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Introduction

Dynamical algebraic combinatorics (DAC) is a relatively new field pioneered by the
PI. DAC extends classical enumerative combinatorics to accommodate group actions—
well-behaved actions hint at deep connections between combinatorial objects and
other, more algebraic, constructions (such as integrable systems, bases in quantum
groups, or cluster variables in cluster algebras). Conceptual proofs often exploit these
connections and have led to fruitful interchanges between combinatorics, representa-
tion theory, and algebraic geometry.

Rowmotion is a ubiquitous action that has been discovered and generalized in many
disparate settings—it serves as a defining property of semidistributive lattices, it is re-
lated to the Auslander-Reiten translate of heritary algebras, it recovers the Kreweras
complement on noncrossing partitions, it recovers K-theoretic promotion on increas-
ing tableaux and its piecewise-linear generalization has the same orbit structure as
promotion on semistandard tableaux, etc. This proposal builds on the PI’s work of
independence posets, independence polytopes, and semidistrim lattices to unify and
generalize these settings in several directions, including piecewise-linear and birational
directions, as well as a lattice-theoretic directions.

Figure 1. Left: independent sets in the comparability graph of the
product of two chains arranged as an independence poset. Right: the
independence poset obtained by removing a single edge from this com-
parability graph.

The PI has already laid some of the theoretical groundwork underpinning this pro-
posal in the two recent publications with Hugh Thomas [TW19b, TW19a], as well as
very recent work with Colin Defant [DW21a, DW21b]. Over the course of this research,



the PI has developed an original toolkit and perspective that has yielded substantial
new progress in related fields. Based on this new perspective, the PI has created
an interconnected library of concrete combinatorial problems especially suitable for
early-stage students.

The specific goals of the proposed research include:

• Relate independence posets with integral points in dilations of polytopes con-
structed by Chvátal [Chv75], generalizing P -partitions from distributive lat-
tices to independence posets [Sta86]; generalize independence posets to any
convex lattice polytopes;
• Research a new lattice family that simultaneously generalizes semidistributive

and trim lattices, proving that it preserves many properties common to both;
• Exploit the monotone structure on independent sets provided by independence

posets to extend the applicability of the Propp-Wilson coupling from the past
algorithm to randomly sample independent sets [PW98] (Section 5);
• Find new examples of relevance to Dynamical Algebraic Combinatorics; i.e.,

combinatorial, piecewise-linear, and birational rowmotion periodicity in the
generalized setting of independence posets [Rob16, Str17] (Section 3).

1. Rowmotion

Rowmotion was introduced by Duchet in [Duc74]; studied for the Boolean lattice
(and the product of two chains) by Brouwer and Schrijver [BS74, Bro75]; and (still for
the Boolean lattice) related to matroid theory by Deza and Fukuda [DF90]. Cameron
and Fon-der-Flaass considered rowmotion on the product of two and then three chains
[FDF93, CFDF95]. Its study then apparently lay dormant for over a decade until
Panyushev resurrected it in the form of a series of conjectures coming from Lie the-
ory [Pan09]. The focus then shifted to finding equivariant bijections to natural combi-
natorial objects, and Stanley and Thomas completely characterized the orbit structure
of rowmotion on the product of two chains combinatorially (using the Stanley-Thomas
word) [Sta09]. Striker and the PI unified and extended various results by relating row-
motion to jeu-de-taquin and made terminological innovations to the theory [SW12].
This popularization of rowmotion led to a swell of related work falling under Propp’s
heading of dynamical algebraic combinatorics.

Work of Dilks, Pechenik, Striker, and later Vorland connected rowmotion to Thomas
and Yong’s K-theoretic jeu-de-taquin, developed to compute structure coefficients in
K-theoretic Schubert calculus [DPS17, DSV19a]. The quasi-periodicity (under the
name resonance) of K-theoretic promotion of rectangular tableau was studied by Dilks,
Pechenik, and Stiker using the relationship to rowmotion on plane partitions [DPS17];
this relationship was exploited in the other direction by Patrias and Pechenik to re-
solve a long-standing conjecture of Cameron and Fon-Der-Flaass [PP20]. The rela-
tionship to K-theoretic slides was later picked up by Dao, Wellman, Yost-Wolff, and
Zhang [DWYWZ20] via a bijection of Hamaker, Patrias, Pechenik, and the PI between
plane partitions of trapezoidal and rectangular posets [HPPW20].

Motivated by Berenstein and Kirillov’s piecewise-linear (PL) Bender-Knuth invo-
lutions on Gelfand-Tsetlin patterns [KB96], Einstein and Propp considered a PL-
lifting of rowmotion to the order polytope of a poset [EP13, EP14]. Einstein and



Propp [EP14] (and Hopkins [H+20, Appendix A]) elucidated the connection between
PL-rowmotion on rectangular plane partitions and promotion of rectangular semis-
tandard Young tableaux, further solidifying the representation-theoretic connections.
Thus, while PL-rowmotion on plane partitions recovers promotion of semistandard
tableaux, rowmotion recovers K-theoretic promotion on increasing tableaux.

