
Project Description

1. Introduction

Dynamical algebraic combinatorics (DAC) is a relatively new field pioneered by the PI.
DAC extends classical enumerative combinatorics to accommodate group actions—well-behaved
actions hint at deep connections between combinatorial objects and other, more algebraic,
constructions (such as integrable systems, bases in quantum groups, or cluster variables in
cluster algebras). Conceptual proofs often exploit these connections and have led to fruitful
interchanges between combinatorics, representation theory, and algebraic geometry.

1.1. A first example. The distributive lattice on the product of two chains of length 2 is
illustrated on the left of Figure 1. This same lattice appears on the right of Figure 1 in a
more algebraic context as the crystal graph on the canonical basis for a certain fundamental
highest-weight representation of sl3 (here indexed by semistandard tableaux of shape ).
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Figure 1. Left: the distributive lattice of order ideals in the product of two
chains, with rowmotion denoted by dashed gray arrows. Right: a crystal graph
for sl3, with promotion denoted by dashed gray arrows.

We now introduce cyclic group actions on these sets. Rowmotion on an order ideal I of a
poset P is the order ideal row(I) generated by the minimal elements of P not in I [SW12].
The action of rowmotion is illustrated with dashed gray edges on the left in Figure 1. On the
other hand, Schutzenberger’s classical promotion operator pro(T ) on a semistandard tableau
T can be expressed as a series of jeu-de-taquin slides: subtract one from all labels (replacing 1
by n) and slide the boxes labeled by n past the other boxes to recover semistandardness. The
action of promotion is illustrated with dashed gray edges on the right in Figure 1. Perhaps
surprisingly, promotion and rowmotion have the same orbit structure in this example (though
they aren’t equivariant with respect to the poset-preserving bijection), which is a special case
of a more general phenomenon relating a piecewise-linear (PL) version of rowmotion to the
action of the cactus group via Lusztig involutions on type A crystals [SW12, EP14].

This project proposes new approaches to several open problems in DAC by bridging the
PI’s recent conjectural definition of independence polytopes with the algebraic rigidity pro-
vided by quantum groups and cluster algebras: Section 2 presents a unified combinatorial
framework for many DAC results using the PI’s novel definition of independence poly-

topes. Although theoretical properties of the construction have not yet been proven, the PI
has already implemented his definition as Sage code, and he proposes to further develop the
theory as part of this proposal; Section 3 proposes a framework using quantum groups for
periodic piecewise-linear actions on certain independence posets related to the representation



theory of Lie algebras; and Section 4 addresses problems related to cluster algebras coming
from independence posets related to the representation theory of quivers.

1.2. Overview. We give a historical overview of certain recent and classical work related to
DAC that motivates the three interrelated areas of this proposal: independence polytopes,
quantum groups, and cluster algebras.

1.2.1. Rowmotion and DAC. Rowmotion was introduced by Duchet in [Duc74]; studied for
the Boolean lattice (and the product of two chains) by Brouwer and Schrijver [BS74, Bro75];
and (still for the Boolean lattice) related to matroid theory by Deza and Fukuda [DF90].
Cameron and Fon-der-Flaass considered rowmotion on the product of two and then three
chains [FDF93, CFDF95]. Its study then apparently lay dormant for over a decade until
Panyushev resurrected it in the form of a series of conjectures coming from Lie theory [Pan09].
The focus then shifted to finding equivariant bijections to natural combinatorial objects,
and Stanley and Thomas completely characterized the orbit structure of rowmotion on the
product of two chains combinatorially (using the Stanley-Thomas word) [Sta09]. Striker and
the PI unified and extended various results by relating rowmotion to jeu-de-taquin and made
terminological innovations to the theory [SW12]. This popularization of rowmotion led to a
swell of related work falling under Propp’s heading of dynamical algebraic combinatorics.

1.2.2. From Rowmotion to Independence Polytopes. Motivated by Berenstein and Kirillov’s
piecewise-linear (PL) Bender-Knuth involutions on Gelfand-Tsetlin patterns [KB96], Einstein
and Propp considered a PL-lifting of rowmotion to the order polytope of a poset [EP13, EP14].
Einstein and Propp [EP14] (and Hopkins [H+20, Appendix A]) elucidated the connection
between PL-rowmotion on rectangular plane partitions and promotion of rectangular semis-
tandard Young tableaux, further solidifying the representation-theoretic connections. Thus,
while PL-rowmotion on plane partitions recovers promotion of semistandard tableaux. Sec-
tion 2 proposes a novel extension of these constructions from distributive lattices to a gener-
alization of a wide class of posets defined by Thomas and the PI on independent sets [TW19].

1.2.3. From Rowmotion on Minuscule Posets to Quantum Groups. Building on the PI’s work
with Striker [SW12], Rush and Shi placed rowmotion in a natural representation-theoretic
setting, giving a partial explanation for the reappearance of certain posets with preferred
properties [RS13]. Using the Striker-Williams conjugacy result, they obtained a conceptual
explanation for the periodicity of rowmotion on combinatorial models of bases for minuscule
representations V� of a simple Lie algebra g, by connecting rowmotion to the action of a
Coxeter element of the Weyl group W . Rush built on this machinery in [RW15, Rus16] to
establish homomesy results, and very recently explained some generalizations in type A using
canonical bases of quantum groups [Rus21] (see also [HLLY21]). Through the connection with
Bender-Knuth involutions in type A, piecewise-linear rowmotion corresponds to the action of
the cactus group on Vm� via Lusztig involutions, although this connection remains mysterious
for general simple Lie algebras g. Using the reflection functors of quiver representation
theory, Garver, Patrias, and Thomas gave a uniform proof of periodicity of piecewise-linear
rowmotion on minuscule posets [GPT18]. Section 3 describes a proposal to explain these
connections using Lusztig’s action of the braid group B(W ) on the quantum group Uq(g).

