
DUAL BRAID PRESENTATIONS AND CLUSTER ALGEBRAS

by

Priyojit Palit

APPROVED BY SUPERVISORY COMMITTEE:

Nathan Williams, Chair

Maxim Arnold

Carlos Arreche

Mieczyslaw K. Dabkowski

Viswanath Ramakrishna



Copyright © 2022

Priyojit Palit

All rights reserved



This dissertation is dedicated to

my parents, Ashis Palit and Bandana Palit,

and my wife, Purbi Adhya.



DUAL BRAID PRESENTATIONS AND CLUSTER ALGEBRAS

by

PRIYOJIT PALIT, BSc, MS

DISSERTATION

Presented to the Faculty of

The University of Texas at Dallas

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN

MATHEMATICS

THE UNIVERSITY OF TEXAS AT DALLAS

August 2022



ACKNOWLEDGMENTS

I am extremely grateful to my advisor, Dr. Nathan Williams, for his constant support and

guidance at every stage of my research. I sincerely thank him for keeping me motivated and

being extremely patient with me.

I thank Dr. Dabkowski and Dr. Ramakrishna for introducing me to Combinatorics and Graph

theory, which has given me the essential foundation for this research.

I would like to express my sincere gratitude to Dr. Maxim Arnold and Dr. Carlos Arreche

for their time and insightful comments that helped me with my job search and to prepare

my job talk.

I thank Reed Hubbard for his valuable contribution to this research.

I thank my parents and my wife for their love and support.

June 2022

v



DUAL BRAID PRESENTATIONS AND CLUSTER ALGEBRAS

Priyojit Palit, PhD
The University of Texas at Dallas, 2022

Supervising Professor: Nathan Williams, Chair

Presentations for Coxeter groups and their braid groups are encoded by Dynkin diagrams.

In their foundational work on cluster algebras, Fomin and Zelevinsky defined an operation

on quivers (oriented Dynkin diagrams) called mutation. It is reasonable to ask if a quiver

mutation-equivalent to (an orientation of) a Dynkin diagram also encodes a presentation of

a Coxeter or braid group. By explicitly writing down a set of relations, Barot and Marsh

constructed such presentations for Coxeter groups, which Grant and Marsh generalized to

the corresponding braid groups. We explain and generalize these results for simply-laced

types using presentations encoded by reduced factorizations (into reflections) of a Coxeter

element—the results above are recovered by specializing to certain two-part factorizations

(in bijection with vertices of the cluster exchange graph) and certain compositions of Hurwitz

moves (paralleling quiver mutation).
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Braid and Symmetric Groups

Informally, a braid on n strands is an isotopy of diagrams which represents n ‘braided’ strings

in a 3-dimensional Euclidean space, whose endpoints are fixed at their top and bottom at

n distinct points, with the restriction that the strings may not pass through each other or

double back. For example, Figure 1.1 is a schematic diagram of one such braid on 3 strands.

Figure 1.1. Example of a braid on 3 strands.

For any fixed integer n, there are infinitely many such braids on n strands and given

any two such braids we can stack them on top of each other and obtain a new braid on

n strands. These braids form a group, known as the braid group under concatenation (or

stacking), see Figure 1.2, where the identity element is the braid whose strands are all

untangled. Formally we can define a braid group as follows.

Definition 1.1.1 (Braid group on n strands). Let p1, . . . , pn be n distinct points in R2. Let

(f1, . . . , fn) be an n-tuple of functions

fi : [0, 1] −→ R2

1



• =

Figure 1.2. Concatenation of two braids on 3 strands.

such that

fi(0) = pi, fi(1) = pj for some j = 1, . . . , n,

and such that the n paths

[0, 1] −→R2 × [0, 1]

t −→(fi(t), t),

called strands, have disjoint images. These n strands are called a braid. The braid group Bn

on n strands is the group of isotopy classes of braids. The product of a braid (f1(t), . . . , fn(t))

and a braid (g1(t), . . . , gn(t)) is defined by

(f • g)i(t) =


fi(2t), 0 ≤ t ≤ 1

2

gj(2t− 1), 1
2
≤ t ≤ 1

(1.1)

where j is such that fi(1) = pj.

In (Artin, 1947), Artin gave the following presentation (now known as the Artin’s pre-

sentation) of the braid group on n strands.

Bn := 〈s1, . . . , sn−1|sisi+1si = si+1sisi+1, sisj = sjsi〉

2



where 1 ≤ i ≤ n − 2 and i − j > 2. Here si and s−1
i can be visualized as Figure 1.3 and

Figure 1.4, respectively. It is easy to see how any braid on n strands can be produced by

taking products of s1, . . . , sn−1 and their inverses.

1st ith i+ 1th nth

Figure 1.3. A visualization of the braid si.

1st ith i+ 1th nth

Figure 1.4. A visualization of the braid s−1
i .

By forgetting how the strands in a braid twist around each other, and only focusing on

where the strands start and end, every braid on n strand determines a permutation on n

elements. By assigning the braids si and s−1
i to the transposition (i, i + 1), we obtain a

surjective map from the braids on n strands to the set of bijective functions from a set with

n elements to itself. This map is compatible with the composition defined in Equation (1.1),

therefore we obtain a surjective group homomorphism from the braid group on n strands to

the symmetric group

Sn := 〈s1, . . . , sn−1 : sisi+1si = si+1sisi+1, sisj = sjsi, s
2
i = e〉

where 1 ≤ i ≤ n− 2 and i− j > 2.

3



1.1.2 Artin and Coxeter groups

A finite Coxeter group is an abstract group generated by a set of simple reflections, denoted

by S, with a presentation of the following form:

W :=

〈
S :

s2
i = s2

j = e,
sisjsi · · ·︸ ︷︷ ︸
mij terms

= sjsisj · · · ,︸ ︷︷ ︸
mij terms

for si, sj ∈ S with si 6= sj

〉
(1.2)

where 2 ≤ mij ≤ ∞. For example, symmetric group Sn is a Coxeter group. The relations

sisjsi · · · = sjsisj · · · are called braid relations.

The spherical Artin group corresponding to a finite Coxeter group W is given by Artin’s

presentation:

B(W ) :=

〈
S : sisjsi · · ·︸ ︷︷ ︸

mij terms

= sjsisj · · ·︸ ︷︷ ︸
mij terms

, for si, sj ∈ S with si 6= sj

〉
, (1.3)

where S is a formal copy of the generators S, subject to only the braid relations. Coxeter

groups are closely related to Artin groups—each Coxeter group is a quotient of the corre-

sponding Artin group in a natural way. Braid group Bn is an example of an Artin group.

For a given presentation of a Coxeter group W , the corresponding Artin group B(W ) has

a similar presentation, obtained by simply forgetting the involutions in the Coxeter group’s

presentation (Deligne, 1972; Brieskorn and Saito, 1972).

1.1.3 Presentations from Quivers

Artin’s presentation for an Artin group B(W ) and the Coxeter group W is encoded by

Dynkin diagram—vertices correspond to generators, edges to braid relations, and missing

edges to commutation relations (for example, see Figure 1.5).

Orienting the edges of a Dynkin diagram gives a directed graph called a quiver, for

which Fomin and Zelevinsky (Fomin and Zelevinsky, 2002) have defined a notion of quiver

mutation—input a quiver Q and any vertex v of Q, and the output is a new quiver µquiv
v (Q)

4



s1 s2 s3 ⇐⇒

〈
s1, s2, s3 :

s1s2s1 = s2s1s2

s2s3s2 = s3s2s3

s1s3 = s3s1

〉
= B4

Figure 1.5. Artin’s presentation for the braid group B4 encoded by a Dynkin diagram of
type A3.

with some local changes to edges near v (see Definition 8.1.2). A cluster exchange graph

is a connected graph whose vertices are labelled by quivers and edges by quiver mutations.

A quiver Q is said to be mutation equivalent to another quiver Q′ if one can be obtained

from the other by a finite number of quiver mutations, and the set of all quivers, mutation

equivalent to the quiver Q is called the mutation class of Q.

Since Dynkin diagrams encode a presentation of the corresponding Coxeter group W

(and the Artin group B(W )), it is reasonable to ask if a quiver mutation-equivalent to (an

orientation of) a Dynkin diagram also encodes a presentation.

Building on work of Barot and Marsh (Barot and Marsh, 2015), Grant and Marsh (Grant

and Marsh, 2017) constructed such presentations (see Theorem 11.0.1) from Dynkin diagrams

of simply-laced type, showing that each quiver Q in the same mutation class as a Dynkin

quiver encode a presentation B(Q) of the Artin group of the same Dynkin type as Q. The

validity of these presentations was checked by giving an isomorphism between B(Q) and

B(µquiv
v (Q)). This is illustrated in Figure 1.6. Using different approaches this result has also

been independently proved in (Qiu, 2016) for simply-laced type, and in (Haley et al., 2017)

for finite type.

1.1.4 Coxeter Elements, Factorizations, and Hurwitz Moves

Let us write ts = sts−1 and st = s−1ts. The set of reflections of a finite Coxeter group W is

defined to be the closure of simple reflections S under conjugation, and is generally denoted

5



s1

s2

s3

Q +3

OO

Quiver mutation

��

B(Q) =

〈
s1, s2, s3 :

s1s2s1 = s2s1s2

s2s3s2 = s3s2s3

s1s3 = s3s1

〉
OO

∼=

��

t1

t3

t2
Q′

+3B(Q′) =

〈
t1, t2, t3 :

t1t2t1 = t2t1t2

t2t3t2 = t3t2t3

t1t3t1 = t3t1t3

t1t2t3t1 = t2t3t1t2 = t3t1t2t3

〉

Figure 1.6. An example demonstrating the isomorphism between two groups—B(Q) and
B(Q′)—obtained using Grant and Marsh’s presentation encoded by quivers Q and Q′, which
are mutation equivalent.

by T ,

T := {sw : s ∈ S,w ∈ W}.

Any element w ∈ W can be written as an expression in the alphabet S or T . An S-

decomposition of w is any expression s1s2 · · · sl such that w = s1s2 · · · sl with s1, s2, . . . , sl ∈ S.

Similarly, a T -decomposition of w is any expression t1t2 · · · tl such that w = t1t2 · · · tl with

t1, t2, . . . , tl ∈ T . An S-decomposition (resp. T -decomposition) of w is reduced if it is of

minimal length among all S-decompositions (resp. T -decompositions) of w.

A Coxeter element in a Coxeter group W is a product of all the simple reflections (each

appearing exactly once) in any order—associating these simple reflections to the vertices

of a Dynkin diagram, the order (up to commutation) is equivalent to orienting the edges

to obtain a quiver. For example, for a reduced S-decomposition c = s1 · · · sn of a Coxeter

element, if si appears before sj in c and if their corresponding nodes in the associated Dynkin

diagram share an edge, then we will orient it from the node corresponding to sj to the node

corresponding to si, (see Figure 1.7).

6



Reduced S-decomposi-
tions of Coxeter elements

Quivers

(12)(23)(34) ⇔ 12 23 34

(23)(12)(34) ⇔ 12 23 34

(34)(23)(12) ⇔ 12 23 34

(12)(34)(23) ⇔ 12 23 34

Figure 1.7. Reduced S-decompositions of Coxeter elements in S4 encode quivers.

Given a T -decomposition t1t2 · · · tktk+1 · · · tn of a Coxeter element c we can perform a

Hurwitz move on t1t2 · · · tktk+1 · · · tn at k to obtain a new T -decomposition

µk(t1t2 · · · tktk+1 · · · tn) := t1t2 · · · ttkk+1tk · · · tn. (1.4)

By proposition 1.6.1 in (Bessis, 2003), the set of reduced T -decompositions of a Coxeter ele-

ment is connected under Hurwitz move, i.e. if we keep performing Hurwitz moves on a given

T -factorization of a Coxeter element, then we will eventually get possible T -decomposition of

c. We have already seen how the S-decompositions of Coxeter elements encode quivers which

in turn encode presentations of Artin groups, it is natural to ask if the T -decompositions of

a Coxeter element also encode ‘meaningful’ presentations of the corresponding Artin group.

In this dissertation we answer this question for the simply-laced finite Coxeter groups—the

groups of types A,D and E.

1.2 Presentations from Factorizations of Coxeter Elements

Our first result gives presentations of the Artin group B(W ) encoded by reduced T - decom-

positions of a Coxeter element c in a Coxeter group W .

Theorem 1.2.1 (Theorem 5.1.2). Let c be a Coxeter element in W and let t1t2 · · · tn be a

reduced T -decomposition of c. Define

7



B(t1, t2, . . . , tn) :=
〈
t1, t2, . . . , tn

∣∣Rel(t1, . . . , tn)
〉

(1.5)

where

Rel(t1, . . . , tn) =



titj = tjti if ti ‖ tj ,

titjti = tjtitj if ti tj ,

[ti1 , ti2 · · · tis · · · t−1
i2

] = e if ti1 ti2 · · · tis−1 tis ti1 ,

tij ‖ tik for k 6= j − 1, j + 1.

then

B(t1, t2, . . . , tn) ∼= B(W ).

where tp ‖ tq and tp tq denote that tp and tq commute and don’t commute, respectively.

By Grant and Marsh’s result Theorem 11.0.1, quivers in the same mutation class encode

presentations of an Artin group. By Theorem 1.2.1, reduced T -decompositions of a Coxeter

element also encode presentations of an Artin group. Our second result relates these two

presentations. We will refer to the presentations arising from Grant and Marsh’s result as

in Theorem 11.0.1 as quiver presentations, and presentations arising from Theorem 1.2.1,

factorization presentations.

1.3 Quiver Presentations from Factorization Presentations

For our second result we use a combinatorial model of the cluster exchange graph to recover

quiver presentations as a special case of factorization presentations. This model consists of

two-part factorizations (in bijection with the vertices of the cluster exchange graph) and

factorization mutations (paralleling quiver mutation).

For a given reduced S-decomposition c of a Coxeter element c we define a total order

on the set of reflections, called the Coxeter order by Definition 9.2.7. We write t1 ≤c t2

8



for any two reflections t1 and t2, if t1 precedes t2 in the Coxeter order. For the symmetric

group Sn and the reduced S-decomposition (12)(23) · · · ((n − 1)n) of a Coxeter element in

Sn, the Coxeter order on the reflections is just lexicographic order on the transpositions (ij)

for 1 ≤ i < j ≤ n. That is, (ij) ≤c (kl) if and only if i < k or i = k and j ≤ k. For a

given Coxeter element c ∈ W and a reduced S-decomposition c = s1 · · · sn of c, a two-part

factorization is a reduced T -decomposition `1 · · · `ir1 · · · rj of c, which can be written as

`1 · · · `i|r1 · · · rj,

such that

`1 ≤c · · · ≤c `i, r1 ≤ · · · ≤c rj, `1 · · · `ir1 · · · rj = c, and i+ j = n.

Clearly, a Hurwitz move on a two-part factorization may result in a factorization that is not a

two-part factorization, for example, consider the reduced S-decomposition c = (12)(23)(34)

of a Coxeter element in S4. The Hurwitz move, (23)(34)|(14)
µ1−→ (24)(23)|(14) gives a

reduced T -decomposition which is not a two-part factorization (because (23) ≤c (24)). Fac-

torization mutation is a particular sequence of Hurwitz moves on a two-part factorizations

that preserves two-part factorizations (see Definition 10.0.14). To perform a factorization

mutation we choose a reflection on the left-hand side of the two-part factorization and

through a series of Hurwitz moves, ‘move’ it to a new position on the right-hand side of the

two-part factorization such that the resulting decomposition is still a two-part factorization.