The most general combinatorial approach to date that encompasses the varied set-
tings of the study of rowmotion is a novel notion of independence polytope, developed
independently by the PI, which extends the earlier notion of independence posets intro-
duced jointly by the PI and Hugh Thomas in [TW19a]. A separate generalization in
a lattice-theoretic direction has been recently considered by the PI with Colin Defant.

2. Independence Posets

The definitions found below can be explored using the PI’s FPSAC 2020 online in-
teractive poster [TW20b]; Figure 1 illustrates two simple examples. Let G be a finite
acyclic directed graph (without oriented cycles, loops, or multiple edges) so that the
transitive closure of G admits a partial order on its vertices called G-order. An inde-
pendent set I⊆ G is a set of pairwise non-adjacent vertices of G. Independence posets,
introduced by the PI in [TW19a], are a certain partial ordering on the independent
sets of G—depending on the orientation of G—whose cover relations are given by a
novel definition of (non-local) flips.

As a more involved example, an independence poset structure is given in Figure 2
on the set partitions of {1, 2, 3, 4}. This poset is not a lattice; adding a single directed
edge to the underlying graph from the vertex (13) to the vertex (24) recovers the
well-known Tamari lattice on the 14 noncrossing partitions on {1, 2, 3, 4}.
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Figure 2. Left: The 15 set partitions of {1, 2, 3, 4} as tight orthogonal
pairs of an acyclic digraph G. Right: the corresponding independence
poset on set partitions. Note that this poset is not a lattice (the elements
1|23|4 and 1|2|34 do not have a unique join).



The notion of “independence poset” is a natural generalization of that of “distribu-
tive lattice,” but where the lattice requirement is eliminated. An independence poset
that is a graded lattice is a distributive lattice. Many other well-known posets (such
as Tamari and Cambrian lattices) turn out to be special cases of independence posets.

Definition 1. A pair (D, U) of disjoint independent sets of G is called orthogonal if
there is no edge in G from an element of D to an element of U. An orthogonal pair of
independent sets (D, U) is called tight if whenever any element of D is increased (that
is, removed and replaced by a larger element with respect to G-order) or any element
of U is decreased, or a new element is added to either D or U, then the result is no
longer an orthogonal pair of independent sets.

We write top(G) for the set of all tight orthogonal pairs of G. One can show
that for any independent set I, there is a unique (I, U) ∈ top(G) and a unique
(D,I) ∈ top(G). Rowmotion is defined as the map that sends an independent set D

to U, where (D, U) ∈ top(G).
Tight orthogonal pairs allow us to define a non-local flip operation, which generate

the cover relations of a partial order which we call the independence poset.

Definition 2. The flip of (D, U) ∈ top(G) at an element g ∈ G is the tight orthogonal
pair flipg(D, U) defined as follows: if g 6∈ D and g 6∈ U, the flip does nothing.
Otherwise, preserve all elements of D that are not less than g and all elements of U

that are not greater than g (and delete all other elements); after switching the set to
which g belongs, then greedily add elements to D and U (respecting the conditions
to form an orthogonal pair) in reverse G-order and G-order, respectively.

Figure 3 illustrates a flip on a top in an orientation of [7] × [7]. The independence
relations on top(G) are the reflexive and transitive closure of the relations (D, U) <
(D′, U′) if there is some g ∈ U such that flipg(D, U) = (D′, U′).

Theorem 3. Independence relations are antisymmetric, and hence define an indepen-
dence poset, denoted top(G). Flips and cover relations of top(G) coincide.

Birkhoff’s fundamental theorem of finite distributive lattices proves that finite dis-
tributive lattices are parametrized by finite posets P (as the lattice J(P ) of order
ideals under inclusion). Independence posets generalize Birkhoff’s theorem: they are
parametrized by acyclic directed graphs and their elements are independent sets.

Problem 1. Systematically investigate independence posets and rowmotion from the
point of view of dynamical algebraic combinatorics (simple order, homomesy, etc.).

In general, we expect that directed graphs coming from representation theory ought
to have interesting behavior under these actions, including possible connections with
cluster algebras, R-systems, and various generalizations of periodicity. Recently Sam
Hopkins—with the help of Ira Gessel—found a new class of poset with connections to
certain colored A3 webs.

