Birkhoff’s theorem to a lesser-known representation
theorem for finite extremal lattices—that is, lattices whose longest chain is equal to
both the number of join irreducible elements and meet irreducible elements—showing
that finite extremal lattices are parametrized by (finite) acyclic graphs G (as the lattice
of maximal orthogonal pairs of G under inclusion) [Mar92].1

Independence posets are a different generalization of Birkhoff’s theorem: although
independence posets (like extremal lattices) are still parametrized by acyclic directed
graphs, their elements are the ubiquitous independent sets, rather than the more
technical “maximal orthogonal pairs”. When an independence set happens to be a
lattice, then it is a special kind of extremal lattice called a trim lattice (which then
admit a canonical labeling of cover relations by join and meet irreducibles [TW19b]).

Theorem 5. If top(G) is a lattice, then it is a trim lattice. Every trim lattice can be
realized as top(G) for a unique (up to isomorphism) acyclic directed graph G.

The recently renewed theory of lattice quotients (with substantial applications to
cluster algebras and quiver representation theory [Rea06]) suggests that there out to
be a procedure to “blow up” a trim lattice into a graded (possibily semidistributive)
lattice. A motivating problem in this direction is that of reconstructing weak order
from its Cambrian lattice (see Figure 3)—in type A, for example, it is known how to
reconstruct the collapsed intervals between sortable and anti-sortable elements using
trees [PP18]. This is closely related to the problem of extending the construction of
trim lattices or independence posets to digraphs that contain cycles from Section 1.2.

Problem 3.

(1) Use the representation of trim lattices as maximal orthogonal pairs (X, Y ) to
recursively “blow up” an element (X, Y ) using maximal orthogonal pairs on
G \ (X ∪ Y ). The result should be a graded lattice. (See Figure 3.)

(2) Extend the construction of trim lattices and independence posets to general
digraphs. The result should be a theory that unifies semidistributive and trim
lattices (see also [RST19]).

2. Problems in Representation Theory and Combinatorics

2.1. Derived Equivalences of Posets. Ladkani has defined an interesting notion of
derived equivalence of posets [Lad07, Lad08] (this technology has recently been used by

1In fact, Markowksy’s work included a representation theorem for any finite lattice, previously
anticipated by Barbut [Bar65]; these ideas were later developed by Wille in the guise of Formal
Concept Analysis. [Wil82].
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Figure 3. Left : the c-Cambrian lattice Cambc(A2) for c = s1s2, which
recovers the Tamari lattice on five elements. Right: weak order for
the Weyl group W (A2), obtained by “blowing up” the restriction of the
graph to the single vertex labelled by 2, as in Problem 3(1). This con-
struction can also be obtained by “piecing together” the independence
posets that arise from the two linear orientations of the path of length
three as

1 3
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, as in Problem 3(2).

Chapoton and coauthors, specifically in the case of Cambrian lattices [SMHP12]). Let
X be a poset and k a field. Translating the usual quiver-theoretic definitions to posets,
the incidence algebra kX of X over k is the algebra spanned by exy for x ≤ y ∈ X,
with multiplication

exyezw =

{
exw if y = z, and

0 otherwise.

Let Db(X) denote the bounded derived category of finite dimensional (right) modules
over the incidence algebra kX (which assign to each vertex of X a vector space, and to
each cover relation a linear map). Two posets X and Y are called derived equivalent
if Db(X) and Db(Y ) are equivalent (as triangulated categories).

We say that g ∈ G is extremal if it is a minimal or maximal element with respect to
G-order. Define the mutation of an acyclic directed graph G at an extremal vertex g of
G to be the acyclic directed graph togg(G) obtained by reversing all edges incident to
g [TW19a]. This notion is similar to the definition of BGP reflection functors arising
in cluster combinatorics and quiver representation theory [BGP73], and we say that
two acyclic graphs are in the same mutation class if they can be related by a sequence
of mutations. We propose the following relationship between mutation and derived
equivalence.