For example, a factorization mutation on the reflection (23) is the following sequence of

Hurwitz moves

(23)(34)|(14)
µ1−→ (24)(23)|(14)

µ2−→ (24)|(14)(23).

Since two-part factorizations of a Coxeter element are a special type of reduced T -

decompositions, and factorization mutations are repeated Hurwitz moves, therefore by The-

orem 1.2.1, the factorization presentations arising from all the two-part factorizations form
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a subset of the factorization presentations arising from all the reduced T -decompositions.

By associating quivers to two-part factorizations—as in Definition 10.0.16—we show that if

two two-part factorizations are connected by a factorization mutation then their associated

quivers are connected by quiver mutation (see Theorem 10.0.17). Using these observations,

we show that the factorization presentations arising from these two-part factorizations of

a Coxeter element (using Theorem 1.2.1) recover Grant and Marsh’s quiver presentations

arising from the associated quivers (see Chapter 11).

Theorem 1.3.1 (Theorem 11.0.2). Let s1 · · · sn be a reduced S-decomposition of a Coxeter

element c. Let Fact2(c) denote the set of all two-part factorizations of c and Q denote the

quiver associated to the two-part factorization s1 · · · sn|·. Then the factorization presentations

arising from the reduced T -decompositions in Fact2(c) using Theorem 1.2.1 are precisely the

quiver presentations arising from the quivers in the mutation class of Q using Theorem 2.12.

in (Grant and Marsh, 2017).

1.4 Dual Braid Presentation from Factorization Presentations

Our third result draws a parallel between our presentations and Bessis’ dual braid presenta-

tion. Building on work of Birman-Ko-Lee (Birman et al., 1998), Bessis (Bessis, 2003) gave

a second, different presentation for Artin groups associated with finite Coxeter groups, by

replacing the set of simple reflections S by the set of all the reflections T , leading to a ‘dual’

presentation for the Artin group B(W ) called the dual braid presentation.

B(W ) ∼=
〈
T
∣∣titj = tkti, for ti, tj, tk ∈ T with titj = tkti and titj ≤T c

〉
(1.6)

where T is a formal copy of the set of all the reflections T and c is a Coxeter element. In

Chapter 7 we prove that Bessis’s dual braid presentation is the ‘union’ of all the presentations

given by Theorem 1.2.1.
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Theorem 1.4.1 (Theorem 7.0.6). For a Coxeter element c in W , the dual braid presentation

of the Artin group B(W ) is generated by T (a formal copy of the set of reflections), subject

to the relations {Rel(t1, . . . , tn) : t1 · · · tn is a reduced T -decomposition of c}.
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CHAPTER 2

BACKGROUND ON ARTIN AND COXETER GROUPS

This chapter is a review of the theory of Artin and Coxeter groups. Most of this material

has been well studied and a much detailed exploration of this material can be found in

(Humphreys, 1990; Bourbaki, 2002). We will first establish the standard conventions and

notations for Coxeter and Artin groups and their connection with abstract reflection groups,

followed by a review of how they are encoded and classified by Coxeter-Dynkin diagrams.

We will conclude by defining two different types of orders on the set of elements of a Coxeter

group.

2.1 Finite Real Reflection Groups and Finite Coxeter Groups

Definition 2.1.1 (Reflection). Let E be an n-dimensional Euclidean space. A mapping

t : E 7→ E is a reflection in E if t

1. is an isometry

2. is an involution

3. fixes a hyperplane pointwise

4. swaps the half-spaces defined by the hyperplane.

Definition 2.1.2 (Finite reflection group). Let E be an n-dimensional Euclidean space. A

finite reflection group is a group generated by reflections in E such that the hyperplanes

fixed by these reflections pass through the origin.

If the requirement that the hyperplanes pass through the origin is relaxed then we have

affine reflection groups. If we allow the underlying space to be a finite complex vector space

then we will have complex reflection group. In this dissertation, all reflection groups are real

and finite.
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Definition 2.1.3. A Coxeter group is a group with the following presentation:

W := 〈s1, s2, . . . , sn : (sisj)
mij = e〉group ,

where mij ∈ N ∪ {∞}, mij = 1 when i = j and mij =∞ when sisj is of infinite order.

For mij < ∞ we have finite Coxeter groups. When i 6= j and mij > 2, the relations

(sisj)
mij = e (also written as sisjsi · · ·︸ ︷︷ ︸

mij terms

= sjsisj · · ·︸ ︷︷ ︸
mij terms

) are braid relations. When i 6= j and

mij = 2, the relations (sisj)
mij (also written as sisj = sjsi) are commutation relations. The

collection (W,S), where S := {s1, . . . , sn} is called a Coxeter system of rank n := |S|. Denote

the closure of S under conjugation by T := {wsw−1|s ∈ S,w ∈ W}.

Every reflection group in an n-dimensional Euclidean space is isomorphic to some Coxeter

group (Coxeter, 1934) and every finite Coxeter group is isomorphic to some reflection group

in an n-dimensional Euclidean space (Coxeter, 1935). In these isomorphisms the set T in

the Coxeter group always maps to the set of reflections in the reflection group, therefore T

is called the set of reflections and S—the set of simple reflections or simple generators. In

this dissertation all Coxeter groups are of finite type.

Definition 2.1.4. A pair (A, TA) is called an abstract finite real reflection group, if there

exists a faithful representation ρ : A ↪→ GL(VR) satisfying

∀a ∈ A, codim(ker(ρ(a)− IdGL(VR))) = 1⇔ a ∈ TA

where A is a finite group, TA a generating subset of A and VR a finite dimensional R-vector

space.

In this dissertation all abstract reflection groups will be finite and real, therefore we

will simply call them abstract reflection groups. From this definition, it is clear that every

abstract reflection group is also a finite Coxeter group (since every abstract reflection group

is isomorphic to a finite reflection group). Thus, given any abstract reflection group (A, TA)
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we can choose a set SA ⊂ TA such that (A, SA) is a Coxeter system (the choice of SA is not

unique), and given any Coxeter system (W,S), the pair (W,T ) where T = {wsw−1 : w ∈

W, s ∈ S} is an abstract reflection group. In this dissertation we will denote an abstract

reflection group by (W,T ) and its corresponding Coxeter system by (W,S).

Definition 2.1.5. Given a finite Coxeter system (W,S) there is a corresponding spherical

Artin system (B(W ),S)—an Artin group B(W ), generated by a formal copy of the simple

reflections S denoted by S, subject to only the braid relations and commutations (Deligne,

1972)(Brieskorn and Saito, 1972).

B(W ) := 〈S : sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

, si, sj ∈ S, si 6= sj〉group

Similarly, an Artin group presentation becomes a Coxeter group presentation upon adding

the relations s2 = e for each s in the generating set. Since the relations in the presentation

are between positive words therefore this same presentation can also be seen as a monoid

presentation, namely positive Artin monoid

B+ := 〈S : sisjsi · · ·︸ ︷︷ ︸
mij

= sjsisj · · ·︸ ︷︷ ︸
mij

, si, sj ∈ S, si 6= sj〉monoid

Example 2.1.6. The symmetric group Sn (the group of bijective functions from a set with

n elements to itself) is a Coxeter group. The corresponding Artin group is the braid group

on n strands, Bn. In particular, S3 and B3 are the Coxeter group and braid group with the

following presentations, respectively:

S3 = 〈s1, s2 : s1s2s1 = s2s1s2, s
2
1 = s2

2 = e〉group, B3 = 〈s1, s2 : s1s2s1 = s2s1s2〉group

The reflections s1 and s2 correspond to the transpositions (12) and (23) respectively. The

set S = {s1, s2} is the set of simple reflections, whereas the set of reflections is T =
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{s1, s2, s1s2s1} where s1s2s1 corresponds to the transposition (13). The elements s1 and

s2 in the braid group B3 may be visualized as 3 strands with two of them crossing each

other in a particular way as illustrated in Figure 2.1.

s1 s2

Figure 2.1. A visualization of the elements s1 and s2 in the braid group B3. s1 twists the
first two strands whereas s2 twists the second and the third strands.

The braid relation in B3 is illustrated in Figure 2.2.

=

Figure 2.2. Braid relation: s2s1s2 = s1s2s1.

The corresponding positive braid monoid B+
3 has the exact same presentation as that of

the group B3.

2.2 Coxeter-Dynkin Diagrams

Coxeter groups are encoded by Coxeter-Dynkin diagrams—vertices correspond to simple

reflections of the Coxeter group, while edges encode the relations as follows: if s1 and s2 are

two simple reflections such that (s1s2)3 = e then their corresponding vertices are connected

by an unlabeled edge ( • • ), whereas if (s1s2)2 = e then the corresponding vertices

don’t share an edge ( • • ). If (s1s2)mij = e where mij 6= 2 or 3 then the corresponding
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vertices share an edge with an assigned weight of mij ( • •
mij

). By this convention the

lowest assigned weight to an edge in a Coxeter-Dynkin diagram is 4.

In Figure 2.3 we show the Coxeter-Dynkin diagram and the corresponding hyperplane

arrangement for the Coxeter group S2. In (Coxeter, 1935) H. S. M. Coxeter classified all the

finite Coxeter groups in terms of Coxeter-Dynkin diagrams thus classifying the corresponding

Artin groups as well, see Figure 2.4.

A Coxeter-Dynkin diagram with no assigned weights to its edges is called a simply-laced

Coxeter-Dynkin diagram. Thus Coxeter-Dynkin diagrams of type An, Dn and En are simply-

laced Dynkin diagram and the corresponding Coxeter groups are called simply-laced Coxeter

reflection group.

s1 s2

s1s2

s2s1s2

e

s1s2

s1s2 s2s1

s2s1s2

Figure 2.3. The Coxeter group S3 encoded by a Dynkin diagram of type A2 with its corre-
sponding hyperplane arrangement.

2.3 Weak Order

For any group (G, •) and any subset H ⊂ G, an expression ha11 ha22 · · · h
ak
k (or the sequence

(ha11 , h
a2
2 , . . . , h

ak
k )) is an H-decomposition of an element g ∈ G if ha11 •ha22 •· · ·•h

ak
k = g, where

h1, h2, . . . , hk (not necessarily all distinct) are in H and ai = ±1. Sometimes, we also use the

phrases—“a word in H” or “an H-word” for an element g to denote the H-decomposition
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An

Bn = Cn
4

Dn

E6

E7

E8

F4
4

G
(m)
2

m

H2 = G
(5)
2 = I

(5)
2

5

H3
5

H4
5

I
(m)
2 = G

(m)
2

m

Figure 2.4. Types of finite Coxeter groups and their Coxeter-Dynkin diagrams.
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of g. H is called a generating set if every element in G can be expressed as a word in H.

In this context elements in the subset H are sometimes referred to as letters. Note that a

generating set for a given group may not be unique. We will use sans-serif font to distinguish

words from elements. For example, if w denotes an element then we may use w to denote

a particular H-decomposition of w. The length of an H-decomposition is the length of the

H-decomposition as a sequence. An H-decomposition of g ∈ G will be called reduced H-

decomposition if it is of minimal length among reduced H-decompositions of g, and the set

of all such reduced H-decompositions of g will be denoted by RedH(g). The length of an

element g ∈ G is the length of any reduced H-decomposition of g, denoted by lH(g).

In this way we can define S-decomposition, T -decomposition and all the other related

concepts for a Coxeter system (W,S). Two words w and w′ in S (or in T ) are called

commutation equivalent if one can be written as the other by a sequence of commutations

of consecutive commuting letters, and we will write w ≡ w′. A word u is initial in a word

w if u appears as a prefix of a word w′ such that w′ ≡ w where u, w and w′ are S-words (or

T -words). Similarly a word v is final in a word w if v appears as a suffix of a word w′ such

that w′ ≡ w where v, w and w′ are S-words (or T -words).

In a Coxeter system (W,S) a factorization w = u.v is a reduced S-factorization (where

u, v, w are elements in W ) if lS(w) = lS(u) + lS(v). Here we must make a clear distinc-

tion between the words S-factorization and S-decomposition. S-decomposition denotes a

factorization into elements in S, whereas S-factorization denotes just any factorization with

the condition that the sum of the length of each of the factors add up to the length of the

original element.

u ∈ W is S-initial in w ∈ W if there exists a v ∈ W such that the factorization

w = u.v is a reduced S-factorization. Similarly u ∈ W is S-final in w ∈ W if there exists

a v ∈ W such that the factorization w = v.u is a reduced S-factorization. The weak order

Weak(W ) = (W,≤S) is defined by u ≤S w if and only if u is S-initial in w as elements.

Weak order is analogously defined for B+.
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2.4 Absolute Order

The absolute order Abs(W ) = (W,≤T ) is defined by u ≤T w if and only if there exists a

v in W such that u.v = w and lT (u)+lT (v) = lT (w). Observe that if u ∈ W is T -initial in

v ∈ V then u is not necessarily S-initial in v—because lT (v) may not be equal to lS(v). If u

is T -initial in v then u is also T -final in v, because if uv′ = v then there exist a v′′ = uv′u−1

such that v′′u = v where lT (v′′) = lT (v′). This is not true for S-factorizations i.e. if u is

S-initial in v then u is not necessarily S-final in v.
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CHAPTER 3

ROOT SYSTEMS

In this chapter we establish the notations and conventions for root systems. Roots are vectors

in a vector space equipped with some additional properties which make them the generators

of finite Coxeter groups. Therefore the study of finite root systems is closely related to the

study of finite Coxeter groups. A detailed treatment can be found in (Humphreys, 1990).

3.1 Root Systems and Weyl Groups

Definition 3.1.1 (Root System). For any standard Euclidean space E (with a positive

definite inner product 〈·, ·〉), a finite subset R of E will be called a root system, if it satisfies

the following axioms

1. 0 /∈ R and R spans E.

2. If v ∈ R and kv ∈ R, where k ∈ R then either k = 1 or k = −1.

3. For u, v ∈ R, 2〈u,v〉
〈v,v〉 ∈ Z.

4. For u, v ∈ R,
(
u− 2 〈u,v〉〈v,v〉v

)
∈ R.

Using axiom 4 we can define a linear mapping tv : E 7→ E (see Figure 3.1) by

tv(u) := u− 2
〈u, v〉
〈v, v〉

v,∀u ∈ E.

For any vector v ∈ E if we denote the hyperplane orthogonal to v by Hv then one can see

that 〈u,v〉〈v,v〉v is the projection of the vector u onto the line through v, consequently the map

tv(u) produces the reflection of the vector u on the hyperplane Hv. In particular, tv(v) = −v

and tv(u) = u for u ∈ Hv, therefore the mappings tv’s are reflections in E. We can now

restate axiom 4 as—for u, v ∈ R, tv(u) ∈ R.
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v

u

tv(u)

〈u,v〉
〈v,v〉

2 〈u,v〉〈v,v〉Hv

Figure 3.1. Reflection of u onto the hyperplane perpendicular to v.

Definition 3.1.2 (Weyl Group). Weyl group W (R) is the reflection group generated by the

reflections tv, for all v ∈ R. Sometimes we may denote it by just W when the corresponding

root system is understood.

Since all reflection groups are finite Coxeter groups therefore Weyl groups are also finite

Coxeter groups consequently, Weyl groups can be classified by finite Coxeter groups—the

type of a root system is determined by the type of finite Coxeter group it is isomorphic to.

However, all finite Coxeter groups are not isomorphic to a Weyl group—there are no root

systems of the type H2, H3, H4 and I2(m) for m ≥ 7. The root system of Bn and Cn have

the same underlying Weyl group.

Theorem 3.1.3. If u and v are two roots in R such that u is not a scalar multiple of v and

||u|| ≤ ||v|| then one of the following is true

1. The angle between u and v is π
2

and the ratio between ||u|| and ||v|| is unrestricted.