1.2.4. From Rowmotion on Root Posets to Cluster Algebras. Panyushev conjectured that row-
motion on order ideals in the positive root poset of an irreducible crystallographic root system
has order 2h, where h is the Coxeter number. Using an equivariant bijection to noncross-
ing partitions under the Kreweras complement, Armstrong, Stump, and Thomas [AST13]
resolved Panyushev’s conjectures. Section 4 describes a proposal to study the PI’s general-
izations of the Panyushev conjectures, relating variants of rowmotion to the cluster isomor-
phisms induced by reflection functors on quivers and a conjectural relationship between the



positive part of the associahedron and the canonical basis of the positive part U+
q (g) of the

quantum group.

2. Independence Posets and Polytopes

The most general combinatorial approach to date that encompasses the varied settings of
the study of rowmotion is a novel notion of independence polytope, developed independently
by the PI, which extends the earlier notion of independence posets introduced jointly by the
PI and Hugh Thomas in [TW19]. Let G be a finite acyclic directed graph (without oriented
cycles, loops, or multiple edges) so that the transitive closure of G admits a partial order on
its vertices called G-order. An independent set I ✓ G is a set of pairwise non-adjacent vertices
of G. The PI’s previous work with Thomas endows the independent sets of directed acyclic
graphs with a partial order, from which rowmotion can be computed in several different
ways [TW17, TW19]. The notion of “independence poset” is a natural generalization of that
of “distributive lattice,” but where the lattice requirement is eliminated: an independence
poset that is a graded lattice is a distributive lattice (not every independence poset is a
lattice). When G = Comp(P ) is the comparability graph of a poset P , the corresponding
independence poset recovers the distributive lattice of order ideals J(P ) (where an order
ideal corresponds to the antichain of its maximal elements, which is an independent set in
Comp(P )). For example, Figure 1 is redrawn on the left in Figure 2 as an independence poset
on the comparability graph. On the right of Figure 2 is the independence poset obtained
by removing an edge from this comparability graph. The definition of independence posets
was motivated by Coxeter–Catalan combinatorics, the representation theory of quivers, and
lattice theory; many well-known posets (such as Cambrian lattices) are special cases.

Figure 2. Left: independent sets in the comparability graph of the product
of two chains arranged as an independence poset. Right: the independence
poset obtained by removing a single edge from this comparability graph. Blue
vertices correspond to elements of D; yellow vertices to elements of U .

The PI has recently defined a piecewise-linear generalization of independence posets to
a theory of independence polytopes. Although the theoretical properties of the construction
have not yet been proven, the PI has already implemented his definition as Sage code, and
he proposes to further develop the theory as part of this proposal.

2.1. Independence Posets. The definitions found below can be explored using the PI’s
FPSAC 2020 online interactive poster [TW20b].

Definition 1. A pair (D,U) of disjoint independent sets of G is called orthogonal if there is

no edge in G from an element of D to an element of U . An orthogonal pair of independent

sets (D,U) is called tight if whenever any element of D is increased (that is, removed and

replaced by a larger element with respect to G-order) or any element of U is decreased, or



a new element is added to either D or U , then the result is no longer an orthogonal pair of

independent sets.

We write top(G) for the set of all tight orthogonal pairs of G. One can show that for
any independent set I, there is a unique (I,U) 2 top(G) and a unique (D, I) 2 top(G).
Rowmotion—now generalizing the definition given in Section 1.1 for distributive lattice—is
defined as the map that sends an independent set D to U , where (D,U) 2 top(G).

Problem 1. Systematically study rowmotion for independent sets of various graphs arising

in representation theory (see also Sections 3.2 and 7.4). Document those examples for which

the rowmotion operatior has interesting DAC properties.

Tight orthogonal pairs allow us to define a non-local flip operation, which generate the
cover relations of a partial order which we call the independence poset.

Definition 2. The flip of (D,U) 2 top(G) at an element g 2 G is the tight orthogonal pair

flipg(D,U) defined as follows: if g 62 D and g 62 U , the flip does nothing. Otherwise, preserve

all elements of D that are not less than g and all elements of U that are not greater than

g (and delete all other elements); after switching the set to which g belongs, then greedily

add elements to D and U (respecting the conditions to form an orthogonal pair) in reverse

G-order and G-order, respectively.

Figure 3 illustrates a flip on a top in an orientation of [7]⇥ [7]. The independence relations

on top(G) are the reflexive and transitive closure of the relations (D,U) < (D0,U 0) if there is
some g 2 U such that flipg(D,U) = (D0,U 0).

Theorem 3. Independence relations are antisymmetric, and hence define an independence
poset, denoted top(G). Flips and cover relations of top(G) coincide.

g

• stays

• stays

•, • stay

•, • stay

flipg �! g

• stays

• stays

•, • stay

•, • stay

Figure 3. A flip on a top (D,U) in the 7 ⇥ 7 grid oriented from top left to
bottom right. Flipping at the vertex g changes its color, and divides the grid
into 5 connected regions (delineated by the dotted lines): the blue vertices not
less than g (i.e., not in the bottom right) and the orange vertices not greater
than g (i.e., not in the top left) are preserved by the flip. The orange vertices
in the top left are filled in greedily from bottom right to top left; the blue
vertices in the bottom right are filled in greedily from top left to bottom right.

Birkhoff’s fundamental theorem of finite distributive lattices proves that finite distributive
lattices are parametrized by finite posets P (as the lattice J(P ) of order ideals under inclu-
sion). Independence posets generalize Birkhoff’s theorem: they are parametrized by acyclic
directed graphs and their elements are the ubiquitous independent sets.

It is reasonable to suspect there is a simultaneos generalization of independence posets
and semidistributive lattices—a motivating problem in this direction is that of reconstructing
weak order from its Cambrian lattice: in type A, it is known how to reconstruct the collapsed



intervals between sortable and anti-sortable elements [PP18]; more generally, for a class of
independence posets called trim lattices it seems likely that one can replace vertices by another
trim lattice to obtain a graded, semidistributive lattice. See also [RST19].

Problem 2. Extend the theory of independence posets to general digraphs. In particular,

the resulting construction should unify semidistributive and trim lattices.