6



Problem 4. Show that if G and H are two acyclic directed graphs in the same
mutation class, then the independence posets top(G) and top(H) are (universally)
derived equivalent.

The proposed method of proof is to follow Ladkani’s flip-flop technology from [Lad07]
(requiring a partition of top(G) into two pieces X, Y , along with an order preserving
function f : X → Y ), and then the PI’s structural recurrences on independence posets
from [TW19a] along with the definition of flip in Definition 2. More precisely, writing
the independence poset intervals

topg(G) := [0̂, (D, {g})] and topg(G) := [({g}, U), 1̂],

if g is an extremal element of G we have the decomposition

top(G) = topg(G) t topg(G).

Furthermore, if g is minimal, (D, U) ∈ topg(G) if and only if g ∈ U. Ladkani’s flip-
flop technology seems likely to apply with only light modifications using the order-
preserving map

flipg : X = topg(G) 7→ topg(G) = Y

defined by flipping at g. Generalized mutation operations on independence posets
(see Problem 6) lead to generalizations of Problem 4.

2.2. Combinatorial Models and Bijections. Since distributive lattices J(P ) are
recovered by independence posets when G = Comp(P ) is the comparability graph of
the poset P (antichains in P become independent sets of Comp(P )), many classical
combinatorial objects (to name a few: integer partitions in a box, various classes
of plane partitions, domino tilings, stable marriages, alternating sign matrices, and
minuscule lattices) can all be represented using independence posets. Placing different
acyclic orientations on the comparability graph (for example, using the mutations
of Section 2.1) gives new partial orders—different from the one obtained from their
distributive lattice structure—on these classical objects.

The real interest is that many objects in combinatorics can be encoded as
independent sets of particular graphs. Using the framework of independence
posets, these objects can now be endowed with a wide variety of new partial orders.
For example, we can now obtain new orientations on Coxeter–Catalan objects (such
as trees or triangulations), including both noncrossing and nonnesting objects (gen-
eralizing Cambrian lattices), as well as on the intersection lattice of a real central
hyperplane arrangement (including, for example, set partitions as the intersections of
the type A braid arrangement, as in Figure 1 for the the 15 set partitions of {1, 2, 3, 4}
with 126 possible independence posets depending on the acyclic orientation chosen).

Efficient procedures for navigating these independence posets (see Section 3) allow
for fast random sampling of these objects. Surprisingly, despite many surveys on
independent sets, there is a dearth of attempts in the literature at compiling a list
of exactly which combinatorial objects can be represented as independent sets (for a
surprising example, see the two graphs just below Problem 6). The PI has written and
made publically available some code for dealing with independence posets [TW20a],
but the following project suggests itself as worthwhile to the community.
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Problem 5. Compile and make available a detailed digital database of combinatorial
objects that can be encoded as independent sets. Integrate this library into Sage for
widespread use.

There are also bijective consequences of compiling such a database.

Problem 6. Generalize the mutations of Section 2.1 to a wider set of “local moves”
on digraphs (preserving the number of independent sets) to give a framework for
producing useful new bijections between combinatorial objects.

For example, the graphs and have the same number of independent sets (one

graph encodes the seven 3 × 3 altenating sign matrices, the other the corresponding
set of totally symmetric self-complementary plane partitions). Useful places to search
for such generalized moves from Auslander-Reiten quivers, derived categories, and the
theory of heaps.

3. Statistical Mechanics and Random Sampling

In this section, we propose using independence posets to extend Propp and Wilson’s
coupling from the past algorithm from distributive lattice theory to independence sets
of any graph.

The random sampling of independent sets (weighted by the number of vertices in
the set) is termed the hard-core model in statistical mechanics. Given a graph G with
independent sets I(G) and a fugacity λ > 0, define the partition function

PG(λ) =
∑

a∈I(G)

λ|a|.