2. The angle between u and v is π
3

or 2π
3

and ||u|| = ||v||

3. The angle between u and v is π
4

or 3π
4

and ||v|| =
√

2||u||
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4. The angle between u and v is π
6

or 5π
6

and ||v|| =
√

3||u||

Proof. Using Schwartz inequality we get

2〈u, v〉
〈v, v〉

2〈v, u〉
〈u, u〉

=
4〈u, v〉〈v, u〉
〈v, v〉〈u, u〉

=
4〈u, v〉2

||v||2||u||2
≤ 4.

The equality implies that u and v are collinear, making them scalar multiples of each other

(excluded by assumption). Since by axiom 4, 2〈u,v〉
〈v,v〉 and 2〈v,u〉

〈u,u〉 must be integers therefore

2〈u,v〉
〈v,v〉

2〈v,u〉
〈u,u〉 < 4 implies 2〈u,v〉

〈v,v〉
2〈v,u〉
〈u,u〉 = 0, 1, 2 or 3, consequently 4 cos2 θ = 0, 1, 2 or 3, where θ

is the angle between u and v. Thus

cos2 θ = 0 1
4

2
4

3
4

cos θ = 0 ±1
2

± 1√
2

±
√

3
2

θ = π
2

π
3

or 2π
3

π
4

or 3π
4

π
6

or 5π
6

Now we will look into the lengths ||u|| and ||v||, in particular, the relation between them.

There are two possibilities, either 2〈u,v〉
〈v,v〉

2〈v,u〉
〈u,u〉 = 0 or 6= 0. Clearly, if 2〈u,v〉

〈v,v〉
2〈v,u〉
〈u,u〉 = 0, then the

angle between them must be π
2

and the vectors u and v can be of any length. If however

2〈u,v〉
〈v,v〉

2〈v,u〉
〈u,u〉 6= 0 then by symmetry we may assume that 2〈u,v〉

〈v,v〉 = ±1 and 2〈v,u〉
〈u,u〉 = ±1, ±2 or

±3. Since 2〈v,u〉
〈u,u〉 and 2〈u,v〉

〈v,v〉 are either both positive or both negative therefore

2〈v,u〉
〈u,u〉
2〈u,v〉
〈v,v〉

= 1, 2, or 3

=⇒
2〈v,u〉
||u||2
2〈u,v〉
||v||2

=
||v||2

||u||2
= 1, 2, or 3

=⇒ ||v|| = ||u||︸ ︷︷ ︸
θ=π

3
or 2π

3

, ||v|| =
√

2||u||︸ ︷︷ ︸
θ=π

4
or 3π

4

or ||v|| =
√

3||u||︸ ︷︷ ︸
θ=π

6
or 5π

6

.

Thus we have proved all our claims.
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3.2 Bases

Definition 3.2.1 (Base). Let E be the standard Euclidean space and R be a root system

of E, a subset ∆ ⊂ R is called a base of R if

1. ∆ is a basis for E, as a vector space.

2. Any v ∈ R can be expressed as v =
∑

i kiui, where ui ∈ ∆ and ki’s are all of the same

sign (or zero).

It is not obvious that such a base exists. However with the help of Theorem 3.2.5 we can

show that a root system will always have a base. Let x be any vector in E such that x is not

perpendicular to any of the roots in R. Such an x exists, because the total measure of all

the hyperplanes corresponding to all the roots in R is 0. A root v will be called x-positive

if 〈v, x〉 > 0. In other words v is x-positive if v lies on the same side of the half-space as x,

defined by the hyperplane perpendicular to x see Figure 3.2. For a given vector x in E which

is not perpendicular to any r in R, we say, v ∈ R is x-indecomposable if v is x-positive and

v can’t be written as a sum of other x-positive roots i.e. v can’t be written as
∑
ui where

ui’s are x-positive roots.

Lemma 3.2.2. If u, v ∈ R for a root system R then

1. 2〈u,v〉
〈v,v〉 < 0 then u+ v is a root.

2. 2〈u,v〉
〈v,v〉 > 0 then u− v is a root.

Proof. As stated in the proof of Theorem 3.1.3, by symmetry we may assume that 2〈u,v〉
〈v,v〉 = ±1.

Since 〈v, v〉 is positive therefore 2〈u,v〉
〈v,v〉 has the same sign as 〈u, v〉. Additionally

tv(u) = u− 2〈u, v〉
〈v, v〉︸ ︷︷ ︸
=±1

v =


u+ v, if 〈u, v〉 < 0

u− v, if 〈u, v〉 > 0

u+ v and u− v are in R by axiom 4.
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x

v1 v2

v3

v4 v5

v6 〈x, vi〉 > 0, for 1 ≤ i ≤ 6

v7v8

v9

v10v11

v12

〈x, vi〉 < 0, for 7 ≤ i ≤ 12

Figure 3.2. A root system and its x-positive roots.

Lemma 3.2.3. Let v be an x-positive root in R, for a vector x ∈ E not perpendicular to

any root in R, v can be written as

v =
∑

ui,

where ui’s are x-indecomposable. As a result, the set of x-positive roots span E.

Proof. Let Sx be the set of all those r ∈ R such that r is x-positive. Let Svx be the subset

of Sx corresponding to a root v in Sx such that if u ∈ Svx then 〈u, x〉 < 〈v, x〉. We will prove

this through induction on |Svx|. For any v ∈ Sx, if |Svx| = 0, then v is x-indecomposable,

thus the base case is true. Let us assume that our claim is true for any v ∈ Sx if |Svx| ≤ k.

Now, if for some v ∈ Sx, Svx = k + 1, v = u+ w for some u, v ∈ Sx then since 〈u, x〉 < 〈v, x〉

and 〈w, x〉 < 〈v, x〉 we have |Sux | < |Svx| and |Swx | < |Svx|, consequently Sux ≤ k and Swx ≤ k,

thus using induction hypothesis we can say that u and w can be written as sum of x-

indecomposable roots, as a result v can be written as a sum of x-indecomposable roots.

Since any root in the half-space defined by the hyperplane perpendicular to x can be written

as a sum of x-indecomposable roots therefore any vector v in the same half-space can also
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be written as a sum of these x-positive roots, and any vector in the other half-space can be

written as a sum of negative x-positive roots. Therefore x-positive roots span E.

Lemma 3.2.4. If u and v are x-indecomposable then 〈u, v〉 ≤ 0

Proof. Let x be any vector not perpendicular to any root in R. By Lemma 3.2.2 if 〈u, v〉 > 0

then r = u−v is a root, and thus either r or −r is in the same half-space as x, i.e. either r or

−r is in x-positive. If r is x-positive then u = v+r, else if −r is x-positive then v = u+(−r),

a contradiction, thus 〈u, v〉 ≤ 0.

Theorem 3.2.5. Every root system R has a base ∆.

Proof. We will show that for any vector x ∈ E not perpendicular to any of the roots in R, the

set of x-indecomposable roots is the base for R. Let us denote the set of x-indecomposable

roots by ∇.

We will first show that the set ∇ is linearly independent. If not then there exist non-

zero ki’s such that
∑
kiui = 0, ui ∈ ∇. Since ki’s are non-zero therefore we can rewrite

summation as ∑
aiui =

∑
bjuj,

where ai’s and bj’s are positive real numbers. Since ui’s are in ∇, therefore by Lemma 3.2.4〈(∑
aiui

)
,
(∑

bjuj

)〉
=
∑

aibj〈ui, uj〉 ≤ 0.

Since
∑
aiui =

∑
bjuj, 〈(∑

aiui

)
,
(∑

bjuj

)〉
=
(∑

aiui

)2

≥ 0

therefore
∑
aiui = 0, a contradiction. Thus ∇ is linearly independent. Additionally, by

Lemma 3.2.3, ∇ spans E.

Now for the second condition in the definition of a base, observe that for a given vector

x (not perpendicular to any of the roots in R) every x-positive root can be written as a
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sum of x-indecomposable roots, i.e. all the roots in the half-space defined by the hyperplane

perpendicular to x can be expressed as
∑
ui, where ui’s are roots in the same half-space.

Therefore any vector v in the same half-space can be expressed as
∑
kiui where ki’s are all

positive or zero, and any vector u in the other half-space can be expressed as
∑
`iui where

`i’s are all negative or zero.

Definition 3.2.6 (Positive roots R+ ⊂ R). Fix a vector x in E such that x is not perpen-

dicular to any root r in R. This fixes a base in R. A root r ∈ R is positive if 〈r, x〉 > 0.

Positive roots in a root system are not unique, it is dependent on the choice of a base in

the root system. An equivalent but alternative definition avoiding the choice of a vector x

is as follows:

Definition 3.2.7 (Positive roots R+ ⊂ R (Alternative definition)). For a root system R

choose a base ∆ of R. A root r ∈ R is positive if r can be written as r =
∑
kiui where ki’s

are greater than or equal to 0 and ui’s are in ∆.

Definition 3.2.8 (Negative roots R− ⊂ R). For a root system R and a base ∆ ⊂ R, a root

r ∈ R is a negative root if it is not a positive root.

Definition 3.2.9 (Simple roots S). The roots in the base of a root system are called simple

roots.

The existence of such indecomposable roots in ∆ is ascertained by Lemma 3.2.3. The

set of simple roots correspond to the simple reflections in the corresponding Coxeter group.

Instead of first developing a base for the root system one can first define the set of simple

roots as follows.

Definition 3.2.10 (Simple roots (alternate definition)). For any root system R in the stan-

dard Euclidean space E, the set of hyperplanes Hv perpendicular to v for each v in R

decompose E into finitely many simplical cones. Choose one of these simplical cones, the set

of all outward normal roots to the facets of the chosen simplical cone are the simple roots.
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The sum
∑
vsi where vsi are the simple roots, give us all the positive roots. Taking the

negative of the positive roots give us the negative roots.

Definition 3.2.11 (Rank of a root system). The rank of a root system is the number of

simple roots in it.

Example 3.2.12. In the root system A2, (see Item 2) for the choice of base ∆ = {u, v}, the

simple roots are S = {u, v}, the positive roots are R+ = {u, v, u+ v}, the negative roots are

R− = {−u,−v,−(u+ v)} and the set of roots is R = R+ ∪R−.

3.3 Drawing all Rank-2 Root Systems.

Starting with any two non-collinear vectors in a root system R we can generate all the other

roots in R simply by taking all the linear combinations with only the scalar multiples 1 and

-1. We also know from Theorem 3.1.3 that only certain angles and length ratios can occur.

Additionally since 2〈u,v〉
〈v,v〉

2〈v,u〉
〈u,u〉 is positive therefore 2〈u,v〉

〈v,v〉 and 2〈v,u〉
〈u,u〉 are either both positive or

both negative therefore there are 6 cases to consider.

2〈u,v〉
〈v,v〉 = 1 and 2〈v,u〉

〈u,u〉 = 1, 2 or 3

2〈u,v〉
〈v,v〉 = 1 and 2〈v,u〉

〈u,u〉 = −1, −2 or −3

We can further reduce this to three cases with the following observation. If w = tv(u),

i.e. w = u− 2〈u,v〉
〈v,v〉 v = u− 2〈u,v〉

〈v,v〉 v then w is in the same R as u and v

2〈w, v〉
〈v, v〉

=
2
〈
u− 2〈u,v〉

〈v,v〉 v, v
〉

〈v, v〉

= 2
〈u, v〉 −

〈
2〈u,v〉
〈v,v〉 v, v

〉
〈v, v〉

= 2
〈u, v〉 − 2〈u,v〉

〈v,v〉 〈v, v〉
〈v, v〉

=
2〈u, v〉 − 4〈u, v〉

〈v, v〉

= −2〈u, v〉
〈v, v〉

.
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Therefore, whenever necessary, we can replace u by w and thus the only cases to consider

are 2〈v,u〉
〈u,u〉 = −1, −2 or −3.

1. If 2〈u,v〉
〈u,u〉 = 0 then u and v are perpendicular and could be of any length. This gives us

a A1 × A1 type root system with a Dynkin diagram.

u−u

v

−v

Figure 3.3. Root system A1 × A1.

2. If 2〈u,v〉
〈u,u〉 = −1, then the angle between u and v is 2π/3 and ||u|| = ||v||. Additionally

tu(v) = v − 2〈u, v〉
〈u, u〉

u = v + u.

This gives us a A2 type root system.

u−u

v

−v − u

v + u

−v

Figure 3.4. Root system A2, .

3. If 2〈u,v〉
〈u,u〉 = −2, then the angle between them is 3π/4 and ||v|| =

√
2||u||. And

tu(v) = v − 2〈u, v〉
〈u, u〉

u = v + 2u.

This gives us a root system of type B2 or C2.
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u−u

v

−v − 2u

v + 2u

−v

v + u

−v − u

Figure 3.5. Root system B2, .

−v

v

v + u

−u u

−v − u

v + 2u

−v − 2u

Figure 3.6. Root system C2, .

4. If 2〈v,u〉
〈u,u〉 = −3, then the angle between them is 5π/6 and ||v|| =

√
3||u||. Also

tu(v) = v − 2〈v, u〉
〈u, u〉

u = v + 3u.

This gives us a root system of type G2.

With the help of the background we reviewed so far we now prove an important result

which we will later use in Chapter 6 in order to prove one of our main results. We will use

the notation s t to denote sts = tst and the notation s ‖ t to denote st = ts, for reflections

s and t.
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u−u

v

−v − 3u

v + 3u

−v

2v + 3u

−2v − 2u

v + 2uv + u

−v − 2u −v − u

Figure 3.7. Root system G2, .

Lemma 3.3.1. Fix a finite, simply-laced Coxeter reflection group W , and let t1, . . . , ts be

reflections occurring in a reduced T -decomposition of a Coxeter element such that ti ‖ tj for

i 6= j ± 1 and t1 t2 · · · ts−1 ts t1. Then [t1, t2 · · · ts · · · t2] = e.

Proof. Pick roots v1, v2, . . . , vs orthogonal to the hyperplanes corresponding to the reflections

t1, . . . , ts. These are linearly independent, since Coxeter elements have trivial fixed spaces

(see, for example, (Athanasiadis et al., 2007, Lemma 3.11)). By replacing vi with −vi, we

can assure that ti(vi+1) = vi + vi+1 for 1 ≤ i < s− 1. On the other hand, we only know that

t1(vs) is either vs + v1 or vs − v1.

But we are assuming that [t1, t2 · · · ts · · · t2] 6= e, which may be written equivalently as

t1 · · · ts−1(vs) 6= t2 · · · ts−1(vs). We compute

t2 · · · ts−1(vs) = v2 + · · · vs 6=

t1(t2 · · · ts−1(vs)) = t1(v2 + · · ·+ vs) = v1 + v2 + · · ·+ t1(vs),

so that t1(vs) = vs + v1.
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By comparing coefficients by linear independence, we observe that the powers

(t1t2 · · · ts)k(vs)

produce an infinite number of distinct roots of W , contradicting the assumption that W was

finite.

3.4 Dynkin Diagrams

Root systems are encoded by Dynkin diagrams which can be constructed as follows. If R+∩S

denotes the set of positive roots in a given root system, then we construct a graph whose

vertices are in bijection with the roots in R+ ∩ S and the edges are decided as follows. If

two roots in R+ ∩ S are at an angle of

• π/2, then the corresponding vertices are non-adjacent (don’t share an edge).

• 2π/3, then there is an edge between the corresponding vertices ( ).

• 3π/4, then there are 2 arrows between the corresponding vertices directed from the

vertex corresponding to the long root to the vertex corresponding to the short root

( ).

• 5π/6, then there are 3 arrows between the corresponding vertices directed from the

vertex corresponding to the long root to the vertex corresponding to the short root

( ).