Since distributive lattices J(P ) are recovered by independence posets when G =
Comp(P ) is the comparability graph of the poset P (antichains in P become indepen-
dent sets of Comp(P )), many classical combinatorial objects (to name a few: integer
partitions in a box, various classes of plane partitions, domino tilings, stable mar-
riages, alternating sign matrices, and minuscule lattices) can all be represented using
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Figure 3. A flip on a top (D, U) in the 7×7 grid oriented from top left
to bottom right. Flipping at the vertex g changes its color, and divides
the grid into 5 connected regions (delineated by the dotted lines): the
blue vertices not less than g (i.e., not in the bottom right) and the
orange vertices not greater than g (i.e., not in the top left) are preserved
by the flip. The orange vertices in the top left are filled in greedily from
bottom right to top left; the blue vertices in the bottom right are filled
in greedily from top left to bottom right.

independence posets. Placing different acyclic orientations on the comparability graph
gives new partial orders—different from the one obtained from their distributive lattice
structure—on these classical objects.

The real interest is that many objects in combinatorics can be encoded as inde-
pendent sets of particular graphs. Using the framework of independence posets, these
objects can now be endowed with a wide variety of new partial orders. For exam-
ple, we can now obtain new orientations on Coxeter–Catalan objects (such as trees
or triangulations), including both noncrossing and nonnesting objects (generalizing
Cambrian lattices), as well as on the intersection lattice of a real central hyperplane
arrangement (including, for example, set partitions as the intersections of the type A
braid arrangement, as in Figure 2 for the the 15 set partitions of {1, 2, 3, 4} with 126
possible independence posets depending on the acyclic orientation chosen).

Problem 2. Find a collection of “local moves” on digraphs (preserving the number
of independent sets) to give a framework for producing useful new bijections between
combinatorial objects.

For example, the graphs and have the same number of independent sets (one

graph encodes the seven 3 × 3 altenating sign matrices, the other the corresponding
set of totally symmetric self-complementary plane partitions). Useful places to search
for such generalized moves from Auslander-Reiten quivers, derived categories, and the
theory of heaps.

3. Independence Polytopes

In this section we discuss a generalization of independence posets that allows for the
efficient generation of all lattice points inside convex lattice polytopes. In particular,



we propose a piecewise-linear generalizations of independence posets, thereby providing
a generalization of the construction of P -partitions. Parts of this work are currently
in progress with the PI’s graduate student, Amit Kaushal.

For G an acyclic directed graph, we conjecture in Problem 3 that a certain PL-
generalization of flips given in Definition 5 defines the cover relations in a partial
order top(m)(G) on the integer points in the m-fold dilation of Chvátal’s independence
polytope C(G). Order ideals of a poset have a natural generalization to the theory of P -
partitions [GHL+16], which (after a piecewise-linear transfer map) can be interpreted
as the lattice points inside of a certain polytope called the chain polytope. Given a set
X = {x1, . . . , xn}, we write RX for the set of functions f : X → R. For a poset P , the
chain polytope in RP is defined as the set of points f ∈ RP satisfying the inequalities
0 ≤ f(p) for all p ∈ P and

∑k
i=1 f(pi) ≤ 1 for any chain p1 < · · · < pk in P . Stanley

proved that the chain polytope is the convex hull of the characteristic functions of
antichains of P [Sta86]. In fact (as Stanley remarks), this is a special case of a beautiful
construction of Chvátal [Chv75]. Replacing order ideals of P by antichains in the
comparability graph G = Comp(P ) leads to the definition of the polytope C(G) as
the set of points f ∈ RG satisfying the inequalities

0 ≤ f(g) for all g ∈ G and
∑
g∈C

f(g) ≤ 1 for any clique C ⊆ G.(1)

We call this the independence polytope of G. On the combinatorial side, the number of
lattice points inside the m-fold dilation of the chain polytope is given by the number of
multichains of order ideals ∅ = I0 ⊆ I1 ⊆ · · · ⊆ Im+1 = P in J(P ), or equivalently by
J(P × [m]). Since top(Comp(P )) ' J(P ), it is natural to search for a definition of the
poset “top(G × [m])”—a partial order on the integer points in mC(G) that recovers
J(P × [m]) for G = Comp(P ).

The PI has recently defined what appears to be the correct generalization—the PI
has written Sage code to confirm this, and the task remains to prove these results.
Rather than first defining the tight orthogonal pairs top(G) and then using these to
define rowmotion, we first define rowmotion and then use rowmotion to give the correct
generalization of top(G).

Definition 4. Given D ∈ mC(G), define PL-toggle operators tog
(m)
g : mC(G) →

mC(G) by

tog(m)
g (D(x)) =


D(x) if x 6= g

m− max
C a clique

g∈C

∑
h∈C D(h) otherwise .(2)

Rowmotion is the operator row(m) : mC(G)→ mC(G)

row(m)(D) =
∏
g∈G

tog(m)
g (D),

where the product is in G-order.

Definition 4 matches the combinatorial and piecewise-linear definitions of rowmotion
for G = Comp(P ) [SW12, EP13, Jos19, JR20]).