Efficiently sampling independent sets according to this measure is a well-known prob-
lem that has only been solved in certain special cases (certain types of graphs, ex.
comparability graphs of posets; graphs with low maximum vertex degree; etc.)—note
that it is known to be NP-complete to determine the maximum size of an independent
set of a graph G, which forces this problem to be intractable in general (take λ→∞).

Let δ denote the maximum degree of a graph G. We briefly summarize some of the
known results. It is already #P-complete to count independent sets in graphs with
δ = 3; Glauber dynamics has a mixing time O(n lnn) when λ < 2δ − 2; for λ = 1 and
all ∆ ≥ 6, Dyer, Frieze and Jerrum proved there exists a bipartite graph for which
the mixing time of any Markov chain making only “local moves” is exponential (but
recall that our flips from Definition 2 are highly non-local, so that this result does
not apply!); Luby and Vigoda describe a Markov chain that approximately counts
independent sets in graphs with δ ≤ 4 in polynomial time[LV97, LV99, HN98].

Propp and Wilson’s coupling from the past (CFTP) algorithm allows for uniform
sampling without knowing the mixing time of the underlying Markov chain. In gen-
eral, CFTP requires as many instances to be run as states; in practice, an additional
monotonicity assumption reduces the number of concurrent running instances to just
two. Applications are numerous, but the most well-known example is to distributive
lattices (which allows, for example, random sampling of domino tilings of an Aztec
diamond). It is known that CFTP cannot be fast in general—the simple example of
a complete bipartite graph already produces a bottleneck that forces the sampling to
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take exponential time—but the theoretical guarantees provided by CFTP make it an
attractive method for sampling.

A trick due to Shor and Winkler encodes independent sets of bipartite graphs as
order ideals in a corresponding distributive lattice, but no such trick is known in
general: “For general (non-bipartite) graphs G there is no monotone structure which
would allow one to use monotone CFTP”[LP17, 22.4]. But independence posets would
seem to now provide such a structure, and it is worth at least running experiments
to see if this structure provides an improvement over traditional Glauber/heat-bath
dynamics.

Problem 7. Use independence posets to extend CFTP and its theoretical implica-
tions to the independent sets of any graph. Produce computational and experimental
evidence for the efficacy of this method.

4. Integer Points in Polytopes

In this section we discuss the potential application of using a generalization of inde-
pendence posets to efficiently generate all lattice points inside convex lattice polytopes.
We then give a brief treatment of the study of those lattice points from the point of
view of dynamical algebraic combinatorics.

4.1. Chvátal’s perfect graph polytopes. Recall that the independence poset top(G)
recovers the lattice of order ideals J(P ) when G = Comp(P ) is the comparability graph
of a poset P . Order ideals of a poset have a natural generalization to the theory of P -
partitions [GHL+16], which can be interpreted as the lattice points inside of a certain
polytope called the order polytope. In this section we propose to develop piecewise-
linear generalizations of independence posets, thereby providing a generalization of the
construction of P -partitions.

Given a set X = {x1, . . . , xn}, we write RX for the set of functions f : X → R. For
a poset P , Stanley proved that the chain polytope in RP defined as the set of points
f ∈ RP satisfying the inequalities

0 ≤ f(p) for all p ∈ P and

k∑
i=1

f(pi) ≤ 1 for any chain p1 < · · · < pk in P

is the convex hull of the characteristic functions of antichains of P [Sta86]. In fact (as
Stanley remarks), this is a special case of a beautiful construction of Chvátal [Chv75]:

Theorem 6. Let G = {g1, . . . , gn} be a perfect graph. Then the convex hull of the
indicator functions of the independent sets of G matches the polytope C(G) defined as
the set of points f ∈ RG satisfying the inequalities

0 ≤ f(g) for all g ∈ G and∑
g∈C

f(g) ≤ 1 for any clique C of G.
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Stanley’s result follows from Chvátal’s by taking G = Comp(P ), which is necessarily
a perfect graph. (It turns out that Chvátal’s result is actually a characterization of
perfect graphs!)