We don’t have to consider any other angles between the roots because we know that these are

the only angles that appear between roots in a root system. Note that though we can draw

hyperplane arrangements corresponding to a Coxeter group of H2 (with the angle between

two hyperplanes π/5 or 4π/5), but there is no root system with an angle of 4π/5 between

the simple roots.
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An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Figure 3.8. Dynkin diagrams illustrating the types of reduced root systems.
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CHAPTER 4

DUAL COXETER SYSTEM AND HURWITZ MOVES

In this chapter we define Coxeter elements, and Hurwitz moves on reduced T -decompositions

of Coxeter elements. Most of this material can be found in (Bessis, 2003). The main focus

of this chapter will be to prove that reduced T -decompositions of a Coxeter element are

connected under Hurwitz move. This will form the foundation of Chapter 5, where we will

develop presentations for Artin groups encoded by reduced T -factorizations of a Coxeter

element.

4.1 Coxeter Element and Dual Coxeter System

Definition 4.1.1. For an (abstract) reflection group (W,T ) a chromatic pair is an ordered

pair (L,R), L,R ⊂ T , such that L ∩ R = φ, the subgroups 〈L〉 and 〈R〉 are abelian, and

(W,L ∪R) is a Coxeter system.

Definition 4.1.2. For a given Coxeter system (W,S), a Coxeter element c is the product

c =
∏
s∈S

s

where each simple reflection appears exactly once in the product.

Definition 4.1.3. Let sL :=
∏

s∈L s and sR :=
∏

s∈R s where (L,R) is a chromatic pair for

a reflection group (W,T ), then the elements of the form cL,R := sLsR are called bipartite

Coxeter elements.

Definition 4.1.4. If (W,T ) is a reflection group and c is a Coxeter element in (W,T ) then

we call the triple (W,T, c) a dual Coxeter system.

For a given abstract reflection group (W,T ) one can choose a set S ⊂ T such that S

generates W and the conjugacy closure of S is T , then (W,S) forms a Coxeter system. In
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the “dual” approach (as discussed in (Bessis, 2003)) we instead choose a Coxeter element c

(which is equivalent to choosing the generating set S in the classical approach) in order to

obtain a dual Coxeter system (W,T, c) (which is equivalent to the Coxeter system (W,S)).

Since all the Coxeter elements form a single conjugacy class (Lemma 1.7, (Reading, 2007))

we can define the following:

Definition 4.1.5. In a dual Coxeter system (W,T, c) the Coxeter number (denoted by h) is

the order of any Coxeter element.

Lemma 4.1.6 (Steinberg). For an irreducible abstract reflection group (W,T ), and a chro-

matic pair (L,R), the closure of S := L ∩ R under the conjugacy action of the Coxeter

element cL,R is T . Additionally, if θ ⊂ T is an orbit of any reflection under the conjugation

action of cL,R then either |θ| = h and |θ ∩ S| = 2 or |θ| = h
2

and |θ ∩ S| = 1, where h is the

Coxeter number.

Proof. Let L = {s1, . . . , sk}, R = {sk+1, . . . , sn} then an expression for cL,R = s1 · · · sn.

|θ| ≤ h, since chL,R = e. If si and sj belong to the same orbit under conjugacy of cL,R then

there exists an m such that sic
m
L,R = cmL,Rsj. Since chL,Rtc

−h
L,R = t for any t ∈ T , therefore for

any orbit θ, |θ| ≤ h, which in turn implies that m ≤ h. We will show (through contradiction)

that m ≥ bh/2c. If m < bh/2c then (s1 · · · sn) is a reduced S-word for the element cmL,R.

Let us first assume that si ∈ L for some i ≤ k then s1 · · · ŝi · · · sn(s1 · · · sn)m−1 is a reduced

S-word for sic
m
L,R, (where ŝi stands for deleted si). Since sic

m
L,R = cmL,Rsj therefore a reduced

S-word for cmL,R would be (s1 · · · sn)m−1s1 · · · ŝj · · · sn, (where ŝj stands for deleted sj) i.e.

sj ∈ R, (because if sj /∈ R then (s1 · · · sn)m−1s1 · · · snsj would be a reduced S-word for cmL,Rsj

and lS(sic
m
L,R) 6= lS(cmL,Rsj) which is a contradiction). Even though s1 · · · ŝi · · · sn(s1 · · · sn)m−1

and (s1 · · · sn)m−1s1 · · · ŝj · · · sn are reduced S-words for the same element still si is initial in

later expression but not in the former expression, which is a contradiction.
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If we instead assume that si ∈ R then si(s1 · · · sn)m is a reduced S-word for sic
m
L,R. Since

sicL,R = cL,Rsj therefore the word (s1 · · · sn)msj is a reduced S-word for cL,R, which in turn

implies that sj ∈ L. Since we have assumed that m ≤ bh/2c therefore

sk+1 · · · sn(s1 · · · sn)ms1 · · · sk

is a reduced S-word for the element cm+1
[R,L]. Since si ∈ R and sj ∈ L therefore another reduced

S-word for cm+1
[R,L] would be

sk+1 · · · ŝi · · · snsi(s1 · · · sn)msjs1 · · · ŝj · · · sk.

Therefore the subword si(s1 · · · sn)msj is a reduced expression. Now, since si(s1 · · · sn)m =

(s1 · · · sn)msj therefore si(s1 · · · sn)msj = (s1 · · · sn)m which is a contradiction. Thus we have

shown m ≥ bh/2c.

The reflections in the orbit of t can be written in an infinite sequence by conjugating t

infinitely as

θt =
(
t, cL,Rtc

−1
L,R, . . . , c

{h−1}
L,R tc

−{h−1}
L,R , t, cL,Rtc

−1
L,R, . . . , c

{h−1}
L,R tc

−{h−1}
L,R , · · ·

)
.

where all the reflections in the orbit of t appear at least once in the first h terms of the

sequence. Since m ≥ bh/2c therefore at most 2 simple reflections appear in the first h terms

of the sequence which gives us the inequality |θ|
|θ∩S| ≥ h/2 and |θ ∩ S| = 1 or 2 for any orbit

θ. If for a particular orbit θ, |θ ∩ S| = 2 since |θ| ≤ h we must have |θ| = h. If |θ ∩ S| = 1

then it follows that h/2 ≤ |θ| ≤ h. Since |T ||S| = h
2

and each of the orbits maintain this orbit

the same ratio therefore the closure of S is T .

We can conclude that the orbit containing only 1 simple reflection, contains h/2 reflection

in them.

The next lemma tells us how we can obtain a Coxeter system from a given dual Coxeter

system.

35



Lemma 4.1.7. For a given dual Coxeter system (W,T, c) of rank n and t ∈ T there exists

a chromatic pair (L,R) such that c = cL,R and t ∈ L. In particular there exists a reduced

T -word c = t1 · · · tn for the Coxeter element c such that t1 = t and (W, {t1, . . . , tn}) is a

Coxeter system.

Proof. Let (L,R) with L = {l1, . . . , li} and R = {r1, . . . , rj} be a chromatic pair such that

c = cL,R. For any t ∈ T , by Lemma 4.1.6, t = ckt′c−k with t′ ∈ L ∪ R. If t′ ∈ L then the

chromatic pair
(
ckLc−k, ckRc−k

)
is such that t ∈ ckLc−k and c = cckLc−k,ckRc−k . Now assume

t′ ∈ R. An expression l1 · · · lir1 · · · rj for the Coxeter element cL,R can be rewritten as:

cL,R = l1 · · · lir1 · · · rj

= r1r
−1
1 l1r1 · · · r−1

1 lir1 · · · rj

= r1r2r
−1
2 r−1

1 l1r1r2 · · · r−1
2 r−1

1 lir1 · · · rj
...

...
...

= r1 · · · rj(r−1
j · · · r−1

1 l1r1 · · · rj) · · · (r−1
j · · · r−1

1 lir1 · · · rj)

= sRs
−1
R l1sR · · · s−1

R lisR

= cR,s−1
R LsR

Thus, with the new chromatic pair (R, s−1
R LsR), t ∈ R and c = cR,s−1

R LsR

4.2 Parabolic Subgroup and Parabolic Coxeter Elements

Definition 4.2.1. Let (W,T ) be an abstract reflection group, and (W,S) be the correspond-

ing Coxeter group with S as the set of simple reflections that generate W . For any I ⊂ S

the subgroup (WI , TI) is a parabolic subgroup of the abstract reflection group (W,T ) where

WI := 〈I〉 and TI := T ∩ I. An element w ∈ W will be called a parabolic Coxeter element if

w is a Coxeter element in some parabolic subgroup (WI , TI).
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Lemma 4.2.2. For any dual Coxeter system (W,T, c) the element tc where t ∈ T is a

parabolic Coxeter element.

Proof. By Lemma 4.1.7, there exists a chromatic pair (L,R) such that L = {l1, . . . , li},

R = {r1, . . . , rj} and c has a T−decomposition l1 · · · lir1 · · · rj with l1 = t. Therefore

t̂l2 · · · lir1 · · · rj is a reduced T -decomposition of tc. Therefore the ordered pair (L \ t, R)

is a chromatic pair in the Coxeter system (W,L \ t ∪ R) which implies that tc is a Coxeter

element in the subgroup generated by L \ t ∪ R, consequently, tc is a parabolic Coxeter

element.

Lemma 4.2.3. Let (W,S) be a Coxeter system, there exists a Coxeter element c such that

w ≤T c if and only if w is a parabolic Coxeter element.

Proof. If w is a parabolic Coxeter element then clearly w ≤T c because there exists a reduced

T -decomposition of w = (w1 · · ·wk) and a reduced T -decomposition of c = (c1 · · · cl) such

that {w1, . . . , wk} ⊂ {c1, . . . , cl}

Now if w ≤T c then w can be written as wv = c for some v ∈ W with lT (w)+lT (v) = lT (c).

This also implies that there exists some v′ ∈ W such that v′w = c with lT (v′) + lT (w) =

lT (c). Using induction on lT (v′) we will show that v′c is a parabolic Coxeter element where

lT (v′c) = lT (c)− lT (v′). If lT (v′) = 1 then v′c is a parabolic Coxeter element by Lemma 4.2.2.

For the inductive hypothesis we assume that v′c is a parabolic Coxeter element if lT (v′) = n.

If lT (v′) = n+ 1 then v = tu where lT (t) = 1 and lT (u) = n. Since lT (u) = n therefore uc is

a parabolic Coxeter element. Since tu ≤T c and t �T u thus t ≤T uc, which implies that tuc

is a parabolic Coxeter element.

4.3 Hurwitz Moves

Definition 4.3.1. Let (W,S) be a Coxeter system and let T be the set of reflections. For a

positive integer n consider Bn—the braid group on n strands with generators σ1, σ2, . . . , σn−1.
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Hurwitz action is a group action of Bn on T n defined as,

σi(t1, . . . , ti−1, ti, ti+1, . . . tn) 7→ (t1, . . . , ti−1, t
ti
i+1, ti, . . . , tn)

In a similar way we define Hurwitz move on a word

µi(t1 · · · ti−1titi+1 · · · tn) 7→ (t1 · · · ti−1t
ti
i+1ti · · · tn)

We can use Hurwitz move to ‘alter’ a given reduced T -decomposition of a Coxeter element.

Let c be a Coxeter element of W and let t1 · · · titi+1 · · · tn be a reduced T -decomposition of

c. Performing a Hurwitz move at ti on c = t1 · · · titi+1 · · · tn gives a new T -decomposition

c′ = t1 · · · ttii+1ti · · · tn, which corresponds to the Hurwitz action σi(t1, . . . , ti, ti+1, . . . , tn).

Since the product map T n → W defined as (t1, . . . , tn) 7→
∏n

i=1 ti is invariant under the

Hurwitz action therefore Hurwitz moves only produce different reduced T -factorizations of

a given Coxeter element without affecting the Coxeter element.

Example 4.3.2. Let us perform a Hurwitz move on the reduced T -decomposition (12)(23)(34)

of a Coxeter element in S3, at (23).

c = (12)(23)(34)

= (12)(23)(34)(23)(23)

= (12)(24)(23)

Lemma 4.3.3. If t1 · · · tn is a reduced T -decomposition of a Coxeter element c, then the

decomposition

tc
k

1 · · · tc
k

n

is also a reduced T -decomposition of c and is in the orbit of t1 · · · tn under Hurwitz move.
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Proof. First we will show (using induction) that in a Coxeter system of rank m performing

m successive rotation on the leftmost reflection of a reduced T -decomposition t1 · · · tn of a

Coxeter element c gives a new reduced T -decomposition of c in which ctnc
−1 is the right

most reflection.

For the base case consider the Coxeter element c = t1t2 and the reduced T -decomposition

c = t1t2. On rotating t1 we get tt12 t1. On rotating tt12 we get t
(tt12 )
1 tt12 . Here, the right most

reflection in the factorization t
(tt12 )
1 tt12 is:

tt12 = t1t2t
−1
1 = t1t2t2t

−1
2 t−1

1 = ct2c
−1

Now consider a Coxeter element cn−1 = t1t2 · · · tn−1 in a rank n− 1 Coxeter system. On

performing n − 1 rotations on the leftmost reflection (successively) of the T -decomposition

t1t2 · · · tn−1 we obtain a new T -decomposition of cn−1 which can be written as:

tP1
1 tP2

2 · · · tn−1
Pn−1

For our induction hypothesis we assume that Pn−1tn−1 = cn−1, which would imply t
Pn−1

n−1 =

t
cn−1

n−1 . Observe that this is true in the base case where Pn−1 ≡ t1 and tn−1 ≡ t2

Now for the inductive step consider a Coxeter element cn = t1t2 · · · tn−1tn obtained by

concatenating tn to the right of cn−1. Performing n successive rotations on the leftmost

reflection of the reduced T -decomposition
(
tn
Pn−1

)(tn−1
Pn−1)t1

P1 · · · tn−1
Pn−1 we obtain (using

the same notation as in the n− 1 case):

(
tn
Pn−1

)(tn−1
Pn−1)

t1
P1 · · · tn−1

Pn−1
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where

(
tn
Pn−1

)(tn−1
Pn−1)

=
(
Pn−1tn−1P

−1
n−1

) (
Pn−1tnP

−1
n−1

) (
Pn−1tn−1P

−1
n−1

)−1

= Pn−1tn−1tnt
−1
n−1P

−1
n−1

= Pn−1tn−1tn
(
tnt
−1
n

)︸ ︷︷ ︸
=e

t−1
n−1P

−1
n−1

= Pn−1tn−1︸ ︷︷ ︸
=cn−1

tntnt
−1
n t−1

n−1P
−1
n−1︸ ︷︷ ︸

=c−1
n−1

(using induction hypothesis)

= cn−1tn︸ ︷︷ ︸
=cn

tn t
−1
n c−1

n−1︸ ︷︷ ︸
=c−1

n

= cntnc
−1
n

Now, we will show (again using induction) that in a Coxeter system of rank m, and a

Coxeter element c = t1 · · · tm, performing m successive rotations on the leftmost reflection

of the reduced T -factorization t1 · · · tm gives tc1 · · · tcm.

First consider the Coxeter element c = t1t2 and the reduced T -decomposition t1t2. On

rotating t1 we get tt12 t1. Now again on rotating tt12 we get t
(tt12 )
1 tt12 .

t
(tt12 )
1 = t

t1t2t
−1
1

1 = t1t2t
−1
1 t1t1t

−1
2 t−1

1 = t1t2t1t
−1
2 t−1

1 = ct1c
−1.

tt12 = t1t2t
−1
1 = t1t2t2t

−1
2 t−1

1 = ct2c
−1.