2.2. Independence Polytopes. In this section we propose a piecewise-linear generalization
of independence posets. For G an acyclic directed graph, we conjecture in Problem 3 that a
certain PL-generalization of flips given in Definition 5 defines the cover relations in a partial
order top(m)(G) on the integer points in the m-fold dilation of Chvátal’s independence polytope

C(G).
Order ideals of a poset have a natural generalization to the theory of P -partitions [GHL+16],

which (after a piecewise-linear transfer map) can be interpreted as the lattice points inside
of a certain polytope called the chain polytope. In this section we propose a piecewise-linear
generalizations of independence posets, thereby providing a generalization of the construction
of P -partitions.

Given a set X = {x1, . . . , xn}, we write RX for the set of functions f : X ! R. For a poset
P , the chain polytope in RP is defined as the set of points f 2 RP satisfying the inequalities
0  f(p) for all p 2 P and

Pk
i=1 f(pi)  1 for any chain p1 < · · · < pk in P . Stanley proved

that the chain polytope is the convex hull of the characteristic functions of antichains of
P [Sta86]. In fact (as Stanley remarks), this is a special case of a beautiful construction
of Chvátal [Chv75]. Replacing order ideals of P by antichains in the comparability graph
G = Comp(P ) leads to the definition of the polytope C(G) as the set of points f 2 RG

satisfying the inequalities

0  f(g) for all g 2 G and
X

g2C
f(g)  1 for any clique C ✓ G.(1)

We call this the independence polytope of G. On the combinatorial side, the number of lattice
points inside the m-fold dilation of the chain polytope is given by the number of multichains
of order ideals ; = I0 ✓ I1 ✓ · · · ✓ Im+1 = P in J(P ), or equivalently by J(P ⇥ [m]). Since
top(Comp(P )) ' J(P ), it is natural to search for a definition of the poset “top(G⇥ [m])”—a
partial order on the integer points in mC(G) that recovers J(P ⇥ [m]) for G = Comp(P ).

The PI has recently defined what appears to be the correct generalization—the PI has
written Sage code to confirm this, and the task remains to prove these results. Rather than
first defining the tight orthogonal pairs top(G) and then using these to define rowmotion, we
first define rowmotion and then use rowmotion to give the correct generalization of top(G).

Definition 4. Given D 2 mC(G), define PL-toggle operators tog(m)
g : mC(G)! mC(G) by

tog(m)
g (D(x)) =

8
><

>:

D(x) if x 6= g

m� max
C a clique

g2C

P
h2C D(h) otherwise .(2)

Rowmotion is the operator row(m) : mC(G) ! C(G) given byrow(m)(D) =
Q

g2G tog(m)
g (D),

where the product is in G-order.

Definition 4 matches the combinatorial and piecewise-linear definitions of rowmotion for
G = Comp(P ) [SW12, EP13, Jos19, JR20]).

Definition 5. The directed graph top(m)(G) has vertices that are pairs (D, row(m)(D)) for

an integer point D 2 mC(G)\ZG
. Its directed edges are defined using a PL-generalization of

flips: for a vertex g 2 G, subtract 1 from U(g) and add one to D(g) (if possible), and fill in

the remainder of U and D above and below g in G-order using PL-toggles.



An example is given in Figure 4; this definition has been coded in Sage although no
theoretical properties have yet been proven.

Figure 4. Left: the two-fold dilation of the independence polytope for the
directed graph G = 1! 2! 3, with its 14 integer points labeled. Right: the
same 14 lattice points in the generalized independence poset top(2)(G).

Problem 3.

• Prove that top(m)(G) defines a partial order on the integer points in the polytope C(G)
with cover relations given by PL-flips with unique minimal element (0, row(m)(0).

• Prove that top(m)(comp(P )) recovers the distributive lattice structure on the integer

points on Stanley’s chain polytope.

• Generalize central properties of P -partitions and Stanley’s chain polytopes to top(m)(G)
and C(G). For example, a triangulation of C(G) should suggest a notion of “linear ex-

tensions” for independence posets, and then ought to give a formula for the Ehrhart

generating function of C(G).
• Show that the polytopal interpretation of top(m)(G) gives an efficient algorithm to

generate the lattice points in mC(G).
• Extend existing problems (such as Problem 1) and theorems from top(G) to top(m)(G).

3. Symmetries of Quantum Groups

In this section we propose a connection between independence posets arising from the
combinatorics of minuscule representations of Lie algebras and quantum groups.

3.1. Definition of Uq(g), representations, and crystals. Let g be a simple Lie algebra
with simple roots � = {↵1, . . . ,↵n}, root lattice P and coroot lattice P ‹ . Take (·, ·) to be
the bilinear form on P normalized so that short roots are of length 2; for h 2 P,↵ 2 �,
we write rh,↵ := �↵ ‹(h) and rj,i := r↵j ,↵i . The Weyl group W is defined as the reflection
group generated by simple reflections S, defined by si(h) := h+ rh,↵i↵i for ↵i 2 �. We write
w� for the longest element of W . For q an indeterminate write q↵ = q(↵,↵)/2 and qi = q↵i .
The quantum group Uq(g) is the unital associative algebra over Q(q) generated by ei, fi (for
i 2 {1, 2, . . . , n}), and qh for h 2 P subject to the relations

q0 = 1 and qhqh
0
= qh+h0

for h, h0 2 P,

qhei = q(↵i,h)eiq
h and qhfi = q�(↵i,h)fiq

h for h 2 P,

eifj � fjei = �i,j
q↵i � q�↵i

q � q�1
,

eje
(rj,i+1)
i =

rj,iX

k=0

(�1)ke(k+1)
i eje

(rj,i�k)
i and fjf

(rj,i+1)
i =

rj,iX

k=0

(�1)kf (k+1)
i fjf

(rj,i�k)
i ,



where e(n)i =
eni

[n]↵i !
and f (n)

i =
fn
i

[n]↵i !
, with [n]↵ =

Pn
i=1 q

n�2i+1
↵ for n > 0, [n]↵! = [n]↵[n �

1]↵!, and [0]↵! = 1. Let � be a dominant weight with V� an irreducible highest-weight
representation with a highest-weight vector v�. For a 2 V�, if e↵(a) = 0 then for k � 0 we
obtain basis vectors for the ↵-string through a by efk

i (a) = f (k)
i (a); these efi are called lowering

operators, with raising operators eei defined analogously. The corresponding crystal C� is the
directed graph with vertices given by the basis vectors of all such strings produced starting
from the highest-weight vector v�, with labeled arrows a

i�! b if efi(a) = b. The right side of
Figure 1 gives an example of a crystal graph for sl3.