Stanley defined a second polytope called the order polytope O(P ), again using in-
equalities coming from the ordering on the poset, by

0 ≤ f(p) ≤ 1 for all p ∈ P and

f(p) ≤ f(q) if p ≤ q in P.

Stanley gives a simple piecewise-linear transfer map between O(P ) and C(P ), which
restricts to a bijection on integer points in their dilations. On the combinatorial side
again, the number of lattice points inside the m-fold dilation mO(P ) (counted by the
Ehrhart polynomial for O(P )) is given by the number of multichains of order ideals
∅ = I0 ⊆ I1 ⊆ · · · ⊆ Im+1 = P in J(P ), or equivalently by J(P × [m]). It is therefore
of interest to determine a combinatorial generalization of what an independence poset
“top(G× [m])” might look like, with the idea that when G is a perfect graph then the
integer points in the dilation mC(G) agrees with the number of vertices of the gener-
alized independence set (note that it is not immediately clear what an “independent
set” ought to mean in this context). The PI has recently constructed what appears to
be the correct generalization (having checked many examples by computer), and the
task remains to prove these results.

Namely, given D∈ RG, we define piecewise-linear toggle operators

tog(m)
g : RG → RG

D(x) 7→


D(x) if x 6= g

m− max
C a clique

g∈C

∑
h∈C D(h) otherwise .

We now define rowmotion to be the operator

row(m) : RG → RG

D 7→
∏
g∈G

tog(m)
g (D),

where the product in the definition is in G-order (this matches the combinatorial
and piecewise-linear definitions of rowmotion for G = Comp(P ) [SW12, EP13, Jos19,
JR20]). Finally, the elements of top(m)(G) will be pairs (D, U) with U = row(m)(D),
generated starting from (∅, row(m)(∅)) using the piece-wise generalization of flip: sub-
tract 1 from fᵀ(g) (if possible) add one to f(g), and fill in the remainder of f above
and below g as in the combinatorial flip definition (but using the new piecewise-linear
toggles).

Problem 8. Show that this combinatorial construction recovers all integer points in
Chvátal’s polytope C(G) (defined by inequalities on the cliques).

As a special case when G = Comp(P ), this recovers Stanley’s theory of order poly-
topes and P -partitions.

Problem 9. Generalize central properties of P -partitions and Stanley’s chain poly-
topes to independence posets and C(G). For example, a triangulation of C(G) should
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(0, 0, 0)

(0, 0, 1) (1, 0, 0)

(0, 0, 2) (0, 1, 0) (1, 0, 1)

(0, 1, 1) (1, 1, 0)

(0, 2, 0) (1, 0, 2)

(1, 1, 1)

(2, 0, 0)

(2, 0, 1)

(2, 0, 2)

Figure 4. The 14 integer points in 2C(G) for G the directed graph
1 → 2 → 3, arranged in generalized independent set order (generated
using flips from the point (0, 0, 0)).

suggest a notion of “linear extensions” for independence posets, and then ought to
give a formula for the Ehrhart generating function of C(G).

A corollary to the solution of Problem 8 is that flips give what ought be be a
particularly efficient way to generate all lattice points inside mC(G). This suggests
that, given a (positive) lattice polytope

P = {x ∈ Rd : 〈ci, x〉 ≤ ai for i = 1, . . . ,m} with ci ∈ Nd and ai ∈ N
we can further generalize the construction to place constraints separately on each
clique, thereby generalizing independence posets to counting lattice points in any con-
vex lattice polytope.

Problem 10. • Show that the polytopal interpretation of independence posets
gives an efficient algorithm to generate the lattice points in mC(G).
• Generalize the definition of flip to accommodate separate conditions on each

clique, and show that the analogue of Problem 8 holds.
• Show that this gives an explicit and efficient algorithm to generate lattice points

in any convex lattice polytope.