Let cn−1 = t1t2 · · · tn−1 be a Coxeter element of rank n−1 Coxeter system and let t1t2 · · · tn−1

be a reduced T -decomposition of c. On performing rotations on the left most reflection,

successively for n− 1 times the final factorization can be written as:

tP1
1 tP2

2 · · · tn−1
Pn−1

We assume here that tPkk = cn−1tkc
−1
n−1, for each 0 < k < n − 1. With this as our induction

hypothesis we will show that in a rank n Coxeter system, if cn = t1t2 · · · tn−1tn is a Coxeter
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element then performing similar successive rotations on the left most reflection of the reduced

T -factorization t1t2 · · · tn−1tn for n times would give us tcn1 tcn2 · · · tcnn−1t
cn
n .

If we just concatenate the reflection tn to the right of the Coxeter element cn−1, we obtain

a Coxeter element cn. Using the same notation as in the n− 1 case we obtain the following

factorization:

(
tP1
1

)(tPnn )(
tP2
2

)(tPnn ) · · ·
(
tn−1

Pn−1
)(tPnn )

tPnn

By induction hypothesis tPkk = cn−1tkc
−1
n−1, 0 < k < n and using the fact that tPnn = cntnc

−1
n

(from the first part of the proof) we have:

(
tPkk

)(tPnn )
=
(
cn−1tkc

−1
n−1

)(cntnc−1
n )

=
(
cntnc

−1
n

) (
cn−1tkc

−1
n−1

) (
cntnc

−1
n

)−1

= cntn c
−1
n cn−1︸ ︷︷ ︸
t−1
n

tk c
−1
n−1cn︸ ︷︷ ︸
tn

t−1
n c−1

n

= cn tnt
−1
n︸ ︷︷ ︸
e

tk tnt
−1
n︸ ︷︷ ︸
e

c−1
n

= cntkc
−1
n .

Theorem 4.3.4 (Proposition 1.6.1 in (Bessis, 2003)). The set of reduced T -decompositions

for a Coxeter element c is transitive under the action of Hurwitz moves.

Proof. Let (W,S) be a Coxeter system of rank n with T being the set of reflections. We will

prove this through induction on the rank n. It is vacuously true for Parabolic subgroups of

rank 1. For the induction hypothesis we assume that the set of reduced T -decompositions

for a Coxeter element in a parabolic Coxeter group of rank n − 1 is transitive under the

action of Bn−1. Now let c be a Coxeter element in W . We can write⋃
t∈T

t · RedT (tc) = RedT (c)
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where t ·RedT (tc) denotes the set of reduced T -words for tc with t concatenated to the front

of each of those words. By Lemma 4.2.2, tc is a Coxeter element in a parabolic Coxeter group

of rank n − 1 therefore RedT (tc) is transitive under the action of Bn−1. If u ∈ RedT (tc)

then t · u ∈ RedT (c). Now since the Bn−1-orbit of u contains the entire RedT (tc) therefore

the Bn-orbit of t · u contains the entire t · RedT (tc) (since Bn−1 is a restriction of Bn).

Thus it suffices to show that there exists an element c′ ∈ RedT (c) such that its Bn-orbit

contains at least one factorization of the form t.u for every t ∈ T . Now let c′ = s1s2 · · · sn

be a reduced T -decomposition of c then (s1, . . . , sn) ∈ RedT (c). It is easy to see that

σ−1
1 · · ·σ−1

i−1(s1, . . . , sn) starts with the reflection si. Using Lemma 4.3.3 we can say that

((σn1 · · ·σ1)nkσ−1
1 · · ·σ−1

i−1)(s1, . . . , sn) starts with cksic
k. By Lemma 4.1.6 every t ∈ T can

be written in the form cksic
−k therefore we have demonstrated a series of Hurwitz moves

on c′ that will enable us to have a factorization that starts with our choice of t ∈ T . This

completes the proof.

In summary, for a given Coxeter group W and a Coxeter element c ∈ W , there exists

a set S ⊂ W such that (W,S) is a Coxeter system and c is a bipartite Coxeter element in

(W,S). If a Coxeter element c′ is not a bipartite Coxeter element in the Coxeter system

(W,S) then we can find a different set S ′ ⊂ W such that c′ is a bipartite Coxeter element

in (W,S ′). Since the set of reduced T -decompositions for a Coxeter element c′ is transitive

under Hurwitz moves, therefore the reduced S ′-decomposition of c′ can be obtained from the

reduced S-decomposition of c′ by simply performing Hurwitz moves on it.
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CHAPTER 5

A PRESENTATION FROM REDUCED T -DECOMPOSITIONS OF

COXETER ELEMENTS.

This chapter introduces the main result—presentations for Artin groups arising from reduced

T -decompositions of a Coxeter element.

5.1 The Presentation

Let W be a simply-laced Weyl group and let (W,S) be the corresponding Coxeter system.

Let c be a Coxeter element of W and let c = t1t2 · · · tn be a reduced T -decomposition of c.

We define a group presentation

B(t1, t2, . . . , tn) := 〈t1, t2, . . . , tn
∣∣Rel(t1, . . . , tn)〉group (5.1)

where t1, t2, · · · , tn are a formal copy of the reflections t1, t2, · · · , tn, subject to the following

relations

Rel(t1, . . . , tn) :=



titj = tjti if ti ‖ tj ,

titjti = tjtitj if ti tj ,

[ti1 , ti2 · · · tis · · · t−1
i2

] = e if ti1 ti2 · · · tis−1 tis ti1 ,

tij ‖ tik for k 6= j − 1, j + 1.

(5.2)

Since we can perform Hurwitz moves on a reduced T -decomposition of c to obtain new reduced

T -decompositions of c, therefore there are as many group presentations as the cardinality of the

orbit of (t1, t2, . . . , tn) under Hurwitz action (by Theorem 4.3.4 all the reduced T -decompositions of

c are in the same orbit under Hurwitz action). Let u1u2 · · ·un be another reduced T decomposition

of c obtained by performing Hurwitz move on t1t2 · · · tn at tk, i.e. µk(t1t2 · · · tn) = u1u2 · · ·un. We

have the following group presentation

B(u1, u2, . . . , un) = 〈u1,u2, . . . ,un : Rel(u1, . . . , un)〉group .
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where

Rel(u1, u2, . . . , un) =



uiuj = ujui if ui ‖ uj ,

uiujui = ujuiuj if ui uj ,

[ui1 ,ui2 · · ·uis · · ·u−1
i2

] = e if ui1 ui2 · · · uis−1 uis ui1 ,

uij ‖ uik for k 6= j − 1, j + 1.

Using Lemma 3.3.1 we can rewrite the last relation as

[ui1 ,ui2 · · ·uis · · ·u−1
i2

] = e if (ui1ui2 · · · uis−1uisuis−1 · · ·ui2)2 = e.

Since

t1 · · · tk−1t
tk
k+1tk · · · tn = u1 · · ·uk−1ukuk+1 · · ·un

therefore, tk = uk+1, ttkk+1 = uk and ui = ti when i 6= k or k + 1. Using these we also get

tk+1 = u−1
k+1ukuk+1.

Theorem 5.1.1. Let t1t2 · · · tn be a reduced T -decomposition of a Coxeter element c in a Coxeter

group W . If u1u2 · · ·un be another reduced T -decomposition of c such that σk(t1, t2, . . . , tn) =

(u1, u2, . . . , un). If B(t1, t2, . . . , tn) and B(u1, u2, . . . , un) are the groups whose presentations are

obtained using Equation (5.1) from the decompositions t1t2 · · · tn and u1u2 · · ·un respectively, then

B(t1, t2, . . . , tn) ∼= B(u1, u2, . . . , un).

Proof. Define a map φk : B(t1, t2, . . . , tn)→ B(u1, u2, . . . , un) by

φk(ti) :=



uk+1 if i = k

u−1
k+1ukuk+1 if i = k + 1

ui otherwise
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The definition of φk is motivated from how ti and ui are related in W , where σk(t1, t2, . . . , tn) =

(u1, u2, . . . , un). We will show that the groups B(t1, t2, . . . , tn) and B(u1, u2, . . . , un) are isomorphic

by showing that φk is a bijective homomorphism. The proof for homomorphism will be shown in

Chapter 6. For the bijection we will show that φk is invertible. Define ψk : B(u1, u2, . . . , un) →

B(t1, t2, . . . , tn) by1

ψk(ui) =



tktk+1t
−1
k if i = k

tk if i = k + 1

ti otherwise

We will now show that ψk is the inverse of φk by showing that φk ◦ ψk and ψk ◦ φk are identity

maps. Let i 6= k, k + 1, then φk ◦ ψk(ui) = φk(ti) = ui. For i = k we obtain

φk ◦ ψk(uk) = φk(tktk+1t
−1
k )

= φk(tk)φk(tk+1)φk(t
−1
k )

= uk+1u
−1
k+1ukuk+1u

−1
k+1

= uk.

Now for i = k + 1

φk ◦ ψk(uk+1) = φk(tk)

= uk+1.

Therefore φk ◦ ψk is the identity map of B(u1, u2, . . . , un).

Next we will check ψk◦φk is the identity map of B(t1, t2, . . . , tn). Again we check for i 6= k, k+1

and obtain ψk ◦ φk(ti) = ψk(ui) = ti. For i = k we obtain

1This definition is motivated from the inverse Hurwitz action,

σ−1
k (u1, . . . , uk−1, uk, uk+1, . . . , un) = (u1, . . . , uk−1, uk+1,

uk+1 uk, . . . , un)

Setting (t1, . . . , tk−1, tk, tk+1, . . . , tn) = (u1, . . . , uk−1, uk+1,
uk+1 uk, . . . , un) we get uk+1 = tk, uk+1uk = tk+1

and ti = ui when i 6= k or k + 1. Using these we also get uk = tktk+1t
−1
k .
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ψk ◦ φk(tk) = ψk(uk+1)

= tk.

When i = k + 1, we obtain

ψk ◦ φk(tk+1) = ψk(u
−1
k+1ukuk+1)

= ψk(u
−1
k+1)ψk(uk)ψk(uk+1)

= t−1
k tktk+1t

−1
k t−1

k

= tk+1

Therefore, ψk ◦ φk is the identity map of B(t1, t2, . . . , tn), and consequently φk is a bijection.

This, along with the homomorphism implies that φk is an isomorphism from B(t1, t2, . . . , tn) to

B(u1, u2, . . . , un), so B(t1, t2, . . . , tn) ∼= B(u1, u2, . . . , un) and our proof is complete.

This isomorphism has been illustrated through Figure 5.1.

t1 . . . tktk+1 . . . tn //

σk
��

〈t1, . . . , tn|Rel(t1, . . . , tn)〉

Theorem 5.1.1∼=t1 . . . t
tk
k+1tk . . . tn

u1 . . . ukuk+1 . . . un // 〈u, . . . ,un|Rel(u1, . . . , un)〉

Figure 5.1. Diagram illustrating isomorphism between the two groups defined by presenta-
tions arising from reduced T -decompositions of Coxeter elements.

This brings us to our main theorem:

Theorem 5.1.2. Let c be a Coxeter element of a simply-laced Weyl group W and suppose

(t1, t2, . . . , tn)
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is a reduced T -factorization of c. If

B(t1, t2, . . . , tn) := 〈t1, t2, . . . , tn
∣∣Rel(t1, . . . , tn)〉

where

Rel(t1, . . . , tn) =



titj = tjti if ti ‖ tj ,

titjti = tjtitj if ti tj ,

[ti1 , ti2 · · · tis · · · t−1
i2

] = e if ti1 ti2 · · · tis−1 tis ti1 ,

tij ‖ tik for k 6= j − 1, j + 1.

then

B(t1, t2, . . . , tn) ∼= B(W ).

Proof. Using induction along with Theorem 5.1.1, we can say that B(t1, . . . , tn) and B(t′1, . . . , t
′
n)

are isomorphic if the two reduced T -decompositions—t1 · · · tn and t′1 · · · t′n—of the Coxeter element

c, are in a single orbit under Hurwitz move. By Theorem 4.3.4 all reduced T -decompositions

of the Coxeter element c are in the same orbit under Hurwitz move, in particular any reduced

S-decomposition of c, say s1 · · · sn is also in the same orbit therefore the group B(t1, . . . , tn) is iso-

morphic to B(s1, . . . , sn), consequently B(t1, . . . , tn) is isomorphic to B(W ). Notice that our pre-

sentation for B(s1, . . . , sn) is exactly the same as the Artin-braid presentation B(W ) because there

are no cycles of the form si1 si2 · · · sik si1 in (W,S) (W being simply-laced) where si1 , si2 , . . . , sin

are in S.
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CHAPTER 6

PROOF OF HOMOMORPHISM

For a finite, simply-laced Coxeter group W , and a Coxeter element c ∈ W with a reduced T -

decomposition (t1, t2, . . . , tn), one can write a group presentation using Equation (5.1)

B(t1, t2, . . . , tn) = 〈t1, t2, . . . , tn : Rel(t1, . . . , tn)〉group

and a presentation

B(u1, u2, . . . , un) = 〈u1,u2, . . . ,un : Rel(u1, . . . , un)〉group

where

σk(t1, t2, . . . , tn) = (u1, u2, . . . , un)

which implies

ti =



uk+1 if i = k

u−1
k+1ukuk+1 if i = k + 1

ui otherwise

or alternatively

ui =



tktk+1t
−1
k if i = k

tk if i = k + 1

ti otherwise.

Define a map φk : B(t1, t2, . . . , tn)→ B(u1, u2, . . . , un) by

φk(ti) :=



uk+1 if i = k

u−1
k+1ukuk+1 if i = k + 1

ui otherwise.

Theorem 6.0.1. φk is a homomorphism from B(t1, t2, . . . , tn) to B(u1, u2, . . . , un).
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Proof. Define t̃i ∈ B(u1, u2, . . . , un)

t̃i =



uk+1 i = k

u−1
k+1ukuk+1 i = k + 1

ui otherwise

We will show that for any relation R(t1, . . . , tn) in Rel(t1, . . . , tn), the relation R(t̃1, . . . , t̃n) holds

in B(u1, u2, . . . , un). Let us first get the trivial cases out of the way. If tktk+1 = tk+1tk then ti = ui

for all the i’s, thus there is nothing to show. Therefore in this chapter we assume tk tk+1.

Another trivial case is when tk+1 is not involved in a relation. IfR(t1, t2, . . . , tn) ∈ Rel(t1, . . . , tn)

be a relation such that tk+1 is not involved then

R(t1, . . . , tk, tk+1, . . . , tn) = R(t1, . . . , tk, e, . . . tn),

and also the relation R(t1, . . . , tk, tk+1, . . . tn) holds in W , therefore

R(t1, . . . , tk, tk+1, . . . tn) = R(t1, . . . , tk, e, . . . , tn).

Since

R(t1, . . . , tk, tk+1, . . . tn) = R(u1, . . . , uk−1, uk+1, u
−1
k+1ukuk+1, uk+2 . . . , un)

and

R(t1, . . . , tk, e, . . . , tn) = R(u1, . . . , uk−1, uk+1, e, uk+2, . . . , un)

therefore

R(u1, . . . , uk−1, uk+1, u
−1
k+1ukuk+1, uk+2 . . . , un)

is the same as

R(u1, . . . , uk−1, uk+1, e, uk+2, . . . , un).

Consequently

R(̃t1, . . . , t̃k−1, t̃k, t̃k+1, t̃k+2 . . . , t̃n)

holds in B(u1, u2, . . . , un).

Therefore it suffices to show,
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1. titj = tjti =⇒ t̃it̃j = t̃j t̃i

tk+1ti = titk+1 =⇒ t̃k+1t̃i = t̃it̃k+1 where i 6= k. See Lemma 6.0.3.