3.2. Weyl Group action on crystals. There is a special class of representations for which
the combinatorics is particularly simple; the connection between their combinatorics and
representation theory has been exploited in these cases to explain good behavior of rowmo-
tion [SW12, RS13]. A weight � is called minuscule if each weight-space of V� is multiplicity-
free and these weight spaces are spanned by the W -orbit of v�; any such � is a fundamental
weight, although not all fundamental weights are minuscule outside of type A (see Figure 5).

Cartan type
and index Dynkin diagram Cartan type

and index Dynkin diagram

(An, k)
1 2 n

(Dn, n)
1
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n
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n (E61)

(E6,6)
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2

(Cn, 1) 1 2 n

(Dn,1)
(Dn,2) 1

2
3

n
(E7, 1)

1 3 4 5 6 7

2

Figure 5. The roots ↵i marked in gray have cominuscule fundamental weight
�i; the affine simple root is marked in black.

The root poset �+ is the partial order on the positive roots given by ↵ < � 2 �+ iff
� � ↵ 2 spanR+�. Write �� for the restriction of the root poset to the inversion set of the
longest element of the parabolic quotient of W by the stabilizer of �; any path from v� to
w�(v�) gives a natural labeling of the roots in �� by simple reflections; for example, when �

is the second fundamental weight in sl3, �J =
↵2

↵2+↵3↵1+↵2

↵1+↵2+↵3

with corresponding labeling by simple

reflections
s2

s3s1

s2

. The vertices and edges of C� are then particularly easy to describe: any
vertex is an order ideal in �J and the raising operators act by toggling at all roots labeled by
si (as in Section 2, adding or removing all such roots such that the result is again an order
ideal). An example of this construction when � is the second fundamental weight in sl3 is
given by comparing the left- and right-hand sides of Figure 1.

More generally, there is an action of the Weyl group W on C� where the simple reflection
si reverses all ↵i-chains. While combinatorially and geometrically natural, for Vm� (with
� minuscule) this action surprisingly does not correspond to the natural piecewise-linear
toggles of Equation (2) on �� ⇥ [m]. Attempts to algebraically mirror the combinatorial
toggles instead rely on a more subtle action, reversing not only ↵i-chains but entire parabolic
subcrystals via Lusztig-Schützenberger involutions.

3.3. Cactus group action on crystals. For W of rank n with S = {s1, s2, . . . , sn}, write
wJ for the longest element of the parabolic subgroup generated by {si}i2J ; define an action
of wJ on subsets K ⇢ J by wJ(K) = {k0 : wJ(sk) = sk0 for k 2 K}. The (internal) cactus



group of type W is the group C(W ) generated by symbols SJ for J ✓ {1, 2, . . . , n} subject
to the relations SJSK = SwJ (K)SJ when K ✓ J , commutations SJSK = SKSJ if K \ J = ;
and S2

J = 1 (and no other relations). By construction, C(W ) acts on crystals as the usual
Lusztig involution—for j 2 J , SJ acts on vertices a 2 C� so that SJ(fj(a)) = ewJ (j)(SJ(a)).
Note that when J = {j} is a singleton, SJ recovers the previous action of W by reversing
↵j-chains. In type An�1, vertices of C� are labeled by semistandard tableaux and cJ acts as
a Schützenberger involution (partial evacuation).

The i-th Bender-Knuth involution Bi is a different lift of si to the cactus group:
Bi := S{1,2,...,i�1}S{1,2,...,i}S{1,2,...,i�1}S{1,2,...,i�2},(3)

with B1 := S1 and B2 := S1S1,2S1. Write W� := S{1,2,...,n}, W+
� := S{1,2,...,n�1}, and w+

� :=
(w�){1,2,...,n�1}. This construction leads to a trick (recently exploited in [Rus21, HLLY21])
to obtain the action of the long cycle c := s1s2 · · · sn�1 = w�w+

� as promotion using the
corresponding product in the cactus group pro := B1B2 · · ·Bn�1 = W�W+

� . The trouble is
that this trick does not appear to generalize to other types in order to obtain piecewise-linear
toggles—in general type, a Coxeter element cannot be written as the product of two longest
elements of parabolic subgroups. This trick, however, partially works in even orthogonal
type so(2n), and for multiples of both the vector and the spin representations, the PI has
produced elements of the cactus group of so(2n) that appear to act as piecewise-linear toggles
on ��⇥[m]—but the construction is ad-hoc and only supported by many small computations.

We remark that it is plausible that the realization of promotion in type A is a special case
of a different general phenomenon related to symmetries of the affine Dynkin diagram—in
general type, generators of the quotient of the weight lattice by the root lattice ⇤/P can be
naturally lifted to C(W ) as the product of two longest elements of parabolic subgroups.
Problem 4. Prove that the above lift of the group of symmetries of the affine Dynkin dia-

gram to the cactus group C(W ) preserves the canonical basis of Cm� for � minuscule, and

corresponds to the corresponding PL-toggle order on �� ⇥ [m].

This statement can be checked in a type-by-type manner using well-developed combinato-
rial models for the canonical basis.

3.4. Braid Group action on Uq(g). We now begin a more systematic approach to encoding
PL-toggles algebraically. For ↵i 2 �, there is an automorphism Ti of Uq(g) defined by

Ti(ei) = �fiq↵i , Ti(q
h) = qsi(h) and Ti(fi) = �q�↵iei

Ti(ej) =

rj,iX

k=0

(�1)kq�k
i e

(rj,i�k)
i eje

(k)
i and Ti(fj) =

rj,iX

k=0

(�1)kqki f
(k)
i eje

(rj,i�k)
i if i 6= j.