Definition 5. The directed graph top(m)(G) has vertices that are pairs (D, row(m)(D))
for an integer point D ∈ mC(G) ∩ ZG. Its directed edges are defined using a PL-
generalization of flips: for a vertex g ∈ G, subtract 1 from U(g) and add one to D(g)
(if possible), and fill in the remainder of U and D above and below g in G-order using
PL-toggles (exactly as in Definition 2).

An example is given in Figure 4; this definition has been coded in Sage although no
theoretical properties have yet been proven.

(0, 0, 0)

(0, 0, 1) (1, 0, 0)

(0, 0, 2) (0, 1, 0) (1, 0, 1)

(0, 1, 1) (1, 1, 0)

(0, 2, 0) (1, 0, 2)

(1, 1, 1)

(2, 0, 0)

(2, 0, 1)

(2, 0, 2)

Figure 4. Left: the two-fold dilation of the independence polytope for
G = 1 → 2 → 3, with its 14 integer points labeled. Right: the same 14
lattice points in the generalized independence poset top(2)(G).

Problem 3.

• Prove that top(m)(G) defines a partial order on the integer points in the poly-
tope C(G) with cover relations given by PL-flips with unique minimal element
(0, row(m)(0).
• Prove that top(m)(comp(P )) recovers the distributive lattice structure on the

integer points on Stanley’s chain polytope.
• Generalize central properties of P -partitions and Stanley’s chain polytopes to

top(m)(G) and C(G). For example, a triangulation of C(G) should suggest a
notion of “linear extensions” for independence posets, and then ought to give
a formula for the Ehrhart generating function of C(G).
• Show that the polytopal interpretation of top(m)(G) gives an efficient algorithm

to generate the lattice points in mC(G).
• Extend existing problems (such as Problem 1) and theorems from top(G) to

top(m)(G).

4. Semidistrim Lattices

In this section we explain some preliminary work with Colin Defant. Birkhoff’s
well-known fundamental theorem of finite distributive lattices proves that finite dis-
tributive lattices are parametrized by finite posets P (as the lattice J(P ) of order



ideals under inclusion). Markowsky (a student of Birkhoff) generalized Birkhoff’s the-
orem to a lesser-known representation theorem for finite extremal lattices—that is,
lattices whose longest chain is equal to both the number of join irreducible elements
and meet irreducible elements—showing that finite extremal lattices are parametrized
by (finite) acyclic graphs G (as the lattice of maximal orthogonal pairs of G under
inclusion) [Mar92b].1

Independence posets are a different generalization of Birkhoff’s theorem: although
independence posets (like extremal lattices) are still parametrized by acyclic directed
graphs, their elements are independent sets, rather than the more technical “maximal
orthogonal pairs”. When an independence set happens to be a lattice, then it is a
special kind of extremal lattice called a trim lattice (which then admit a canonical
labeling of cover relations by join and meet irreducibles [TW19b]).

Theorem 6. If top(G) is a lattice, then it is a trim lattice. Every trim lattice can be
realized as top(G) for a unique (up to isomorphism) acyclic directed graph G.

Recall that a semidistributive lattice is a lattice such that if when x, y, z ∈ L satisfy
x∨ y = x∨ z then x∨ (y ∧ z) = x∨ y and also if when x, y, z ∈ L satisfy x∧ y = x∧ z
then x∧(y∨z) = x∧y. Although trim lattices and semidistributive lattices are distinct
families of lattices (a semidistributive lattice that is not trim and a trim lattice that
is not semidistributive are illustrated on the left and in the middle of Figure 5), they
share many common properties:

• intervals are again trim/semidistributive;
• there is a canonical bijection between join- and meet-irreducible elements;
• cover relations are canonically labeled by a join-irreducible element;
• elements are specified by the set of labels of their down- and up-covers; and
• the set of downward labels equals the set of upward labels, and these are

independent sets in a certain graph.

As trim lattices and semidistributive lattices share so many properties, it is reason-
able to suspect there is a simultaneous generalization of both. In ongoing work with
Colin Defant, we propose semidistrim lattices as a common generalization, a kind of
“least upper bound” of trim and semidistributive lattices. Our semidistrim lattices
are analogous to interval-dismantlable lattices that additionally require a certain com-
patibility of join- and meet-irreducible elements. An example of a semidistrim lattice
that is neither semidistributive nor trim is illustrated on the right of Figure 5. Cover
relations is a semidistrim lattice are labeled by join/meet-irreducible elements, and
elements x in a semidistrim lattice are the join of their downward labels, the meet of
their upward labels, and a subset of their upward (or downard) labels are independent
sets in a related graph.

For j ∈ J, write j∗ for its unique covered element and define M(j) to be the
set of maximal elements from the set {x : j ∧ x = j∗}. For m ∈ M, write m∗

for its unique covering element and define J(m) to be the set of minimal elements
from the set {x : m ∨ x = m∗}. M(j) has a unique element for all j ∈ J iff L is

1In fact, Markowksy’s work included a representation theorem for any finite lattice, previously
anticipated by Barbut [Bar65]; these ideas were later developed by Wille in the guise of Formal
Concept Analysis. [Wil82].