2. titjti = tjtitj =⇒ t̃it̃j t̃i = t̃j t̃it̃j

Case 1: titk+1ti = tk+1titk+1 =⇒ t̃it̃k+1t̃i = t̃k+1t̃it̃k+1, where i 6= k. See Lemma 6.0.4.

Case 2: tktk+1tk = tk+1tktk+1 =⇒ t̃k t̃k+1t̃k = t̃k+1t̃k t̃k+1. See Lemma 6.0.5.

3. [ti1 , ti2 · · · tis · · · t−1
i2

] = e =⇒ [̃ti1 , t̃i2 · · · t̃is · · · t̃
−1
i2 ] = e. See Lemma 6.0.6.

Case I: [tk, tk+1 · · · tis · · · t−1
k+1] = e

=⇒ [̃tk, t̃k+1 · · · t̃is · · · t̃
−1
k+1] = e (tk and tk+1 appear right at the beginning)

Case II: [ti1 , ti2 · · · tktk+1 · · · tis · · · t−1
k+1t

−1
k · · · ti2 ] = e

=⇒ [̃ti1 , t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃

−1
k · · · t̃i2 ] = e (tk and tk+1 don’t appear at the

beginning or at the end, but somewhere in between)

Case III: [ti1 , ti2 · · · tktk+1t
−1
k · · · t

−1
i2

] = e

=⇒ [̃ti1 , t̃i2 · · · t̃k t̃k+1t̃
−1
k · · · t̃

−1
i2 ] = e (tk and tk+1 appear at the end)

Case IV: [tk+1, ti2 · · · tis · · · t−1
i2

] = e

=⇒ [̃tk+1, t̃i2 · · · t̃is · · · t̃
−1
i2 ] = e (tk+1 appears at the beginning and tk is absent)

Case V: [ti1 , ti2 · · · tk+1 · · · tis · · · tk+1 · · · t−1
i2

] = e

=⇒ [̃ti1 , t̃i2 · · · t̃k+1 · · · t̃is · · · t̃k+1 · · · t̃
−1
i2 ] = e (tk+1 doesn’t appear at the beginning or

at the end, but somewhere in between and tk is absent)

Case VI: [ti1 , ti2 · · · tk+1 · · · t−1
i2

] = e

=⇒ [̃ti1 , t̃i2 · · · t̃k+1 · · · t̃
−1
i2 ] = e (tk+1 appears at the end and tk is absent)

The next lemma will help us in the proofs of the following lemmas.

Lemma 6.0.2. tit
−1
j tktj = t−1

j tktjti ⇐⇒ titjtkt
−1
j = tjtkt

−1
j ti.
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Proof.

titjtkt
−1
j = tjtkt

−1
j ti

=⇒ titjtkt
−1
j t−1

i = tjtkt
−1
j

=⇒ titjtkt
−1
j t−1

i = tjtktitjt
−1
j t−1

i t−1
j

=⇒ titjtkt
−1
j t−1

i = tjtktitjt
−1
i t−1

j t−1
i

=⇒ titjtk = tjtktitjt
−1
i

=⇒ titjtkti = tjtktitj

=⇒ t−1
j titjtkti = tktitj

=⇒ t−1
j titjtk = tktitjt

−1
i

=⇒ t−1
j titjtk = tkt

−1
j titj

Lemma 6.0.3. tk+1ti = titk+1 =⇒ t̃k+1t̃i = t̃it̃k+1 where i 6= k.

Proof. Since tk+1ti = titk+1 therefore tk+1 ‖ ti. There are two cases to consider ti tk and ti ‖ tk.

Case I: Assume ti tk. First, we observe that since ui = ti and uk+1 = tk, thus uk+1ui =

uiuk+1 =⇒ titk = tkti, a contradiction, thus we get

ui uk+1 (6.1)

Next, we observe that

ukuk+1 = tktk+1t
−1
k tk = tktk+1,

uk+1uk = tktktk+1t
−1
k = tk+1tk.

Therefore ukuk+1 = uk+1uk =⇒ tktk+1 = tk+1tk, a contradiction, thus get

uk+1 uk (6.2)

And finally, ukui = uiuk =⇒ tktk+1t
−1
k ti = titktk+1t

−1
k
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=⇒ titktk+1tk = tktk+1tkti

=⇒ titktk+1 = tktk+1tktitk

=⇒ titktk+1 = tktk+1titkti

=⇒ tktitktk+1 = tk+1titkti

=⇒ titktitk+1 = titk+1tkti

=⇒ tktk+1ti = tk+1tkti

=⇒ tktk+1 = tk+1tk.

Therefore ukui = uiuk =⇒ titk = titk, a contradiction, thus we get

uk ui (6.3)

Equation (6.1), Equation (6.2) and Equation (6.3) together with Lemma 6.0.2 imply

ui uk+1 uk ui

=⇒ [ui,u
−1
k+1ukuk+1] = e

=⇒ uiu
−1
k+1ukuk+1 = u−1

k+1ukuk+1ui

=⇒ t̃it̃k+1 = t̃k+1t̃i

Case II: Assume ti ‖ tk. We observe that

t̃k+1t̃i = u−1
k+1ukuk+1ui,

t̃it̃k+1 = uiu
−1
k+1ukuk+1

therefore to show that t̃k+1t̃i = t̃it̃k+1, it suffices to show that uk and ui commute and uk+1

and ui commute. It is clear that uk+1 and ui commute as uk+1 = tk and ui = ti and by

assumption tkti = titk. So we only need to show that uk and ui commute. We will do so by
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showing that ui and uk commute.

ukui = tktk+1tkti

= titktk+1tk

= uiuk

As ti commutes with both tk+1 and tk. Therefore, ui commutes with both uk+1 and uk. So

t̃k+1t̃i = t̃it̃k+1 when tk and ti commute.

Lemma 6.0.4. titk+1ti = tk+1titk+1 =⇒ t̃it̃k+1t̃i = t̃k+1t̃it̃k+1 where ti 6= tk.

Proof. Since titk+1ti = tk+1titk+1 therefore ti tk+1.

Case I: Assume tk ti. First, we will argue that ui and uk commute by showing that uk and

ui commute. Since uiuk = titktk+1tk and ukui = tktk+1tkti it suffices to show that ti and

tktk+1tk commute. Now using our assumptions tk tk+1 and tk ti we have ti tk tk+1 ti,

thus invoking Lemma 3.3.1 we get [ti, tktk+1tk] = e, consequently ui and uk commute.

Next we note that ui and uk+1 do not commute since ui = ti and uk+1 = tk and we assumed

that tk ti thus we have ui uk+1, consequently ui and uk+1 do not commute.

Using these two results we obtain,

t̃k+1t̃it̃k+1 = u−1
k+1ukuk+1uiu

−1
k+1ukuk+1

= ukuk+1u
−1
k uiukuk+1u

−1
k

= ukuk+1uiuk+1u
−1
k

= ukuiuk+1uiu
−1
k

Similarly

t̃it̃k+1t̃i = uiu
−1
k+1ukuk+1ui

= uiukuk+1u
−1
k ui

= ukuiuk+1uiu
−1
k
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Therefore, t̃it̃k+1t̃i = t̃k+1t̃it̃k+1.

Case II: Assume tk ‖ ti. We will show that ui and uk+1 commute whereas ui and uk do not.

First, we will show that uk and ui don’t commute by showing uk ui.

If uiuk = ukui

=⇒ titktk+1tk = tktk+1tkti

=⇒ titktk+1 = tktk+1(tktitk)

=⇒ titktk+1 = tktk+1ti

=⇒ (tktitk)tk+1 = tk+1ti

=⇒ titk+1 = tk+1ti

which is a contradiction, thus ui uk, consequently uk and ui do not commute. Next we

observe that uk+1 and ui commute as ui and uk+1 commute (as ui = ti and uk+1 = tk and

ti ‖ tk by assumption).

By establishing these relations, we observe:

t̃k+1t̃it̃k+1 = u−1
k+1uk(uk+1uiu

−1
k+1)ukuk+1

= u−1
k+1(ukuiuk)uk+1

= (u−1
k+1ui)uk(uiuk+1)

= uiu
−1
k+1ukuk+1ui

= t̃it̃k+1t̃i.

Therefore t̃it̃k+1t̃i = t̃k+1t̃it̃k+1.

Lemma 6.0.5. tktk+1tk = tk+1tktk+1 =⇒ t̃k t̃k+1t̃k = t̃k+1t̃k t̃k+1
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Proof. Since tktk+1tk = tk+1tktk+1 therefore tk tk+1. First, we will show that uk and uk+1 don’t

commute by showing that uk and uk+1 don’t.

ukuk+1uk = tktk+1(tktk)tktk+1tk

= tk(tk+1tktk+1)tk

= tk(tktk+1tk)tk

= uk+1ukuk+1

Thus we have the relation ukuk+1uk = uk+1ukuk+1 =⇒ ukuk+1u
−1
k = u−1

k+1ukuk+1. Now,

t̃k+1t̃k t̃k+1 = u−1
k+1ukuk+1(uk+1u

−1
k+1)ukuk+1

= (u−1
k+1ukuk+1)ukuk+1

= ukuk+1(u−1
k uk)uk+1

= ukuk+1uk+1

= uk+1u
−1
k+1ukuk+1uk+1

= t̃k t̃k+1t̃k

Therefore t̃k t̃k+1t̃k = t̃k+1t̃k t̃k+1.

Lemma 6.0.6. [ti1 , ti2 · · · tis · · · t−1
i2

] = e =⇒ [̃ti1 , t̃i2 · · · t̃is · · · t̃
−1
i2 ] = e

Proof. We will use several cases to address all the possible positions of tk and tk+1 in the re-

lation
[
ti1 , ti2 · · · tis · · · t−1

i2

]
= e. In all the following cases we assume that in the sequence

(ti1 , ti2 , . . . , tis−1 , tis) each reflection commutes with every other reflections except for the two re-

flections that appear adjacent to it in the sequence. Also ti1 doesn’t commute with tis .

Case I: Assume that ti1 = tk and ti2 = tk+1. First we observe that since uk = tktk+1t
−1
k ,

uis = tis and ui3 = ti3 therefore u−1
k doesn’t commute with ui3 and uis , but commutes with
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every other reflection uil , which implies
[
u−1
k ,ui3 · · ·uis · · ·ui3

]
= e. Using these results we

will show that
[
t̃k, t̃k+1 · · · t̃is · · · t̃

−1
k+1

]
= e. To this end

t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃k = u−1

k+1ukuk+1 · · ·uis · · ·u−1
k+1u

−1
k uk+1uk+1

= ukuk+1u
−1
k ui3 · · ·uis · · ·ui3u−1

k+1u
−1
k uk+1uk+1

= ukuk+1ui3 · · ·uis · · ·ui3u−1
k u−1

k+1u
−1
k uk+1uk+1

Now, it can be easily seen that ukuk+1uk = uk+1ukuk+1 by checking that ukuk+1uk =

uk+1ukuk+1, and using this result we may replace u−1
k u−1

k+1u
−1
k by u−1

k+1u
−1
k u−1

k+1, therefore

ukuk+1ui3 · · ·uis · · ·ui3u−1
k u−1

k+1u
−1
k uk+1uk+1

= ukuk+1 · · ·uis · · ·ui3u−1
k+1u

−1
k u−1

k+1uk+1uk+1

= ukuk+1 · · ·uis · · ·u−1
k+1u

−1
k uk+1

= ukuk+1 · · ·uis · · ·u−1
k+1u

−1
k uk+1

= uk+1u
−1
k+1ukuk+1 · · ·uis · · ·u−1

k+1u
−1
k uk+1

= t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1

Thus we have shown:

t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1 = t̃k+1 · · · t̃is , · · · t̃

−1
k+1t̃k

Case II: We assume that tir = tk and tir+1 = tk+1, where 1 < r < n. We intend to show that

[
t̃i1 , t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃

−1
k+1t̃

−1
k · · · t̃i2

]
= e

To this end

t̃i1 t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃

−1
k · · · t̃i2

= ui1ui2 · · ·uk+1u
−1
k+1ukuk+1 · · ·uis · · ·u−1

k+1u
−1
k uk+1u

−1
k+1 · · ·u

−1
i2
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Again, invoking the relation ukuk+1uk = uk+1ukuk+1 in a slightly different form we obtain

ui1ui2 · · ·uk+1u
−1
k+1ukuk+1 · · ·uis · · ·u−1

k+1u
−1
k uk+1u

−1
k+1 · · ·u

−1
i2

= ui1ui2 · · ·uir−1ukuk+1uir+2 · · ·uis · · ·u−1
ir+2

u−1
k+1u

−1
k u−1

ir−1
· · ·u−1

i2

= ui1ui2 · · ·uir−1ukuir+2 · · ·uis · · ·u−1
ir+2

u−1
k u−1

ir−1
· · ·u−1

i2

Here we used the fact that uk+1 commutes with uir+2 , uir+3 , . . . , uis , this is because uk+1 = tk

and uir+2 = tir+2 , uir+3 = tir+3 , . . . , uis = tis . Now we also observe that uk = tktk+1tk does

not commute with uir−1 = tir−1 and uir+2 = tir+2 but commutes with uil for l 6= r1, r + 2.

Therefore, invoking the relation
[
ui1 ,ui2 · · ·uir−1ukuir+2 · · ·uis · · ·u−1

ir+2
u−1
k u−1

ir−1
· · ·u−1

i2

]
=

e we get

ui1ui2 · · ·uir−1ukuir+2 · · ·uis · · ·u−1
ir+2

u−1
k u−1

ir−1
· · ·u−1

i2

= ui2 · · ·uir−1ukuir+2 · · ·uis · · ·u−1
ir+2

u−1
k u−1

ir−1
· · ·u−1

i2
ui1

= t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃

−1
k · · · t̃i2 t̃i1

Therefore we have shown that

t̃i1 t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃

−1
k · · · t̃i2

= t̃i2 · · · t̃k t̃k+1 · · · t̃is · · · t̃
−1
k+1t̃

−1
k · · · t̃i2 t̃i1

Case III: Here we assume that tis−1 = tk and tis = tk+1 and we intend to show that[
t̃i1 , t̃i2 · · · t̃k t̃k+1t̃

−1
k · · · t̃

−1
i2

]
= e.

To this end

t̃i1 t̃i2 · · · t̃k t̃k+1t̃
−1
k · · · t̃

−1
i2 = ui1ui2 · · ·uk+1u

−1
k+1ukuk+1u

−1
k+1 · · ·u

−1
i2

= ui1ui2 · · ·uk−1uku
−1
k−1 · · ·u

−1
i2
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We observe that uk = tktk+1t
−1
k doesn’t commute with ui1 = ti1 and uk−1 = tk−1, thus we

can invoke the relation
[
ui1 ,ui2 · · ·uk−1uku

−1
k−1 · · ·u

−1
i2

]
= e to obtain

ui1ui2 · · ·uk−1uku
−1
k−1 · · ·u

−1
i2

= ui2 · · ·uk−1uku
−1
k−1 · · ·u

−1
i2

ui1

= ui2 · · ·uk−1(uk+1u
−1
k+1)uk(uk+1u

−1
k+1)u−1

k−1 · · ·u
−1
i2

ui1

= t̃i2 · · · t̃k t̃k+1t̃
−1
k · · · t̃

−1
i2 t̃i1

Thus, we have shown t̃i1 t̃i2 · · · t̃k t̃k+1t̃
−1
k · · · t̃

−1
i2 = t̃i2 · · · t̃k t̃k+1t̃

−1
k · · · t̃

−1
i2 t̃i1

Case IV: Here we assume that ti1 = tk+1 and til 6= tk for 1 ≤ l ≤ s. Thus we intend to prove

that
[
t̃k+1, t̃i2 · · · t̃is · · · t̃

−1
i2

]
= e. Now,

t̃k+1t̃i2 · · · t̃is · · · t̃
−1
i2 = u−1

k+1ukuk+1ui2 · · ·uis · · ·u−1
i2

As uk+1 = tk, therefore uk+1 commutes with every uil , except uk, therefore

u−1
k+1ukuk+1ui2 · · ·uis · · ·u−1

i2
= u−1

k+1ukui2 · · ·uis · · ·u
−1
i2

uk+1

Now, we observe that uk = tktk+1t
−1
k does not commute with ui2 = ti2 and uis = tis , but

commutes with the rest of the uil thus allowing us to invoke the relation

[
uk,ui2 · · ·uis · · ·u−1

i2

]
= e.