The Ti satisfy the braid relations and actually define an action of the braid group B(W )
by automorphisms of the quantum group Uq(g) [Jan96], and we write Tw = Tsi1

· · ·Tsik
if

si1 · · · sik is a reduced word for w 2W .
The Ti give a rigid lift of the simple reflection si on V� and it is exactly this property

that we propose to exploit to algebraically recover PL-toggle actions. For example, the
automorphism Ti on Uq(g) sends a highest-weight vector v� of weight � to a vector of weight
si(�). For minuscule �, it follows from Section 3.2 and the fact that all weight spaces are
one-dimensional that Ti can be interpreted as a toggle on the canonical basis of V�.

Fix a reduced word si1si2 · · · siN in simple reflections for the long element w� 2 W with
corresponding total order on the positive roots given by �k = si1si2 · · · sik�1(↵ik), and define
f�k

:= Ti1Ti2 · · ·Tik�1(fik). The Poincaré-Birkhoff-Witt (PBW) basis of Uq(g) corresponding
to this choice of reduced word is given by elements of the form

f (k1)
�1

· · · f (kN )
�N

qhe(l1)�1
· · · e(lN )

�N
with ki, li 2 Z, h 2 P.



The Lusztig-Schützenberger involutions also fit into this framework, since Tw� preserves the
PBW basis while acting to interchange ei and fi. With a slight modification of the basis of
U0
q (g) (Lusztig’s integral form), the product of two such basis elements is a linear combination

of basis elements with coefficients in Z[q, q�1].
Much of the combinatorics arising from Uq(g) has come from studying special choices of

reduced words for w�. For example, in sln the choice of w� = s1s2 · · · sn · · · · · s1s2 · s1 leads to
the standard theory of Gelfand-Tsetlin patterns and semistandard Young tableaux as a basis
of C�. Furthermore, at q = 1, we can check that pro = Tw�Tw+

�
.

We now explain a choice of a reduced word for w� that is ubiquitous in the combinatorics of
quiver representations, cluster algebras, and Coxeter–Catalan combinatorics, and is therefore
very natural from the Ringel-Hall algebra approach to quantum groups, which thus far has
not been fully exploited by the combinatorics community.

3.5. Coxeter-sorting words and PBW-preserving automorphisms of Uq(g). A (stan-
dard) Coxeter element c for W is a product of all elements of S in some order.
Definition 6. Let w be an element of W . The c-sorting word w(c) = c

��
I1
· · · c

��
Ik

for w is

the lexicographically first subword of c1 = (s1 · · · sn)1 that is a reduced expression for w.

The connection between c-sorting words and the quantum group proceeds via the PBW
basis corresponding to the c-sorting word w�(c), which also naturally arises via Ringel’s
alternative quiver-theoretic construction of U+

q (g). For u,w words in simple reflections, write
uuw = w, write w ⌘ u if both words are equal up to commutation of commuting simple
reflections, and write  (w) for the action conjugating all letters of w by w�. Write s = s1 for
the initial simple reflection of c; repeatedly using the fact that w�(scs) ⌘ sw�(c) (s) shows
that w�(c) ⌘ cw�(c) (c) so that the composition of Uq(g) automorphisms T1 · · ·Tn is an
automorphism preserving the PBW basis coming from w�(c).

Unfortunately, outside of the usual linear ordering on the simple roots of sln�1, one can
check that Lusztig’s canonical basis for C� is not preserved (even at q = 1) by this composition
of automorphisms. This is not particularly surprising: unlike the Ti, the Bender-Knuth lifts Si

of the simple reflections do not satisfy the braid relations. However, for � minuscule, Garver,
Patrias, and Thomas [GPT18] showed using representations of quivers that PL-promotion on
�� ⇥ [m] can be computed using a composition of reflection functors in an order compatible
with the initial orientation of the Dynkin quiver. Since this quiver-theoretic perspective is
only sensitive to the leading monomial of the canonical basis, this work strongly suggests
that there is a deformation of the automorphism Ti of Uq(g) that acts by PL-toggles on the
canonical basis of Cm� for � minuscule. From the point of view of the dual braid group and
Catalan combinatorics, there is a natural choice generalizing the Bender-Knuth lifts Bi. If
we write T�k

= Ti1 · · ·Tik · · ·Ti1 when �k = si1si2 · · · sik�1(↵ik) with w�(c) = si1 · · · siN , then
for 1  k  n, T 0

k = T�1 · · ·T�k�1
T�k

T�k�1
· · ·T�1 is a lift of sk.

To show how this construction recovers the Bender-Knuth for sl4 with the linear order-
ing, we compute that T↵1 = T1, T↵2 = T1T2T1, and T↵3 = T1T2T3T2T1. Then we obtain
the following very interesting factorization—which we note is different from Equation (3)
(cf. Problem 4):

B3 = S1,2 · S1,2,3 · S1 · S1,2,1 = T1T2T1 · T1T2T3T1T2T1 · T1 · T1T2T1

= T↵1 · T↵2 · T↵3 · T↵2 · T↵1 = T1 · T1T2T1 · T1T2T3T2T1 · T1T2T1 · T1.

Problem 5. Using c-sorting words and the automorphisms Ti of Uq(g), uniformly define a lift

of the simple reflections si that acts by PL-toggles on combinatorial models for the canonical

basis of Cm� for � minuscule. Does the above factorization satisfy these requirements?

As in [KB96], a helpful step will be to perform calculations within the piecewise-linear
crystal model B(1) of U+

q (g) before passing to the entire quantum group.



4. Symmetries of Cluster Algebras

In this section, we study independence posets arising from the combinatorics of quiver
representations, intimately related to cluster algebras. For � an irreducible root system with
positive roots �+ and simple roots �, let ���1 = �+ [ �� be the set of almost positive

roots. For s 2 S with corresponding ↵s 2 �, define a bijection ⌧s : ���1 �! ���1 by

� 7�!
(
� if � 2 �(� \ ↵s)

s(�) otherwise
.(4)

In their study of finite type cluster algebras, Fomin and Zelevinsky used ⌧s to define a binary
relation on ���1 [FZ02, FZ03]. Marsh, Reineke, and Zelevinsky [MRZ03] and, independently,
Reading [Rea07] interpreted this as the bipartite case of a more general family of relations,
depending on a Coxeter element c.
Definition 7. The c-compatibility relations are the unique family of relations kc on ���1

characterized by: for ↵ 2 �, �↵ kc � , � 2 �hs↵i, and for s final in c, �1 kc �2 , ⌧s(�1) kscs
⌧s(�2). The c-cluster complex Asso(W, c) is the simplicial complex given by all collections of

pairwise c-compatible almost positive roots.