Figure 5. Left: A semidistributive lattice that isn’t trim. Middle: A
trim lattice that isn’t semidistributive. Right: A semidistrim lattice that
is neither trim nor semidistributive.

meet-semidistributive, while J(m) has a unique element for all m ∈ M iff L is join-
semidistributive. It turns out that J(m) only contains join-irreducible elements, while
M(j) only contains meet-irreducible elements.

Definition 7. Say that L is paired if there is a unique bijection row : J→M so that
row(j) ∈M(j) and row−1(m) ∈ J(m).

Note that in a paired lattice, j 6≤ row(j)—for if j ≤ m, then j ∧m = j 6= j∗ and
m ∨ j = m 6= m∗ so that j 6∈ J(m) and m 6∈ M(j), contradicting that j and m were
paired. In fact, if m = row(j) and j are comparable, then it is in the following very
specific way: if m ≤ j, then j ∧m = m and m ∨ j = j so that m = j∗ and j = m∗.

Proposition 8. Semidistributive and extremal lattices are paired.

Even though J(m) and M(j) can contain multiple elements in extremal lattices,
such lattices are still paired. An element j ∈ L is called join-prime if for all x, y ∈ L, if
x∨y ≥ j then x ≥ j or y ≥ j. Similarly, an element m ∈ L is called meet-prime if for all
x, y ∈ L, if x∧ y ≤ m then x ≤ m or y ≤ m. Join-prime elements are join-irreducible,
and meet-prime elements are meet-irreducible, and each join-prime element j0 has a
corresponding meet-prime element m0 such that L = [0̂,m0] t [j0, 1̂]. We call the pair
of join-prime and meet-prime elements (j0,m0) with L = [0̂,m0] t [j0, 1̂] a prime pair.
By [Mar92a, Theorem 15], extremal lattices have a join-prime atom, while all atoms
of semidistributive lattices are join-prime by [GN81, Lemma 1].

Proposition 9. If L is a paired lattice with a prime pair (j0,m0), then row(j0) = m0.

The following definition is an analogue of interval-dismantlability for paired lattices
that additionally requires a compatibility of join- and meet-irreducible elements.

Definition 10. A paired lattice L is semidistrim if it contains a prime pair (j0,m0)
such that

• [j0, 1̂] is semidistrim and the map j0(j′) = j0 ∨ j′ is a bijection from {j′ ∈ J :
j0 ≤ row(j′)} to J[j0,1] with row[j0,1](j0 ∨ j′) = m′ for every m′ ∈ [j0, 1] with
row−1(m′) = j′, and
• [0̂,m0] is semidistrim and the map m0(m′) = m0 ∧ m′ is a bijection from
{m′ ∈ M : row−1(m′) ≤ m0} to M[0,m0]with row[0,m0](j

′) = m0 ∧m′ for every
j′ ∈ [0,m0] with row(j′) = m′.



Theorem 11. Semidistributive and trim lattices are semidistrim.

Definition 12. The Galois graph GL of a paired lattice L is the directed graph with
vertices J and edges j → j′ when j 6≤ row(j′) and j 6= j′.

We write j → j′ to mean that there is a directed edge from j to j′ in GL, and we
define Out(j) = {j′ ∈ J : j → j′} and In(j) = {j′ ∈ J : j′ → j}. When L is paired,
for x ∈ L we write J(x) = {j ∈ J : j ≤ x} and M(x) = {row−1(m) : m ∈M,m ≥ x}.
Definition 13. A paired lattice L is overlapping if for every cover xl y in L, M(x)∩
J(y) contains a single element, which we denote jxy. If L is overlapping, for x ∈ L
we define its set of downward labels D(x) = {jyx : y l x} and its set of upward labels
U(x) = {jxy : xl y}.

Note that in a paired lattice, we must have that M(x) ∩ J(x) = ∅—for if j ∈
M(x) ∩ J(x) with row(j) = m, then j ≤ x ≤ m, contradicting that the pair j and
m must be incomparable. By [RST19, Lemma 4.4] and [TW19b, Theorem 3.4], both
semidistributive and trim lattices are overlapping.

Theorem 14. A semidistrim lattice is overlapping.

Definition 15. Let L be overlapping. For x ∈ L we define its set of reduced downward
labels

D(x) = {j ∈ D(x) : In(j) ∩ D(x) = ∅}
and its set of reduced upward labels

U(x) = {j ∈ U(x) : Out(j) ∩ U(x) = ∅}.
Let I(G) denote the collection of independent sets of a directed graph G. If L is a

semiditrim lattice and x ∈ L, then by definition D(x) and U(x) are independent sets
of GL. For semidistributive lattices, we have D(x) = D(x) because D(x) is a canonical
join representation and is already an independent set in GL [Bar19] (and similarly for
U(x), U(x) and canoncial meet representations). Similarly, for trim lattices we have
D(x) = D(x) because again D(x) is an independent set in GL [TW19b, Corollary 5.6]
(and similarly for U(x) and U(x)). On the other hand, for semidistrim lattices it can
happen that D(x) 6= D(x) and U(x) 6= U(x).