Using this and the fact that u−1
k+1 commutes with every uil except uk we get

u−1
k+1ukui2 · · ·uis · · ·u

−1
i2

uk+1 = u−1
k+1ui2 · · ·uis · · ·u

−1
i2

ukuk+1

= ui2 · · ·uis · · ·u−1
i2

u−1
k+1ukuk+1

= t̃i2 · · · t̃is · · · t̃
−1
i2 t̃k+1

Thus we have shown that t̃k+1t̃i2 · · · t̃is · · · t̃
−1
i2 = t̃i2 · · · t̃is · · · t̃

−1
i2 t̃k+1.
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Case V: Here we assume that tir = tk+1 where 1 < r < s and til 6= tk for 1 ≤ l ≤ s. We

intend to show that

[
t̃i1 , t̃i2 · · · t̃k+1 · · · t̃is · · · t̃k+1 · · · t̃

−1
i2

]
= e

t̃i1 t̃i2 · · · t̃k+1 · · · t̃is · · · t̃k+1 · · · t̃
−1
i2 = ui1ui2 · · ·u−1

k+1ukuk+1 · · ·uis · · ·u−1
k+1u

−1
k uk+1 · · ·u−1

i2

= u−1
k+1ui1ui2 · · ·uk · · ·uis · · ·u

−1
k · · ·u

−1
i2

uk+1

As uk+1 commutes with uil for all l. Also we use the fact that uk = tktk+1t
−1
k doesn’t

commute with uir+1 and uir−1 but commutes with every other uil ’s, to invoke the relation

ui1ui2 · · ·uk · · ·uis · · ·u−1
k · · ·u

−1
i2

= ui2 · · ·uk · · ·uis · · ·u−1
k · · ·u

−1
i2

ui1

to obtain

u−1
k+1ui1ui2 · · ·uk · · ·uis · · ·u

−1
k · · ·ui2uk+1

=u−1
k+1ui2 · · ·uk · · ·uis · · ·u

−1
k · · ·u

−1
i2

ui1uk+1

=ui2 · · ·u−1
k+1ukuk+1 · · ·uis · · ·u−1

k+1u
−1
k uk+1 · · ·u−1

i2
ui1

=t̃i2 · · · t̃k+1 · · · t̃is · · · t̃k+1 · · · t̃
−1
i2 t̃i1

Therefore the relation holds.

Case VI: Assume tis = tk and til 6= tk for 1 ≤ l ≤ s, therefore we intend to prove that

[
t̃i1 , t̃i2 · · · t̃k+1 · · · t̃

−1
i2

]
= e

t̃i1 t̃i2 · · · t̃k+1 · · · t̃
−1
i2 = ui1ui2 · · ·u−1

k+1ukuk+1 · · ·u−1
i2

= u−1
k+1ui1ui2 · · ·uk · · ·u

−1
i2

uk+1
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as uk+1 commutes with all the uil ’s except uk. Similar to the previous cases we can invoke

the relation

ui1ui2 · · ·uk · · ·u−1
i2

= ui2 · · ·uk · · ·u−1
i2

ui1

to obtain

u−1
k+1ui1ui2 · · ·uk · · ·u

−1
i2

uk+1 = u−1
k+1ui2 · · ·uk · · ·u

−1
i2

ui1uk+1

= ui2 · · ·u−1
k+1ukuk+1 · · ·u−1

i2
ui1

= t̃i2 · · · t̃k+1 · · · t̃
−1
i2 t̃i1

Thus the relation holds.
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CHAPTER 7

BESSIS’ PRESENTATION AND ITS CONNECTION WITH OUR BRAID

GROUP PRESENTATION

Recall that in a Coxeter system (W,S), relations of the form sisjsi · · · = sjsisj · · · , where si and

sj are in S, are called braid relations. Invoking a braid relation to rewrite a word in S is called a

braid move.

Theorem 7.0.1 (Matsumoto’s lemma). Let (W,S) be a Coxeter system. Let si1 · · · sik and sj1 · · · sjk

be any two reduced S-decompositions of an element w ∈W , then si1 · · · sik can be transformed into

sj1 · · · sjk by successive braid move.

We observe here that this theorem only takes the S-expressions into consideration.

Definition 7.0.2. Let (W,T, c) be a dual Coxeter system. Relations of the form st = tss, where

s, t ∈ T and st ≤T c are called dual-braid relations. Invoking a dual-braid relations to rewrite a

word in T is called dual-braid move.

Theorem 7.0.3 (Dual to Matsumoto’s Lemma (Bessis, 2003)). Let (W,T, c) be a dual Coxeter

system. Let w ∈ W be such that w ≤T c. Let ti1 · · · tin and tj1 · · · tjn be two T -decompositions of

w, then ti1 · · · tin can be transformed into tj1 · · · tjn by successive dual-braid moves.

Proof. By Lemma 4.2.3, since w ≤T c, therefore w is a Coxeter element in some parabolic subgroup

of (W,T ). Thus using Theorem 4.3.4 we have our result.

Matsumoto’s lemma states that all reduced S-decompositions of any word w are connected

under braid relations, whereas Bessis’ result states that for a given Coxeter element c the reduced

T -decompositions of any word w ≤T c are connected under dual-braid relations.

Building on work of Birman-Ko-Lee (Birman et al., 1998), Bessis (Bessis, 2003) gave a second,

different presentation for Artin groups associated with finite Coxeter groups, by replacing the set

of simple reflections S by the set of all the reflections T , leading to a ‘dual’ presentation for the

Artin group B(W ) called the dual braid presentation.
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Theorem 7.0.4 (Dual-Braid presentation (Bessis, 2003)). Let W be a Coxeter group and let c be

a Coxeter element in W , then the corresponding Artin group B(W ) has a presentation

B(W ) ∼= T
∣∣titj = tkti, for ti, tj , tk ∈ T with titj = tkti and titj ≤T c〉group (7.1)

where T is a formal copy of the set of all the reflections T and titj = tkti are dual-braid relations.

Theorem 7.0.5. Let c be a Coxeter element in W and let t1 · · · tn be a reduced T -decomposition

of c. If R(t1, . . . , tn) is a relation in Rel(t1, . . . , tn) in Equation (5.1), then R(t1, . . . , tn) is a

dual-braid relation.

Proof. The relations in Rel(t1, . . . , tn) are of the following three types

1. titj = tjti,

2. titjti = tjtitj and

3. [ti1 , ti2 · · · tis · · · t−1
i2

].

For a relation titj = tjti in Rel(t1, . . . , tn), titj = tjti holds in the Coxeter group W . Since

ti and tj are reflections appearing in the reduced T -decomposition t1 · · · tn and they commute,

therefore both titj and tjti ≤T c.

For a relation titjti = tjtitj in Rel(t1, . . . , tn), titjti = tjtitj holds in the Coxeter group W ,

which can also be written as either titj = t
tj
i ti or tjti = ttij tj . Since ti and tj are reflections appearing

in the reduced T -decomposition t1 · · · tn, therefore either titj or tjti ≤T c, making titjti = tjtitj a

dual braid relation.

For a relation [ti1 , ti2 · · · tis−1tist
−1
is−1
· · · t−1

i2
] = e in Rel(t1, . . . , tn), the following is true in the

Coxeter group W

ti1 ti2 · · · tis−1 tis ti1 and tij ‖ tik for k 6= j − 1, j + 1

where the reflections ti1 , ti2 , . . . , tis−1 , tis belong to the set {t1, · · · , tn}. Using the s equations arising

from Lemma 3.3.1 we can rewrite the reduced T -decomposition t1 · · · tn to show that ti1t ≤T c.
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The next result readily follows.

Theorem 7.0.6. Let c be a Coxeter element in W and let m = |RedT (c)|. Let RedT (c) =

{c1, c2, . . . , cm} where ci is a reduced T -decomposition of c. Let Tci denote the set consisting of

the reflections present in the reduced T -word for ci and T ci denote the corresponding set in the

Artin group. We write down the m presentations of B using Equation (5.1) as follows

〈
T c1

∣∣Rel(Tc1)
〉

〈
T c2

∣∣Rel(Tc2)
〉

...〈
T cm

∣∣Rel(Tcn)
〉

Then Bessis’ dual-braid presentation for B is〈
⋃m
i=1 T ci

∣∣∣∣∣
titj = tjti, if titj = tjti ∈ Rel(Tcl) for some 1 ∈ [m],

titjti = tjtitj , if titjti = tjtitj ∈ Rel(Tcl) for some 1 ∈ [m],

[ti1 , ti2 · · · tis · · · t−1
i2

] = e, if [ti1 , ti2 · · · tis · · · t−1
i2

] = e ∈ Rel(Tcl) for some 1 ∈ [m].

〉
(7.2)

63



CHAPTER 8

CLUSTER ALGEBRA AND QUIVER MUTATION

8.1 Quivers

Definition 8.1.1. A graph (denoted by the pair Q = (V,E)) is called a quiver if it is a finite

directed graph with integer weights assigned to its edges, where V and E are the sets of vertices

and edges respectively. Additionally if a quiver does not allow any 1-cycle (loop) or 2-cycle, then

we call it cluster quivers.

Since we will be looking at quivers only from a cluster algebra perspective therefore in this text

we will avoid 1-cycles and 2-cycles and we will refer to them as just “quivers”. Sometimes we will

denote the set of vertices and the set of edges for a quiver Q by V (Q) and E(Q) respectively, when

the quiver in question is ambiguous. We will also assume that the quivers in this text contains

only finitely many vertices i.e. |V (Q)| <∞. A directed edge from a vertex a to a vertex b with an

assigned weight ‘m’ in a quiver will be denoted by a
m−→ b (or equivalently as a

−m←−− b).

Definition 8.1.2 (Quiver Mutation). Let Q be a quiver and let i, j and k be vertices in Q. A

quiver mutation on Q at k, transforms Q into a new quiver Q′ := µquiv
k (Q) obtained by

1. reversing the direction of all the edges incident to the vertex k, while keeping the assigned

weights to the edges unchanged, in the quiver Q.

2. replacing every 3-cycle of the form

i
p−→ k

q−→ j
r−→ i

in Q (where p and q are non-zero integers, either both positive, or both negative and r is any

integer) with a 3-cycle of the form

i
p←− k q←− j pq−r←−−− i

3. keeping all the other edges and their assigned weights unchanged.
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The second bullet in Definition 8.1.2 is illustrated in Figure 8.1.

Remark 8.1.3. In Definition 8.1.2 the second bullet is consistent with the first, since replacing

i
p−→ k

q−→ j
r−→ i with i

p−→ k
q−→ j

r−→ i takes care of the first bullet by reversing the arrows incident

to k. Notice that the cycle i
p←− k

q←− j
pq−r←−−− i can also be written as i

−p−−→ k
−q−−→ j

r−pq−−−→ i and

reversing the direction of the edge incident to the vertex k is equivalent to replacing the assigned

weight to the edge incident to k by its negative. Also notice that, the notation Q
µquivk−−−→ µquiv

k (Q)

as used in Figure 8.1 denotes that the quiver µquiv
k (Q) is obtained as a result of a quiver mutation

at k on Q. However, a more befitting notation would be Q
µquivk←−−→ µquiv

k (Q) taking Proposition 8.1.4

into account.

k

i j

p q

r

k

i j

p q

pq − r

//
µquivk

Figure 8.1. Quiver mutation on a 3-cycle.

Proposition 8.1.4. For a quiver Q, µquiv
k (µquiv

k (Q)) = Q.

Proof. We observe that pq− (pq− r) = r, and reversing the direction of an edge twice brings us to

the initial orientation of the edge. Thus the claim follows.

Definition 8.1.5. A quiver Q is said to be mutation equivalent to another quiver Q′ if one can be

obtained from the other by a finite number of quiver mutations. The set of all quivers mutation

equivalent to the quiver Q is called the mutation class of Q.

Definition 8.1.6. Let Q be a quiver, and |V (Q)| = n. The exchange matrix of Q is the n × n

skew symmetric matrix B(Q) := (bij)

bij =



r if Q contains the edge i
r−→ j

−r if Q contains the edge i
r←− j

0 otherwise
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for vertices i and j in Q.

Remark 8.1.7. There is a much general notion allowing exchange matrices to be skew symmetriz-

able. However, since we are only dealing with a simply-laced case, we don’t need that level of

generality.

Proposition 8.1.8. Let Q be a quiver and let B(Q) = (bij) be the corresponding exchange matrix.

If B′ = B(µquiv
k (Q)) = (b′ij) is the exchange matrix corresponding to µquiv

k (Q), then

b′ij =

 −bij i = k or j = k

bij +
|bik|bkj+bik|bkj |

2 otherwise

For a quiver Q we will denote the associated exchange matrix by B(Q) and for a skew symmetric

matrix B we will denote the associated quiver by Γ(B). With some abuse of notation we will denote

B(µquiv
k (Q)) by µquiv

k (B(Q)) or simply µquiv
k (B) when it is understood that B is an exchange matrix.

Definition 8.1.9. A quiver Q is of finite mutation type if there are finitely many quivers in the

mutation class of Q, otherwise it is called mutation infinite.

Lemma 8.1.10. Let Q be a connected quiver with more than 2 vertices. If Q contains an edge

with assigned weight of 3 or more then Q is mutation infinite.

Proof. Let 1
w12−−→ 2 be a sub-quiver of Q such that w12 ≥ 3. Since Q is connected and contains

more than 2 vertices therefore 1
w12−−→ 2 ⊂ Q3 ⊂ Q such that Q3 = 1

w12−−→ 2
w23−−→ 3

w31−−→ 1, where

we can assume that w31 ≤ w23 ≤ w12 and w23 > 0 (if the relations between w12, w23, and w31 are

different then they can be altered to fit our description by a series of quiver mutations on Q). Now,

µquiv
2 (Q3) = 1

w12←−− 2
w23←−− 3

w′31←−− 1

Since w′31 = w12w23−w31 > 2w23−w31 ≥ w31 therefore in this way we can increase the assigned

weight to the edge {1, 3} without affecting the assigned weights to {1, 2} and {2, 3}. Thus we can

increase the weights endlessly creating infinitely many quivers in the mutation class of Q.
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8.2 Cluster Algebra

Definition 8.2.1. For a quiver Q̃ with n vertices a seed is a pair ((u1, . . . , un), Q̃) where (u1, . . . , un)

is an n-tuple of algebraically independent, rational functions in n indeterminates—x1, . . . , xn (where

the ui’s are in bijection with the n vertices of the quiver Q̃). The n tuple, (u1, . . . , un) is called a

cluster (variable) of rank n. Define seed mutation (µk) on a seed
(

(u1, . . . , un), Q̃
)

by

µk

(
(u1, . . . , un), Q̃

)
= ((u′1, . . . , u

′
n), µquiv

k (Q̃))

where

u′i =


ui if i 6= k

1
uk

∏
i∈kT

ui +
∏
j∈kA

uj

 if i = k

where if l ∈ kT then the vertex associated to ul is incident to the vertex associated to uk with a

directed edge from the vertex associated to ul to the vertex associated to uk, and if l ∈ kA then the

vertex associated to ul incident to the vertex associated to uk with a directed edge from the vertex

associated to uk to the vertex associated to ul in Q̃.