Particular orientations of cluster exchange graphs are known to be independence posets,
as they coincide with Cambrian lattices. In crystallographic type, the c-cluster complexes
are isomorphic to the cluster complex defined in [FZ02]. A c-cluster is a facet of the c-cluster
complex Asso(W, c)—that is, a maximal subset of almost positive roots which are pairwise
c-compatible. Igusa and Schiffler found an explicit rule for the compatibility of two roots
under kc in [IS10, Theorem 2.5].
Theorem 8. Fix W a finite Coxeter group and c a Coxeter element. Let t1 <c · · · <c

tN be the total order on all reflections R given by the c-sorting word w�(c), write Q =
t1t2 · · · tN t1t2 · · · tn, and [N ] = {1, . . . , N}.

• The c-cluster complex Assoc(W, c) is isomorphic to the flag simplicial complex on

[N + n] such that (i1 < i2 < · · · < ik) is a face iff Qi1Qi2 · · ·Qik is a reduced R-word

for an element less than c�1
in absolute order.

• The positive c-cluster complex Asso+c (W ) is the flag simplicial complex obtained by

intersecting the simplices of Assoc(W, c) with [N ].

4.1. Quantum groups and positive cluster complexes. We first state a conjectural
relationship between Uq(g) and Asso+c (W ) that is supported by many computations using
the standard piecewise-linear operations on the B(1)-crystal tracking the leading coefficients
of the canonical basis of U+

q (g) as the choice of reduced word for w� varies, resulting in a
change of PBW basis. This conjectural relationship exploits the comparison of the choice
w�(c) with the choice w�(c�1), and is suggested both by the conjecture in Section 4.2 as well
as the discussion in Section 3.5 of the symmetries of the quantum group.
Problem 6. Fix Uq(g) with PBW basis given by w�(c) with c = s1 · · · sn and root order

�1 <c · · · <c �N . Define a map � : Nn ! NN
by

�(a1, a2, · · · , an) = ((i1 < i2 < · · · < ik), (bi1 , bi2 , . . . , bik))

if f (an)
n · · · f (a1)

1 2 f (b1)
�1

f (b2)
�2

· · · f (bN )
�N

+ qU+
q (g) with bl 6= 0 iff l 2 {i1, . . . , ik}.

Then � is a bijection from Nn
to Asso+c (W )⇥ Nn

.

Example 9. Using the piecewise-linear rules for converting between B(1) bases depending

on the choice of reduced word for w�, for g = sl3 and c = s1s2, we have

fx
2 f

y
1 =

(
fx�y
↵1 fy

↵1+↵2
+ qU+

q (sl3) if x � y

fx
↵1+↵2

fy�x
↵2 + qU+

q (sl3) otherwise.



Observe that c�1 = (12)(13) = (13)(23).

This suggests that the generalized independence poset top(m)(G) for G a certain refinement
of the Auslander-Reiten quiver can be embedded in the positive part of the quantum group.

4.2. Nonnesting partitions and cluster complexes. Although no uniform proof is cur-
rently known, the facets of the (positive) cluster complex are counted by the Catalan number

of type W ,

Cat(W ) :=
nY

i=1

h+ 1 + ei
di

and Cat+(W ) :=
nY

i=1

h� 1 + ei
di

where d1  d2  . . .  dn are the degrees of the fundamental invariants of W , ei = di � 1
and h := dn is the Coxeter number. For the symmetric group Sn, this definition recovers the
classical Catalan numbers.

Problem 7. Uniformly prove that facets of the (positive) cluster complex are counted by

Cat(W ) (resp. Cat+(W )).

We propose a strategy for Problem 7. Catalan numbers naturally appear in a markedly
different context—in the study of affine Weyl groups and rational Cherednik algebras (this
is related to the Macdonald theory of the previous section). Cat(W ) (uniformly) counts
the number of coroot points inside an h + 1-fold dilation of the fundamental alcove in the
corresponding affine Weyl group [Hai94, Sut98]. These coroot points are called nonnesting

partitions, and are in bijection with order ideals in the root poset (or, equivalently, ad-
nilpotent ideals in a Borel subalgebra of the corresponding complex simple Lie algebra).
Although nonnesting and noncrossing partitions have many similarities, finding a uniform
bijection between the two sets has been an active and motivating area of research since the
late 1990s [Rei97, Ath98]. Since nonnesting partitions are uniformly enumerated, such a
bijection would answer Problem 7.

In [Wil13b], the PI conjectured exactly such a bijection between nonnesting and noncross-
ing objects for any Coxeter element and any finite Weyl group, suggesting that the root
poset encodes a remarkable amount of information related to the corresponding Weyl group
(compare with the duality between the heights of roots and the degrees). In more detail,
the PI’s method is based on an original analogy between clusters and nonnesting partitions:
clusters have a natural order h + 2 cyclic action called Cambrian rotation Cambc, obtained
by sending the initial copy of c in the initial w�(c) of Q to the final copy of  (c) in Q.

Definition 10. Define Krew to be the composition of toggles in inv(w�(c)) root order and

Krew+
to be the same composition without simple roots. Define Cambc := Krew � Krew+.

We conjecture that Cambc on NN(W ) has the same orbit structure as Cambc on NC(W, c).

Problem 8. For any irreducible Weyl group W and Coxeter element c, there is a unique

bijection Cc : NN(W )! Asso(W, c) satisfying • Cc(;) = 1, • Cc � Cambc = Cambc � Cc, and

• supp(I) = supp(Cc(I)).

