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Coxeter Groups

Let S = {s1, s2, . . . , sn}. A Coxeter system (W,S) is a group W with a presentation of the form

W =
〈
S : (sisj)

mij = e
〉

with mii = 1 and mij ≥ 2 for i ̸= j. We call the generators S the simple reflections, since
any Coxeter group has a representation on Rn in which the simple reflections act as reflections in
hyperplanes. The set of reflections of W

T = {wsw−1|s ∈ S,w ∈ W}

is the set of all conjugates of the simple reflections.

Coxeter Diagrams

We represent the presentation of a Coxeter system using a Coxeter diagram, a graph with one vertex
vs for each generator s ∈ S. If mij = 3, we connect vi and vj with an unlabeled edge, and we label
the edge mij if mij ≥ 4. The finite irreducible Coxeter groups have been fully classified, and their
Coxeter diagrams are illustrated below.

Group Diagram

An(n ≥ 1)
Bn(n ≥ 2) 4

Dn(n ≥ 4)
E6
E7

Group Diagram

E8
F4 4

H3
5

H4
5

Im(m ≥ 5) m

Partially Ordered Sets

A poset is a pair (P,≺) where P is a set and ≺ is a reflexive, antisymmetric, and transitive relation
on P . An m-chain is a set of strictly increasing elements x1 < x2 < · · · < xm+1 in a poset P , or a
totally ordered subset of P . A lattice is a poset in which any pair of elements have a (unique) greatest
lower bound and a (unique) least upper bound.

Noncrossing Partition Lattices

A standard Coxeter element c is a product of the simple reflections in any order, each occurring
once—in other words, an element of the form c = sσ(1)sσ(2) · · · sσ(n), where σ is a permutation of

{1, 2, . . . , n}.

The absolute length ℓT : W → Z is the minimal length of a word for w ∈ W as a product of
reflections T . Absolute length induces a partial order ≤T on W by

π ≤T µ ⇔ ℓT (µ) = ℓT (π) + ℓT (π
−1µ)∀π, µ ∈ W.

For c a Coxeter element, we define the noncrossing partition lattice to be the interval

NC(W, c) := {w ∈ W : w ≤T c}.

Since any two Coxeter elements c, c′ are conjugate in W , NC(W, c) ≃ NC(W, c′).

Theorem 1.NC(W, c) is a lattice.

Example: the Symmetric Group

The symmetric group Sn is the set of all permutations of {1, 2, . . . , n} with group operation given
by function composition. The simple reflections are the adjacent transpositions
S = {(i, i + 1)|1 ≤ i < n}, while the reflections are all transpositions T = {(ij)|1 ≤ i < j ≤ n}.
The poset NC(S4, (1234)) is drawn below; it is isomorphic to the lattice of noncrossing set partitions
ordered by refinement.
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Reflection Sequences

A word in simple reflections can be thought of as a path in the hyperplane arrangement corresponding
to the reflections of W—at each step, exactly one hyperplane is crossed. A word is reduced if each
hyperplane is crossed at most once. The long element w◦ is the unique element whose reduced words
cross every hyperplane—such reduced words impose a total ordering on the hyperplanes, and hence
reflections T .

Definition 2.The c-sorting word forw◦ is the lexicographically first subword of c∞ = (s1s2 · · · sn)∞
that is a reduced expression for w◦.

Simplicial Complexes

An abstract simplicial complex ∆ on a set of vertices V is a finite collection of subsets such that

• {v} ∈ ∆ ∀v ∈ V

• G ∈ ∆ and F ⊆ G ⇒ F ∈ ∆

The elements of ∆ are called faces, or simplices, of the simplicial complex and the maximal elements
of ∆ are called facets. We say that a face F has dimension d if d = |F | − 1. We refer to faces of
dimension d as d− faces and write dim(F ) = d. A simplicial complex is considered pure of dimension
d when all of its facets are d-dimensional.

Definition 3. A simplicial complex is shellable if its facets can be arranged in a linear order
F1, F2, ..., Ft such that the subcomplex (

⋃k−1
i=1 ⟨Fi⟩) ∩ ⟨Fk⟩ is pure and has dimension dimFk − 1

∀k = 2, ..., t. (Such an ordering on the facets is called a shelling.)

Poset Topology

The order complex of a poset P is the simplicial complex ∆(P ) := {chains in P}. For each face in
∆, let ⟨F ⟩ be the subcomplex ⟨F ⟩ = {G|G ⊆ F}. The facets of ∆(P ) correspond to the maximal
chains of P . A poset P is pure ⇔ ∆(P ) is pure.
An edge labelling can be defined as a map λ : E(P ) → Λ, where E(P ) is the set of edges of the
Hasse diagram of P and Λ is some poset.

Definition 4.A poset is edge-lexicographic shellable (EL-shellable) if

• it has an edge labelling by a totally ordered set

• every interval has a unique increasing maximal chain

• this maximal chain is lexicographically first among all other maximal chains

The lexicographic order of the maximal chains of an EL-shellable poset P is a shelling of ∆(P ).

EL-Shellability of Noncrossing Partition Lattices

For J ⊆ S, WJ := ⟨J⟩ is the standard parabolic subgroup generated by J . A parabolic subgroup
is any conjugate of a standard parabolic subgroup. A rank 2 parabolic subgroup is a subgroup
generated by two reflections.

Definition 5.We say a total order t1 < t2 < · · · < tn of T is c-aligned if, for any rank 2 parabolic
subgroup, the restriction to the reflections of the rank 2 parabolic subgroup is a cyclic rotation of
the ordering given by w◦(c).

Theorem 6.A total order on T is an EL-shelling order for NC(W, c) ⇔ it is c-aligned.

The proof is by induction on rank.
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