Theorem 16. Let L be semidistrim. Then any element x ∈ L is uniquely determined
by its reduced downward labels D(x), and also by its reduced upward labels U(x):

x =
∨

j∈D(x)

j =
∧

j∈U(x)

row(j).

Theorem 17. Let L be semidistrim. The maps DL : L → I(GL) and UL : L →
I(GL) are bijections.

The ability to associate elements in a semidistrim lattice with pairs of independent
sets allows for a rowmotion to be defined: row(x) is defined to be the unique y with
D(y) = U(x).

Problem 4. • If L is a semidistrim lattice with D(x) = D(x) and U(x) = U(x)
for all x ∈ L, do other common properties of semidistributive and trim lattices
also hold (for example, are intervals again semidistrim)?



• In the presence of cycles, is it still possible to define a local flip operation on
the pair (D(x), U(x))?
• Does rowmotion on semidistrim lattices exhibit good dynamical algebraic com-

binatorial properties?

5. Random Sampling

In this section, we propose using independence posets to extend Propp and Wilson’s
coupling from the past algorithm from distributive lattice theory to independence sets
of any graph.

The random sampling of independent sets (weighted by the number of vertices in
the set) is termed the hard-core model in statistical mechanics. Given a graph G with
independent sets I(G) and a fugacity λ > 0, define the partition function

PG(λ) =
∑

a∈I(G)

λ|a|.

Efficiently sampling independent sets according to this measure is a well-known prob-
lem that has only been solved in certain special cases (certain types of graphs, ex.
comparability graphs of posets; graphs with low maximum vertex degree; etc.)—note
that it is known to be NP-complete to determine the maximum size of an independent
set of a graph G, which forces this problem to be intractable in general (take λ→∞).

Let δ denote the maximum degree of a graph G. We briefly summarize some of the
known results. It is already #P-complete to count independent sets in graphs with
δ = 3; Glauber dynamics has a mixing time O(n lnn) when λ < 2δ − 2; for λ = 1 and
all ∆ ≥ 6, Dyer, Frieze and Jerrum proved there exists a bipartite graph for which
the mixing time of any Markov chain making only “local moves” is exponential (but
recall that our flips from Definition 2 are highly non-local, so that this result does
not apply!); Luby and Vigoda describe a Markov chain that approximately counts
independent sets in graphs with δ ≤ 4 in polynomial time[LV97, LV99, HN98].

Propp and Wilson’s coupling from the past (CFTP) algorithm allows for uniform
sampling without knowing the mixing time of the underlying Markov chain. In gen-
eral, CFTP requires as many instances to be run as states; in practice, an additional
monotonicity assumption reduces the number of concurrent running instances to just
two. Applications are numerous, but the most well-known example is to distributive
lattices (which allows, for example, random sampling of domino tilings of an Aztec
diamond). It is known that CFTP cannot be fast in general—the simple example of
a complete bipartite graph already produces a bottleneck that forces the sampling to
take exponential time—but the theoretical guarantees provided by CFTP make it an
attractive method for sampling.

A trick due to Shor and Winkler encodes independent sets of bipartite graphs as
order ideals in a corresponding distributive lattice, but no such trick is known in
general: “For general (non-bipartite) graphs G there is no monotone structure which
would allow one to use monotone CFTP”[LP17, 22.4]. But independence posets would
seem to now provide such a structure, and it is worth at least running experiments
to see if this structure provides an improvement over traditional Glauber/heat-bath
dynamics.



Problem 5. Use independence posets to extend CFTP and its theoretical implica-
tions to the independent sets of any graph. A first step is to consider semidistributive
lattices, and then semidistrim lattices. Produce computational and experimental evi-
dence for the efficacy of this method.

6. Prior Support

The PI applied for and received the NSF conference award number 1801331 with
title “Graduate Student Combinatorics Conference 2018,” for an amount of $20, 000
and period of support 3/1/18–2/28/19. Intellectual Merit: The GSCC has been an
annual conference for graduate students in combinatorics since 2005. The 2018 GSCC
focused on graduate student research presentations and included keynote addresses
by four leading researchers in the field of combinatorics. Broader Impacts: UTD
hosted over 70 outside graduate student participants at the conference. The 2018
GSCC provided a unique and invaluable opportunity for graduate students whose
research focuses on combinatorics to experience the benefits of taking part in a research
conference. No publications were produced under this award.