In fact, the PI has found an explicit way to conjecturally compute Cc using support. Given
a nonnesting partition I, form the orbit

�
I,Cambc(I),Camb2c(I), . . . ,Cambh+1

c (I)
�
. For each

order ideal Cambjc(I) in the orbit, record only the simple roots that are not in Cambjc(I).
These simple roots then spell out the corresponding facet in Asso(W, c). Some care is required
when s 6= s. Example 11 illustrates this computation for an orbit in type D4.

Example 11. In type D4 with c = s1s2s3s4 = (123123)(44), w�(c) = c3, we have the root

order is (12), (13), (14), (14), (14), (23), (23), (12), (24), (24)(13), (23), (34), (34). We compute



Cambc����! Cambc����! Cambc����!

so that maps to the facet {1, 3, 11, 16}, which corresponds to c�1 = (12)(14)(34)(14).

The conjectural bijection stated in Problem 8 has been exhaustively checked up to rank
eight [Wil13a, Wil14, STW17], and there are further conjectural relations and compatibility
with the Kreweras complement that we omit here.

5. Prior Support

The PI has not held a standard NSF grant before; he applied for and received the NSF grant
for the 2018 Graduate Student Combinatorics Conference (with over 70 outside graduate
student participants), and he is currently the US grant coordinator for the international
conference Formal Power Series and Algebraic Combinatorics.

6. Intellectual Merit

The PI’s research is in algebraic combinatorics, with a broad interest in motivation from
other areas of mathematics such as Lie theory, geometric group theory, and reflection groups.
The PI has a strong record of solving long-standing problems using an original toolkit and
perspective: he has been selected to give six talks at FPSAC and will be an invited speaker
at the 2020 Triangle Lectures in Combinatorics as well as Open Problems in Algebraic Com-
binatorics 2021 at the University of Minnesota.

The PI’s related work in [SW12] has served as a catalyst for the involvement of under-
graduate and beginning graduate students in cutting-edge research at REUs and doctoral
programs. There have been many developments motivated by the appearance of [SW12]—to
name a few: [CHHM15, EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16, PR15, Rob16,
RS13, RW15, Rus16, DPS17, Str15, Str16, JR18, MR19, DSV19, Jos19, JR20, Hop20, JR20].
In 2015, the PI, Striker, Propp, and Roby organized an AIM workshop that launched a new
field of combinatorics now termed “Dynamical Algebraic Combinatorics.” This same group
organized a follow-up BIRS online workshop in the Fall 2020 (originally accepted in-person,
but held online due to COVID-19; the PI is took advantage of this to arrange for his under-
graduate honors reading class to attend the workshop). The PI has additionally organized
several successful AMS and JMM special sessions in this field. An integral part of this pro-
posal is to continue supporting the PI’s ongoing and future efforts to involve students in
cutting-edge research in algebraic combinatorics and related areas.

The PI has already laid some of the theoretical groundwork underpinning this proposal in
the two recent publications [TW17, TW19]. Over the course this previous research, the PI
has developed an original toolkit and perspective that has yielded substantial new progress
in related fields. Based on this new perspective, the PI has created an interconnected library
of concrete combinatorial problems especially suitable for early-stage students.

7. Broader Impacts

The PI has substantial past experience in involving students and underrepresented students
in research: he has mentored undergraduate research over six different summers (at UTD,
LaCIM, and UMN), supervised three honors theses at UTD, and he currently has two Ph.D.
students pursuing thesis research in areas related to this proposal. The PI’s related work
in [SW12] has served as a catalyst for the involvement of undergraduate and beginning
graduate students in cutting-edge research at REUs and doctoral programs. There have been



many developments motivated by the appearance of [SW12]—to name a few: [CHHM15,
EP13, EFG+15, Had14, Hop16, GR14, GR15, GR16, PR15, Rob16, RS13, RW15, Rus16,
DPS17, Str15, Str16, JR18, MR19, DSV19, Jos19, JR20, Hop20, JR20]. The PI has a record
of producing problems and research areas accessible to beginning researchers, including the
now-active area of dynamical algebraic combinatorics. At least four of the PI’s papers have
independently led to Research Experience for Undergraduates (REU) projects at four different
institutions. In 2015, the PI, Striker, Propp, and Roby organized an AIM workshop that
launched a new field of combinatorics now termed “Dynamical Algebraic Combinatorics.”
This same group organized follow-up BIRS workshops in Fall 2020 and 2021. The PI has
additionally organized several successful AMS and JMM special sessions in this field.

An integral part of this proposal is to continue supporting the PI’s ongoing and future
efforts to involve students in cutting-edge research in algebraic combinatorics and related
areas. As the only combinatorialist at UTD, the PI has designed new undergraduate and
graduate courses in combinatorics; due to the success of his undergraduate Discrete Math and
Combinatorics class, the PI was asked by the honors college to teach honors reading courses
in Fall 2019, 2020, and 2021. The PI has a history of service to the combinatorial community:
he has refereed for over twenty journals, became an editor for Annals of Combinatorics in
2019, served on the program committee of FPSAC in 2019, serves currently on the organizing
committee as the US funding coordinator, and has organized many conferences, workshops,
and special sessions. He has represented the larger mathematical community to the public
by appearing as a mathematical consultant in a 2018 nationally televised report (WFAA)
regarding the NCAA basketball bracket, and hosting mathematical events at UTD (annual
freshman orientation tables for potential math majors, faculty speaker at a MATHCOUNTS
competition, ⇡-day events for the local Dallas International School, etc.).

7.1. Interactive JavaScript textbook. During the COVID-19 pandemic, the PI exper-
imented with novel methods to disseminate his research. The 2020 summer international
conference Formal Power Series and Algebraic Combinatorics (FPSAC) was held online, and
the PI used the opportunity of the remote poster session to develop a JavaScript browser-
based interactive poster (see Figure 6 and [TW20b]). This poster was a highly successful
experiment: the conference organizers selected it as an example for other presenters of how
the online format could be harnessed to be even more engaging than a static in-person poster,
and asked the PI for advice on how other presenters could develop a similar poster. The PI
is currently developing a new interactive poster for his FPSAC 2021 submission.

