
STATEMENT OF RECENT WORK

I have chosen to highlight three of my results in three different areas of algebraic combinatorics:
K-theoretic Schubert Calculus, diagonal coinvariants, and Coxeter-Catalan combinatorics.

Bijective methods in K-theoretic Schubert Calculus. In 1983, R. Proctor exploited the branching
rule from the Lie algebra inclusion sp2n(C) ↪→ sl2n(C) to prove the combinatorial identity that there are
the same number of plane partitions of heights at most k of rectangular shape and of shifted trapezoidal
shape [Pro83]. R. Proctor remarks that “the question of a combinatorial correspondence. . . seems to be a
complete mystery.” Indeed, the state of the art for over 30 years was limited for the case k ≤ 2: for k ≤ 1,
J. Stembridge produced a jeu-de-taquin bijection [Ste86] and V. Reiner gave an argument using centrally-
symmetric noncrossing partitions [Rei97], while S. Elizalde used the language of lattice paths to describe
a bijection for k ≤ 2 [Eli15]. In [HPPW18], we found a bijection for all k, synthesizing M. Haiman’s
rectification, a remark about E7 by R. Proctor, and minuscule K-theoretic Schubert calculus techniques
introduced by A. Yong and H. Thomas [Hai92, TY09, BS14].

Theorem 1 ([HPPW18]). There is a bijection using K-theoretic jeu-de-taquin between plane partitions
of heights at most k of rectangular shape and of shifted trapezoidal shape.

Our results are substantially more general, placing this specific problem into the robust framework
of minuscule K-theoretic Schubert calculus. For G a semisimple complex Lie group and P a parabolic
subgroup such that G/P is a minuscule variety, we prove the equivalence of a product in the Grothendieck
ring K(G/P ) of algebraic vector bundles over G/P with a bijection between two sets of certain tableaux.
Other choices of G/P give similar theorems of the same flavor as Theorem 1.

Our arguments are usefully interpreted as statements about rational equivalence of certain generalized
Schubert and Richardson subvarieties of minuscule flag varieties—each of the bijections we obtain corre-
sponds to the fact that a certain Richardson variety represents the same element of the Chow ring as a
certain Schubert variety. Our techniques yield a uniform way to construct bijections using multiplicity-
free expansions in K(G/P ), and we are working on several further applications. It would be especially
fruitful to return to R. Proctor’s original Lie-theoretic explanation of the original rectangle/trapezoid
identity using Littelmann’s path model [Lit95, NS05].

Diagonal Coinvariants and the Sweep Map. It is a classical result that the Hilbert series for the
space of coinvariants of a Weyl group W may be written as a generating function over elements of W .
Motivated by the rich combinatorics for coinvariants, Garsia and Haiman introduced the space of diagonal
coinvariants [GH96] as the quotient DHn := C[x,y]/C[x,y]Sn

+ , where C[x,y] := C[x1, . . . , xn, y1, . . . , yn]

and C[x,y]Sn
+ is the ideal of Sn-invariant polynomials with no constant term (Sn acts diagonally). It

turns out that the Hilbert series of the alternating subspace DHεn of the space of diagonal coinvariants
may be expressed as a generating function over certain lattice paths, using a bijection called the zeta
map [GH02, Hai02, Hag03, GH02].

In more generality, let Da,b be the set of lattice paths from (0, 0) to (b, a) that stay above the main
diagonal. Armstrong, Loehr, and Warrington’s sweep map is a general form of the zeta map that sends
Da,b to itself by rearranging the steps of a path according to the order in which they are encountered
by a line of slope a/b “sweeping” down from above [ALW15] (see Figure 1). The reason for working at
this level of generality is that the Borel-Moore homology of affine type A Springer fibers leads to further
conjectural expressions of Hilbert series using the lattice paths Da,b and the sweep map [Hik14]; these
same series appear in the study of the triply graded Khovanov-Rozansky homology of (a, b)-torus knots
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and links [Gor12, EH16]. Proving invertibility of the sweep map (and hence the conjectured Hilbert
series) was known as a notoriously difficult problem [ALW15, Xin15, CDH16, GMV16, Thi16, GMV17].
In [TW18], we succeeded in proving that a very general form of the sweep map was invertible.

Theorem 2 ([TW18]). For a, b ∈ N, the sweep map is a bijection on the set of lattice paths Da,b.

Our theorem has already inspired several related papers [GX16a, GX16b], and has found applications
in studying the irreducible components of minuscule affine Deligne-Lusztig varieties.

Turning to the full Hilbert series, write [a] = {0, 1, . . . , a−1}. For a, b ∈ N, the (a, b)-parking functions
Pba are those words p = p0 · · · pb−1 ∈ [a]b such that |{j : pj < i}| ≥ ib

a for 1 ≤ i ≤ a. Pba can be interpreted
as a labeled version of Dba—just as the Hilbert series of the alternating subspace DHεn (for a−b=1) may
be written as a generating function for Dba using the sweep map, the full Hilbert series of DHn is encoded
by Pba. Recently, we inverted a zeta map on Pba defined by Gorsky, Mazin, and Vazirani [GMV16] using
the following construction. Let V a be defined as Ra up to permutation of coordinates and addition of
multiples of the all-ones vector. We define an action of a letter i ∈ [a] on points in V a by adding a to the
ith smallest coordinate; a word w ∈ [a]b then acts by its letters from left to right. The following result
extends our results from [TW18] from Dba to Pba, resolving several open conjectures.

Theorem 3 ([MTW]). The action of w ∈ [a]b on V a has a fixed point iff w ∈ Pba.

→ → →

→ → .

Figure 1. An illustration of the geometric interpretation of sweep. To form the right
path, the steps of the left path are rearranged according to the order in which they are
encountered by a line of slope 4/7 sweeping down from above.

Coxeter-Catalan Combinatorics. In Coxeter-Catalan combinatorics, the usual Catalan numbers are
associated to the symmetric group, and count noncrossing partitions, triangulations of a convex (n+ 2)-
gon and 231-avoiding permutations. These three Catalan objects beautifully generalize to all other
finite Coxeter groups W : noncrossing partitions are interpreted as an interval in the absolute order of
W , triangulations become clusters in a finite-type cluster algebras, and 231-avoiding permutations are
generalized to Reading’s sortable elements [Rea07a, Rea07b].

Our perspective in [STW15] is that the correct setting for extending Coxeter-Catalan combinatorics
to the Fuss–Catalan level of generality is provided by the Artin monoid B+(W ). This setting allows us
to not only give a uniform treatment of previous work on Fuss–generalizations of noncrossing partitions
and clusters [Arm09, FR05], but also to find the missing Fuss–generalization of sortable elements.

Definition-Theorem 4 ([STW15]). The Fuss c-sortable elements for a finite Coxeter group W are
a certain subset of elements in the positive Artin monoid interval [e, wm◦ ], where w◦ is the Garside
element. Their cardinality is Cat(m)(W ) :=

∏n
i=1

mh+di
di

, where h is the Coxeter number of W , and
d1 ≤ d2 ≤ · · · ≤ dn are the degrees of W .
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