7. Intellectual Merit

The PI’s research is in algebraic combinatorics, with a broad interest in motiva-
tion from other areas of mathematics such as Lie theory, geometric group theory, and
reflection groups. The PI has a strong record of solving long-standing problems us-
ing an original toolkit and perspective: he has been selected to give six talks (only
around 5% of submissions are accepted for talks) at the international conference For-
mal Power Series and Algebraic Combinatorics (FPSAC) and was an invited speaker
at the 2020 Triangle Lectures in Combinatorics as well as Open Problems in Alge-
braic Combinatorics 2021 at the University of Minnesota. There have been many
developments motivated by the appearance of the PI’s paper [SW12]—to name a few:
[CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16, PR15, Rob16, RS13,
RW15, Rus16, DPS17, Str15, Str16, JR18, MR19, DSV19b, Jos19, JR20, Hop20, JR20].
In 2015, the PI, Striker, Propp, and Roby organized an AIM workshop that launched
a new field of combinatorics now termed “Dynamical Algebraic Combinatorics.” This
same group organized a follow-up BIRS online workshop in the Fall 2020 and the PI
has additionally organized several successful AMS and JMM special sessions in this
field. An integral part of this proposal is to continue supporting the PI’s ongoing and
future efforts to involve students in cutting-edge research in algebraic combinatorics
and related areas.

The PI has already laid some of the theoretical groundwork underpinning this pro-
posal in the two recent publications [TW19b, TW19a, DW21a, DW21b].

8. Broader Impacts

The PI has substantial past experience in involving students and underrepresented
students in research: he has mentored undergraduate research over six different sum-
mers (at UTD, LaCIM, and UMN), supervised three honors theses at UTD, and he
currently has two Ph.D. students pursuing thesis research in areas related to this pro-
posal. The PI’s related work in [SW12] has served as a catalyst for the involvement of



undergraduate and beginning graduate students in cutting-edge research at REUs and
doctoral programs, and there have been many papers motivated by the appearance
of [SW12]. The PI has a record of producing problems and research areas acces-
sible to beginning researchers, including the now-active area of dynamical algebraic
combinatorics. At least four of the PI’s papers have independently led to Research
Experience for Undergraduates (REU) projects at four different institutions. In 2015,
the PI, Striker, Propp, and Roby organized an AIM workshop that launched a new
field of combinatorics now termed “Dynamical Algebraic Combinatorics.” This same
group organized follow-up BIRS workshops in Fall 2020 (originally accepted in-person,
but held online due to COVID-19; the PI took advantage of this to arrange for his
undergraduate honors reading class to attend the workshop) and 2021. The PI has
additionally organized several successful AMS and JMM special sessions in this field.

An integral part of this proposal is to continue supporting the PI’s ongoing and
future efforts to involve students in cutting-edge research in algebraic combinatorics
and related areas. As the only combinatorialist at UTD, the PI has designed new
undergraduate and graduate courses in combinatorics; due to the success of his un-
dergraduate Discrete Math and Combinatorics class, the PI was asked by the honors
college to teach honors reading courses in Fall 2019, 2020, and 2021. The PI has a
history of service to the combinatorial community: he has refereed for over twenty
journals, became an editor for Annals of Combinatorics in 2019, served on the pro-
gram committee of FPSAC in 2019, serves currently on the organizing committee as
the US funding coordinator, and has organized over ten conferences, workshops, and
special sessions. He has represented the larger mathematical community to the pub-
lic by appearing as a mathematical consultant in a 2018 nationally televised report
(WFAA) regarding the NCAA basketball bracket, and hosting mathematical events at
UTD (freshman orientations, MATHCOUNTS competitions, π-day events, etc.).

8.1. Interactive JavaScript textbook. During the COVID-19 pandemic, the PI
experimented with novel methods to disseminate his research. The 2020 summer
international conference Formal Power Series and Algebraic Combinatorics (FPSAC)
was held online, and the PI used the opportunity of the remote poster session to
develop a JavaScript browser-based interactive poster (see Figure 6 and [TW20b]).
This poster was a highly successful experiment: the conference organizers selected it
as an example for other presenters of how the online format could be harnessed to be
even more engaging than a static in-person poster, and asked the PI for advice on how
other presenters could develop a similar poster. The PI is currently developing a new
interactive poster for his FPSAC 2021 submission.