The PI would like to build on this success by extending such interactive materials from his
research to his undergraduate teaching by creating a browser-based interactive discrete

math textbook. The PI designed a discrete math and combinatorics course as part of the
new data science program at UTD. He has currently taught the course five times, and he
would like to use the expertise he developed while creating interactive posters to render his
notes of course content and classroom activities more engaging by using JavaScript to both
animate concepts and allow students to interact with new definitions and proofs. Materials
include introduction to proof, naive set theory, relations, introduction to algorithms, mod-
ular arithmetic, basic combinatorial objects (combinations and permutations), recurrences,
inclusion-exclusion, the cycle lemma, and trees. The PI has notes in TeX for this course, as
well as lecture recordings and handwritten notes from the past two online semesters.

An example of how interactive content could be modified from the classroom to the text-
book is the following two-player game the PI uses to introduce inductive reasoning, typically
played by students by crossing out circles on paper: “There are nine coins. The players take
turns, each of which consists of taking either one or two coins. A player loses if they can’t
take a coin. Do you want to go first or second, and why?” Making this a virtual exercise will



Figure 6. A screen shot of the PI’s interactive poster presented at FPSAC
2020. Each of the grids is a JavaScript applet that allows the participant to
experiment with various notions from Section 2, including Figure 3.

allow students to more easily play and experiment (and allow them to more easily change the
number of coins), which will allow students to more productively engage with the problem.

7.2. Conferences and Workshops Organized. The PI has been very active in organiz-

ing conferences and workshops: • 2015 - week-long workshop at the American Institute
of Mathematics; • 2018 - Graduate Student Combinatorics Conference at UTD, with over 75
attendees (also obtaining $20,000 of NSF funding); • 2019 - FPSAC program committee.•
2017–2021 - Organized four AMS special sessions. With UTD colleague M. Arnold, organized
a special session in Hawaii in 2019, and another special session at the 2020 Joint Mathe-
matical Meetings in Denver, both relating to the interactions between dynamical systems
and combinatorics; • 2018 - two-week “research-in-pairs” program at Oberwolfach, result-
ing in a 132-page preprint accepted to Memoirs of the AMS; • 2019 - two minisymposia on
“Coinvariant Spaces and Parking Functions” at the SIAM Texas Louisiana Section at South-
ern Methodist University under the meta-organization of Sottile; • 2020 and 2021 - BIRS
workshops with Propp, Roby, and Striker on “Dynamical Algebraic Combinatorics”; and •
2021–2023 - Member of the FPSAC organizing committee as US funding coordinator.

7.3. Mentoring - Online Workshop. The PI has substantial past experience in involving
students and underrepresented students in research: this past Spring 2020, the PI supervised
two undergraduate honors theses (both summitted for publication, one already accepted),
and this past Summer 2021, the PI supervised two graduate students on a research project.
He currently has two Ph.D. students (A. Kaushal and P. Palit) pursuing their thesis research
in areas related to this proposal. The PI will continue to seek out such opportunities with
the goal to eventually build a strong combinatorics program at UT Dallas, include applying
for REU funding. The PI intends to use his past experience in conference organization and
research mentoring to set up a yearly online workshop with the goal of bringing together
early graduate and undergraduate students (including the honors students in his honors
reading courses, as well as Ph.D. students of the PI’s collaborators).

While at UT Dallas the PI has worked with graduate students in the following ways: •
currently the thesis advisor of A. Kaushal (since Fall 2018); • currently the thesis advisor

of P. Palit (since Spring 2019); • organized the 2018 Graduate Student Combinatorics



Conference; • supervised several independent study/research courses with graduate
students (Fall 2017, Spring 2019, Summer 2020, Summer 2021).

While at UT Dallas the PI has worked with undergraduates in the following ways: •
Spring 2018 - Supervised K. Zimmer’s senior honors thesis; • Summer 2018 - Mentored
rising senior R. Hubbard for eight weeks as part of the Pioneer REU program (now
pursuing his Ph.D. at UNC Chapell Hill); • Spring 2019 - Supervised independent research

with junior J. Marsh; • Spring/Summer 2019 - Supervised independent research with
undergraduates C. Kondor and M. Patten; • Due to the success of the Discrete Math and
Combinatorics course the PI designed for the new BS in Data Science program, the PI was
asked by the honors college to teach an honors reading course in Fall 2019, 2020, and 2021.
In Fall 2020, this reading class took part in the BIRS Dynamical Algebraic Combinatorics
conference (held online due to COVID-19).• Spring 2020 - Supervised J. Marsh’s senior

honors thesis (now pursuing his Ph.D. studies at GA tech; submitted for publication);
• Spring 2020 - supervised B. Cotton’s senior honors thesis (accepted for publication).
Further past experience involving undergraduate students in research includes two summers

as an REU mentor at the University of Minnesota and two summers mentoring

undergraduate students at LaCIM.

7.4. Digital database of independence posets. Since distributive lattices J(P ) are re-
covered by independence posets when G = Comp(P ) is the comparability graph of the
poset P (antichains in P become independent sets of Comp(P )), many classical combinato-
rial objects (to name a few: integer partitions in a box, various classes of plane partitions,
domino tilings, stable marriages, alternating sign matrices, and minuscule lattices) can be
encoded as independent sets of particular graphs, and these objects can now be endowed
with a wide variety of new partial orders using the framework of independence posets. For
example, the graphs and each have 7 independent sets (one graph encodes the
seven 3 ⇥ 3 alternating sign matrices, the other the corresponding set of totally symmetric
self-complementary plane partitions). A broader impact of this proposal is to compile a

library of combinatorially-relevant graphs and their independent sets, and inte-

grate them into Sage for widespread use. The PI has already written and made publicly
available some code for dealing with independence posets [TW20a].

7.5. Math circles. UTD has recently hired several assistant professors in mathematics, and
the PI proposes to start math circles with these colleagues (in particular Arnold and Ar-
reche, both of whom have had substantial past experience with and interest in such activities
through the Russian School of Mathematics and MathCounts). The PI has already engaged
with Mark Smith, the Campus Director of the Art of Problem Solving Academy in Frisco,
and the UTD Department of Mathematical Sciences to gauge student interest and make sure
that local funding is available.