One can also produce m-eralizations of trim lattices arising from representation
theory using derived categories, as we did in [STW15] for Cambrian lattices. It would
be interesting to study generalizations at the level of independence posets.

Problem 11. Extend the construction of independence posets using representation-
theoretic m-eralizations as a guide.

It would also be interesting to extend the construction of independence posets to
(proper) colorings.
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5. Dynamical Algebraic Combinatorics

The PI’s generation of the rowmotion map on independent sets in [TW19a] is given
by the map I 7→ I′ when (I,I′) is the unique top with Ias its left set. This recovers
other, more classical, notions on distributive lattices. In fact, given two different
acyclic orientations on the same underlying graph G,G′, we obtain an interesting
generalization of this bijection on independent sets: if (I, U) ∈ top(G) and (I, U′) ∈
top(G′), then we obtain the map on independent sets I 7→ U′. In the special case
when G = G′ are the same orientation, this recovers the above rowmotion.

Problem 12. Find examples of directed graphs for which the generalized rowmotion
operator has interesting properties (from the point of view of dynamical algebraic
combinatorics: simple order, homomesy, etc.).

Section 4.1 gives us the generalization of independence posets to the piecewise linear
realm, and so defines a rowmotion operator (we can further define birational rowmotion
by modifying the toggle operation above). Also related is the study of a linear operator
coming from the Grothendieck group K0(modP ) (see, for example, the recent work
in [Yil19] for the case of cominuscule posets).

Problem 13. Study (piecewise-linear/birational) rowmotion and the Coxeter trans-
formation θ = −C(C−1)ᵀ for independence posets, where C = [Cxy]x,y∈top(G) is the
incidence matrix of top(G) defined by Cxy = 1 if x ≤ y and 0 otherwise.

In general, we expect that directed graphs coming from representation theory ought
to have interesting behavior under these actions, including possible connections with
cluster algebras, R-systems, and various generalizations of periodicity.

6. Prior Support: Not Applicable

The PI has not held a personal NSF grant before.

7. Intellectual Merit

The PI’s research is in algebraic combinatorics, with a broad interest in motivation
from other areas of mathematics such as Lie theory, geometric group theory, and
reflection groups. The PI has a strong record of solving long-standing problems using
an original toolkit and perspective: he has been selected to give six talks at FPSAC
and will be an invited speaker at the 2020 Triangle Lectures in Combinatorics as well
as Open Problems in Algebraic Combinatorics 2021 at the University of Minnesota.

The PI’s related work in [SW12] has served as a catalyst for the involvement of
undergraduate and beginning graduate students in cutting-edge research at REUs and
doctoral programs. There have been many developments motivated by the appearance
of [SW12]—to name a few: [CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15,
GR16, PR15, Rob16, RS13, RW15, Rus16, DPS17, Str15, Str16, JR18, MR19, DSV19,
Jos19, JR20, Hop20, JR20]. In 2015, the PI, Striker, Propp, and Roby organized an
AIM workshop that launched a new field of combinatorics now termed “Dynamical
Algebraic Combinatorics.” This same group is organizing a follow-up BIRS online
workshop for Fall 2020 (originally accepted in-person, but delayed due to COVID-
19; the PI is preparing his current undergraduate honors reading class to attend this
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workshop). The PI has additionally organized several successful AMS and JMM special
sessions in this field. An integral part of this proposal is to continue supporting the
PI’s ongoing and future efforts to involve students in cutting-edge research in algebraic
combinatorics and related areas.

The PI has already laid some of the theoretical groundwork underpinning this pro-
posal in the two recent publications [TW19b, TW19a]. Over the course this previous
research, the PI has developed an original toolkit and perspective that has yielded
substantial new progress in related fields. Based on this new perspective, the PI has
created an interconnected library of concrete combinatorial problems especially suit-
able for early-stage students.