The PI would like to build on this success by extending such interactive materials
from his research to his undergraduate teaching by creating a browser-based inter-
active discrete math textbook. The PI designed a discrete math and combinatorics
course as part of the new data science program at UTD. He has currently taught the
course five times, and he would like to use the expertise he developed while creating
interactive posters to render his notes of course content and classroom activities more
engaging by using JavaScript to both animate concepts and allow students to interact
with new definitions and proofs. Materials include introduction to proof, naive set
theory, relations, introduction to algorithms, modular arithmetic, basic combinatorial



Figure 6. A screen shot of the PI’s interactive poster presented at
FPSAC 2020. Each of the grids is a JavaScript applet that allows the
participant to experiment with various definitions, including Figure 3.

objects (combinations and permutations), recurrences, inclusion-exclusion, the cycle
lemma, and trees. The PI has notes in TeX for this course, as well as lecture recordings
and handwritten notes from the past two online semesters. An example of how class-
room content could be made interactive is the following two-player game introducing
inductive reasoning, typically clumsily played on paper: “There are nine coins. The
players take turns, each of which consists of taking either one or two coins. A player
loses if they can’t take a coin. Do you want to go first or second, and why?” As a
virtual exercise, students will be able to more easily play and experiment and more
productively engage with the problem.

8.2. Conferences and Workshops. The PI has been very active in organizing
conferences and workshops: • 2015 - week-long workshop at the American Insti-
tute of Mathematics • 2018 - Graduate Student Combinatorics Conference at UTD,
with over 75 attendees (also obtaining $20,000 of NSF funding); • 2019 - FPSAC pro-
gram committee • 2017–2021 - Organized four AMS special sessions on interactions
between dynamical systems and combinatorics • 2018 - two-week “research-in-pairs”
program at Oberwolfach • 2019 - two minisymposia on “Coinvariant Spaces and Park-
ing Functions” at the SIAM Texas Louisiana Section at Southern Methodist University
under the meta-organization of Sottile • 2020 and 2021 - BIRS workshops with Propp,
Roby, and Striker on “Dynamical Algebraic Combinatorics” and • 2021–2023 - Mem-
ber of the FPSAC organizing committee as US funding coordinator.

The PI intends to use his past experience in conference organization and research
mentoring to set up a yearly online workshop with the goal of bringing together
early graduate and undergraduate students (including the honors students in
his honors reading courses, as well as Ph.D. students of the PI’s collaborators).



8.3. Mentoring. The PI has substantial past experience in involving students and
underrepresented students in research: this past Spring 2020, the PI supervised two
undergraduate honors theses (both summitted for publication, one already accepted),
and this past Summer 2021, the PI supervised two graduate students on a research
project. He currently has two Ph.D. students (A. Kaushal and P. Palit) pursuing their
thesis research in areas related to this proposal. The PI will continue to seek out such
opportunities with the goal to eventually build a strong combinatorics program at
UTD; part of this proposal includes summer funding for the PI to perform REU-like
activities with graduate and undergraduates at UTD. While at UTD the PI has worked
with graduate students in the following ways: • currently the thesis advisor of of
P. Palit and A. Kaushal • organized the 2018 Graduate Student Combinatorics
Conference • supervised several independent study/research courses with grad-
uate students (Fall 2017, Spring 2019, Summer 2020, Summer 2021). While at UTD
the PI has worked with undergraduates in the following ways: • Spring 2018 - Su-
pervised K. Zimmer’s senior honors thesis • Summer 2018 - Mentored rising senior
R. Hubbard for eight weeks as part of the Pioneer REU program (now pursuing his
Ph.D. at UNC Chapell Hill) • Spring 2019 - Supervised independent research with
junior J. Marsh • Spring/Summer 2019 - Supervised independent research with
undergraduates C. Kondor and M. Patten • Due to the success of the Discrete Math
and Combinatorics course the PI designed for the new BS in Data Science program,
the PI was asked by the honors college to teach an honors reading course in Fall
2019, 2020, and 2021. In Fall 2020, this reading class took part in the BIRS Dynami-
cal Algebraic Combinatorics conference (held online due to COVID-19)• Spring 2020 -
Supervised J. Marsh’s senior honors thesis (now pursuing his Ph.D. studies at GA
tech; submitted for publication) • Spring 2020 - supervised B. Cotton’s senior honors
thesis (accepted for publication). Further past experience involving undergraduate
students in research includes two summers as an REU mentor at the University of
Minnesota and two summers mentoring undergraduate students at LaCIM.

8.4. Digital database of independence posets. Since distributive lattices J(P )
are recovered by independence posets when G = Comp(P ) is the comparability graph
of the poset P (antichains in P become independent sets of Comp(P )), many classi-
cal combinatorial objects (to name a few: integer partitions in a box, various classes
of plane partitions, domino tilings, stable marriages, alternating sign matrices, and
minuscule lattices) can be encoded as independent sets of particular graphs, and
these objects can now be endowed with a wide variety of new partial orders using
the framework of independence posets. For example, the graphs and each have

7 independent sets (one graph encodes the seven 3 × 3 alternating sign matrices, the
other the corresponding set of totally symmetric self-complementary plane partitions).
A broader impact of this proposal is to compile a library of combinatorially-
relevant graphs and their independent sets, and integrate them into Sage
for widespread use. The PI has written and made publicly available code for inde-
pendence posets [TW20a].
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