8. Broader Impacts

The PI has substantial past experience in involving students and underrepresented
students in research: he has mentored undergraduate research over six different sum-
mers (at UTD, LaCIM, and UMN), supervised three honors theses at UTD, and he
currently has two Ph.D. students (Amit Kaushal and Priyojit Palit) pursuing their
thesis research in areas related to this proposal. The PI’s related work in [SW12]
has served as a catalyst for the involvement of undergraduate and beginning gradu-
ate students in cutting-edge research at REUs and doctoral programs. There have
been many developments motivated by the appearance of [SW12]—to name a few:
[CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16, PR15, Rob16, RS13,
RW15, Rus16, DPS17, Str15, Str16, JR18, MR19, DSV19, Jos19, JR20, Hop20, JR20].
In 2015, the PI, Striker, Propp, and Roby organized an AIM workshop that launched
a new field of combinatorics now termed “Dynamical Algebraic Combinatorics.” This
same group is organizing a follow-up BIRS online workshop for Fall 2020 (originally
accepted in-person, but delayed due to COVID-19; the PI is preparing his current
undergraduate honors reading class to attend this workshop). The PI has additionally
organized several successful AMS and JMM special sessions in this field. An integral
part of this proposal is to continue supporting the PI’s ongoing and future efforts to
involve students in cutting-edge research in algebraic combinatorics and related areas.

As the only combinatorialist at UTD, the PI has designed new undergraduate and
graduate courses in combinatorics; due to the success of his undergraduate Discrete
Math and Combinatorics class, the PI was asked by the honors college to teach honors
reading courses in Fall 2019 and Fall 2020. When the PI’s BIRS workshop on “Dy-
namical Algebraic Combinatorics” was moved online for Fall 2020 due to COVID-19
(the in-person workshop was postponed to 2021), the PI decided to focus his Fall 2020
undergraduate honors reading course around preparing the students to participate in
this two-week online BIRS conference. The PI intends to use his past experience
in conference organization to set up a yearly online workshop, with the goal
of bringing together early graduate and undergraduate students (including
the honors students in his current reading course, as well as Ph.D. student
of the PI’s collaborators).

The PI has a history of service to the combinatorial community: he has refer-
eed for over twenty journals, became an editor for Annals of Combinatorics in 2019,
served on the program committee of FPSAC in 2019 (and is grant coordinator for

13



2021–2023), and has organized many conferences, workshops, and special sessions. He
has represented the larger mathematical community to the public by appearing as a
mathematical consultant in a 2018 nationally televised report (WFAA) regarding the
NCAA basketball bracket, and hosting mathematical events at UTD (such as setting
up a freshman orientation table for potential math majors, and serving as a faculty
speaker at a MATHCOUNTS competition).

The PI has a record of producing problems and research areas accessible to begin-
ning researchers, including the now-active area of dynamical algebraic combinatorics.
At least three of the PI’s papers have independently led to Research Experience for
Undergraduates (REU) projects at three different institutions.

8.1. Mentoring and REUs. The PI has substantial past experience in involving
students and underrepresented students in research: this past Spring 2020, the PI su-
pervised two undergraduate honors theses (one already submitted for publication, the
other nearing completion), and this past Summer 2020, the PI supervised two graduate
students on a research project. He currently has two Ph.D. students (Amit Kaushal
and Priyojit Palit) pursuing their thesis research in areas related to this proposal.
The PI will continue to seek out such opportunities with the goal to eventually build
a strong combinatorics program at UT Dallas, include applying for REU funding.

While at UT Dallas the PI has worked with graduate students in the following
ways:

• Currently the thesis advisor of Amit Kaushal (since Fall 2018);
• Currently the thesis advisor of Priyojit Palit (since Spring 2019);
• Organized the 2018 Graduate Student Combinatorics Conference;
• Supervised several independent study courses with graduate students (Fall

2017, Spring 2019, Summer 2020).
• Organized a research group with graduate students Charlie Preston and Erin

Pierce on the problem of which type A crystals are lattices (Summer 2020; end
result was a conjectured complete classification).

While at UT Dallas the PI has worked with undergraduates in the following ways:

• Supervised Kevin Zimmer’s senior honors thesis in Spring 2018;
• Mentored rising senior Robert Hubbard for eight weeks in Summer 2018 as

part of the Pioneer REU program (he has since begun his Ph.D. studies at
UNC Chapell Hill);
• Supervised independent research with junior Joshua Marsh in Spring 2019;
• Supervised independent research with undergraduates Christian Kondor

and Michelle Patten in the Spring and Summer 2019;
• Due to the success of the Discrete Math and Combinatorics course I designed

for the new BS in Data Science program, I was asked by the honors college to
teach a reading course in Fall 2019 for 10 students. I was asked to teach an
honors reading course again in Fall 2020 for 15 students.
• Supervised Joshua Marsh’s senior honors thesis in Spring 2020 (he has since

begun his Ph.D. studies at GA tech; will submit for publication);
• Supervised Benjamin Cotton’s senior honors thesis in Spring 2020 (submit-

ted for publication);
14



• In Fall 2020, preparing an honors reading class to take part in the BIRS
Dynamical Algebraic Combinatorics conference.

Further past experience involving undergraduate students in research includes:

• In 2016, co-mentored Florence Maas-Gariepy on a research/study project in-
volving finite reflection groups, which led to her project report (in French)
being featured on the funding agency’s website [MG16].
• In 2014, mentored Stephanie Schanack, Fatiha Djermane, and Sarah Ouahib on

an original research problem involving the characterization of the fixed points of
a certain combinatorial set under a cyclic group action. Guided them through
a case-by-case analyses which the three wrote up (in French) [SSD14].
• At the 2011 University of Minnesota REU, provided support to David B Rush

and XiaoLin Shi [RS13], who found a generalization of the PI’s work in [SW12].
• For the 2010 Minnesota REU, helped direct Gaku Liu’s research in partition

identities [Liu] and helped a second group formulate and computationally test
conjectures on a combinatorial reformulation of the four-color theorem [CSS14].

8.2. Conferences and Workshops Organized. The PI has also been very active
in organizing conferences and workshops:

• Organized a week-long workshop at the American Institute of Mathematics;
• Organized the 2018 Graduate Student Combinatorics Conference at UT Dallas,

with over 75 attendees (also obtaining $20,000 of NSF funding);
• Served on the program committee for FPSAC in 2019.
• Organized four AMS special sessions. With UTD colleague M. Arnold, orga-

nized a special session in Hawaii in 2019, and another special session at the
2020 Joint Mathematical Meetings in Denver, both relating to the interactions
between dynamical systems and combinatorics;
• In October 2018, organized a two-week “research-in-pairs” program at Ober-

wolfach, resulting in a 132-page preprint;
• Organized two minisymposia on “Coinvariant Spaces and Parking Functions”

for the 2019 SIAM Texas Louisiana Section at Southern Methodist University
under the meta-organization of F. Sottile;
• Organizing two-week BIRS workshop with J. Propp, T. Roby, and J. Striker

on “Dynamical Algebraic Combinatorics” will take place online in Fall 2020
(with in-person delayed to 2021); and
• Organizing FPSAC’s NSF and NSA funding proposals (2021–2023).

8.3. Referee Activities. As a member of the mathematical community, the PI
became an editor for Annals of Combinatorics in 2019. The PI has refereed for over
twenty journals, including Proceedings of the American Mathematical Society, Selecta
Mathematica, and Transactions of the AMS, as well as for undergraduate journals. The
PI has refereed a few mathematical grants, including for the state of Texas (ConTex)
and for the French National Research Agency.
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