Definition 8.2.2. A cluster algebra A(Q) is the algebra generated by all the cluster variables that

can be constructed from an initial seed ((u1, . . . , un),Q) (generally ((x1, . . . , xn),Q)) by performing

repeated seed mutations on the initial seed in all possible ways.

Definition 8.2.3. An exchange graph associated to a cluster algebra A(Q) is a graph with seeds

as its vertices where two seeds are adjacent if one can be obtained from another by seed mutation.

Definition 8.2.4. Let Q be a quiver. A cluster algebra A(Q) is of finite type if there are only

finitely many seeds. A quiver Q is of finite type if the associated cluster algebra A(Q) is of finite

type.

Lemma 8.2.5. Let Q be a quiver and let Q′ ⊂ Q be a sub-quiver of Q such that Q′ is not of finite

type then Q is not of finite type.
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Proof. If Q′ is not of finite type then the associated cluster algebra A(Q′) contains infinitely many

cluster variables. Since the vertices in Q′ are also vertices in Q therefore it is easy to see that seed

mutations at these vertices will construct infinitely many cluster variables of A(Q).

Theorem 8.2.6 ((Fomin and Zelevinsky, 2003)). For a quiver Q, mutation equivalent to an orien-

tation of a simply-laced Dynkin diagram, the cluster algebra A(Q) is of finite type. Conversely if a

cluster algebra A(Q) is of finite type then Q is mutation equivalent to some quiver whose underlying

unoriented graph is a simply-laced type Dynkin diagram.

Theorem 8.2.7 ((Fomin and Zelevinsky, 2003)). For a cluster algebra A(Q) of finite type there

is a bijection between the initial cluster variables of A(Q) and the negative simple roots of the

corresponding root system and a bijection between the non-initial cluster variables of A(Q) and the

positive roots of the corresponding root system.

Lemma 8.2.8. If a quiver Q is of finite type then Q is of finite mutation type.

Proof. If there are infinitely many quivers in the mutation class of Q, then there is an edge in Q

whose assigned weight is at least 3. Seed mutation at the sink of that edge constructs infinitely

many cluster variables.

Example 8.2.9. In Figure 8.2 we begin with the initial seed ((x1, x2), • • ) and perform

repeated seed mutations in all possible ways to obtain all the 5 seeds and 5 cluster variables. Since

the underlying quiver is of A2 type, therefore this is a cluster algebra of type A2.

Lemma 8.2.10. If Q is a connected quiver of finite type and |V (Q)| > 2 then every 3-cycle in Q,

is oriented in a cyclic way.

Proof. First we recall that any quiver (in this case, a 3-cycle) with an edge weight greater than 2 is

mutation infinite by Lemma 8.1.10, consequently it is also of non-finite type by Lemma 8.2.8, thus

we only need to check for those 3-cycles whose edge weights are either 1 or 2. Let Q3 ⊂ Q be a

connected sub-quiver, with |V (Q3)| = 3 such that Q3 is a 3-cycle graph. Let the weights assigned

to the edges of Q3 be either 1 or 2, with the restriction that not all of them are 1. Also we assume

that the edges of Q3 are not oriented in a cyclic way. We will show that Q3 is mutation infinite.
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1+x1+x2
x1x2

1+x2
x1

1+x1+x2
x1x2

1+x1
x2

x2
1+x2
x1

x1
1+x1
x2

x1 x2

µ2

µ1 µ1

µ2
µ2

Figure 8.2. Exchange graph of A(A2).

1. vi1 −−→ vi2
2←−− vi3 −−→ vi1

µ
quiv
vi1←−−→ vi1 ←−− vi2

3←−− vi3 ←−− vi1

2. vi1 −−→ vi2 ←−− vi3
2−−→ vi1

µ
quiv
vi1←−−→ vi1 ←−− vi2

3←−− vi3
2←−− vi1

3. vi1
2−−→ vi2 ←−− vi3 −−→ vi1

µ
quiv
vi1←−−→ vi1

2←−− vi2
3←−− vi3 ←−− vi1

4. vi1
2−−→ vi2

2←−− vi3 −−→ vi1
µ

quiv
vi1←−−→ vi1

2←−− vi2
4←−− vi3 ←−− vi1

5. vi1 −−→ vi2
2←−− vi3

2−−→ vi1
µ

quiv
vi1←−−→ vi1 ←−− vi2

4←−− vi3
3←−− vi1

6. vi1
2−−→ vi2 ←−− vi3

2−−→ vi1
µ

quiv
vi1←−−→ vi1

2←−− vi2
5←−− vi3

2←−− vi1

7. vi1
2−−→ vi2

2←−− vi3
2−−→ vi1

µ
quiv
vi1←−−→ vi1

2←−− vi2
6←−− vi3

2←−− vi1
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Since each of these quivers is mutation equivalent to a quiver that has an edge with an assigned

weight of 3 or more, therefore they are all mutation infinite. Thus by Lemma 8.2.8, Q3 6⊂ Q.

Now we will show that every 3-cycle in Q, whose edge weights are 1, are oriented in a cyclic

way. To see this consider a quiver Q̃3 which is a 3-cycle with edge weights equal to 1 and whose

edges are not oriented in a cyclic way. This quiver is of the form 1 −−→ 2 ←−− 3 −−→ 1 (up to

relabeling of the vertices) and is not of finite type. Since this mutation class doesn’t contain any

quiver whose underlying unoriented graph is a simply-laced type Dynkin diagram, therefore Q̃3 is

not a quiver of finite type by Theorem 8.2.6. Consequently any quiver Q such that Q̃3 ⊂ Q is not

of finite type.

Lemma 8.2.11. If Q is a quiver, mutation-equivalent to an orientation of a simply-laced Dynkin

diagram then all its edges have an assigned weight of 1.

Proof. Consider the sequence of quivers {Qi}i=1...n such that Qi+1 = µquiv
ki

(Qi), where ki is any

node in Qi and Q1 = Q. It suffices to show that none of the elements of this sequence contain

edges with labels greater than one. This can be proved through induction. The base case is true

since all simply-laced Dynkin diagram have edges with weights never more than 1. We will show

that Qn which is the same as µk(Qn−1) does not have edges with labels greater than one.

Let Qn = µk(Qn−1). From the definition of quiver mutation we know that the mutation on

the quiver Qn−1 at k affects only those edges which are incident to the node k and edges between

nodes i and j whenever there is a path involving two other nodes i to j of the form i→ k → j (up

to relabeling of nodes). So if an edge with a label greater than 1 shows up in Qn due to mutation

on Qn−1 it has to be an edge that is either incident to the node k or in between the nodes i and j.

If Qn has an edge with the label p ≥ 1 of the form i
p−→ k, (or i

p←− k) then Qn−1 has an oriented

edge of the form i
p←− k (or i

p−→ k). By induction hypothesis p = 1.

Now, let there be an oriented path of the form i→ k → j in Qn with an edge oriented from j

to i, with a label p ≥ 0, see Figure 8.3. As we have already shown, the edges i→ k and k → j can

have a label of at most one since these edges are incident to the node k. Note that the edge between

the nodes i and j must be oriented from j to i i.e. i
p←− j (see Figure 8.3) such that all the edges in
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k

i j
p

Figure 8.3. A 3-cycle in the quiver Qn.

the 3-cycle are oriented in a cyclic way, as required by Lemma 8.2.10. Now, µk(Qn) = Qn−1. Thus

mutating Qn at k we obtain Qn−1 as shown in Figure 8.4.

k

i j
p

k

i j
p− 1

//

Figure 8.4. A quiver mutation on the sub-quiver given in Figure 8.3 at k.

By our induction hypothesis and Lemma 8.2.10 either p − 1 = 0 or p − 1 = −1 =⇒ p = 1 or

p = 0, which completes the proof.
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CHAPTER 9

ROOT ORDER, REFLECTION ORDER AND COXETER ORDER

For a given word x1x2 · · · xn a subword is an expression xi1xi2 · · · xim where the sequence {i1, i2, . . . , im}

is a sub-sequence of the sequence {1, 2, . . . , n}. Recall that in a Coxeter system (W,S) the element

c = si1 · · · sin where sij ∈ S, sij 6= si` for j 6= ` and |S| = lS(c), is called a Coxeter element. Fix a

reduced S-expression c = s1 · · · sn for a Coxeter element c in W . Let c∞ be the infinite word

c∞ := s1 · · · sn|s1 · · · sn|s1 · · · sn| · · ·

Definition 9.0.1. For an element w ∈W the c−sorting word for w for a given reduced S-expression

c for a Coxeter element c ∈ W is the lexicographically first subword of c∞ that is a reduced

expression for w.

Notice that the c−sorting word for an element w depends on the choice of the particular

reduced S-word c for c. However, for two reduced S-words, c1 and c2 for c, the c1−sorting word is

commutation equivalent to the c2−sorting word for w. This is because all reduced S-words for c

are commutation equivalent. We will denote the c−sorting word for w by w(c). When the actual

ordering of the letters in the word w(c) is not important we will use the notation w(c) to denote any

reduced S-word that is commutation equivalent to w(c). For s ∈ S if s ≤S c, then the c−sorting

word for an element w ∈ W begins with s if and only if s ≤S w. We can keep repeating this

argument iteratively as follows, to compute the entire c−sorting word for w.

w(c) =


sw′(̄scs) if s ≤S w, where w = sw′ and it is an S-factorization

w(̄scs) if s 6≤S w

The following lemma follows immediately from this discussion

Lemma 9.0.2. Let u = s1 · · · sl ∈ B+ and u ≤S w ∈ B+. If s1 · · · sl is initial in the word c∞, for

a Coxeter element c in W , then s1 · · · sl is also initial in the word w(c).
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Example 9.0.3. The c−sorting word for the permutation 4231 in S3 is the word s1s2s3|s2|s1 for

c = s1s2s3, where s1 = (12), s2 = (23) and s3 = (13) are transpositions in S3. Observe that

subjecting the permutation 4231 to its c−sorting word—

4231
s1−−→ 4132

s2−−→ 4123
s3−−→ 3124

s2−−→ 2134
s1−−→ 1234

‘sorts’ the permutation in the numerical order (think bubble sorting), hence the name ‘c−sorting’.

9.1 Geometric Interpretation of the Length Function lS

Recall, from Chapter 3 every root system R in a standard Euclidean space E has a base ∆—∆ is

a basis for E and every vector v ∈ R can be expressed as a linear combination of roots in ∆ with

either all positive (and 0) or all negative (and 0) coefficients. Recall that the roots in R can be

partitioned into positive roots R+ and negative roots R− i.e. R = R+ tR− such that R− = −R+.

Also recall that the group generated by the reflections tv : R 7→ R defined by tv(u) = u − 2 〈u,v〉〈v,v〉v,

where u, v ∈ R is called a Weyl group W (R). We will call the pair (W (R), S(∆)) (or simply (W,S)),

where S(∆) = {tvi |vi ∈ ∆} a Weyl system. Since a Weyl group is also a Coxeter system, therefore

we will use Coxeter terminology while talking about Weyl groups.

Consider the set Rw := R+ ∩ w−1(R−). If A = w−1(R−) then w(A) = R−, i.e. w−1(R−) are

the roots that become negative roots when acted on by w ∈W , consequently R+ ∩w−1(R−) is the

set of positive roots that when acted on by w become negative roots. Let us find out the different

characteristics of these sets for different elements in W , starting with the simple reflections

Lemma 9.1.1. For a Weyl system (W (R), S(R)) if sv ∈ S(R) where v be the root in ∆ corre-

sponding to sv then Rsv = {v}.

Proof. Since sv(v) = −v therefore v ∈ Rsv . If possible let u ∈ Rsv and u 6= v. u ∈ R+ therefore u

can be written as a linear combination of roots in ∆ with positive coefficients

u =
∑
δi∈∆

ciδi, where ci ≥ 0
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Since v ∈ ∆ so we can write

u = cv +
∑

δi∈∆\v

ciδi, where c, ci ≥ 0

Since sv(u) = u− 2 〈u,v〉〈v,v〉v =⇒ u = sv(u) + 2 〈u,v〉〈v,v〉v

u = cv +
∑

δi∈∆\v

ciδi

=⇒ sv(u) + 2
〈u, v〉
〈v, v〉

v = cv +
∑

δi∈∆\v

ciδi

=⇒ sv(u) = −2
〈u, v〉
〈v, v〉

v + cv +
∑

δi∈∆\v

ciδi

=⇒ sv(u) =

(
−2
〈u, v〉
〈v, v〉

+ c

)
v +

∑
δi∈∆\v

ciδi

Thus we have expressed sv(u) as a linear combination of roots in ∆. Since sv(u) is a root therefore

either all the coefficients are positive (or zero) or all coefficients are negative (or zero). Since all

the ci’s are positive (or zero) therefore all the coefficients are positive (or zero), consequently sv(u)

is a positive root.

Thus Rsv = {v} and |Rsv | = 1.

Since the number of roots in Rsv is just one and there is a bijection between ∆ and S, therefore

the next result follows.

Corollary 9.1.2. The root v ∈ ∆ corresponds to the simple reflection s ∈ S(∆), of the Weyl group

W (∆), if and only if s(v) = −v, where S(∆) is the set of generators in W (∆) that corresponds to

the roots in ∆.

Theorem 9.1.3. Let (W,S) be a Weyl system, then lS(wtv) > lS(w) ⇐⇒ w(v) ∈ R+ and

lS(wtv) < lS(w) ⇐⇒ w(v) ∈ R−, where tv ∈ T (T is closure of S under conjugation) and v ∈ R+

is the root corresponding to the reflection tv.

Proof. First we will use induction on lS(w) to prove that lS(wtv) > lS(w) =⇒ w(v) ∈ R+.

lS(w) = 0 is a trivial case. Let us assume that the statement is true for k < lS(w). If lS(w) > 0
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then there exists s ∈ S such that lS(sw) < lS(w) (observe that if w = s1 · · · sn is a reduced S-

decomposition then setting sn = s implies lS(sw) < lS(w)), in particular lS(sw)+1 = lS(w). Which

implies

lS(sw) < lS(w) < lS(wtv)

=⇒ lS(sw) < lS(w)− 1 < lS(wtv)− 1 ≤ lS(swtv)

where lS(w) − 1 < lS(wtv) − 1 follows from the inequality lS(w) < lS(wtv) (the hypothesis of the

proof) and for the inequality lS(wtv) − 1 ≤ lS(swtv) we observe that if s is S-initial in wtv then

lS(wtv) − 1 = lS(swtv) and if s is not S-initial in wtv then lS(wtv) + 1 = lS(swtv), combining

these we get our desired inequality. Using our induction hypothesis we get lS(sw) < lS(swtv) =⇒

sw(v) ∈ R+, (since lS(sw) = k). If possible let w(v) ∈ R−, then w(v) = α where α is the root in ∆

that corresponds to the simple reflection s ∈ S. w(v) = α =⇒ wtv = sw (because wtvw
−1(w(v)) =

wtv(v) = w(−v) = −w(v) and s(α) = −α, therefore wtvw
−1 = s), which contradicts the inequality

lS(sw) < lS(wtv), thus w(v) ∈ R+.

Now we will show that lS(wtv) < lS(w) =⇒ w(v) ∈ R−. To this end we observe that if

lS(wtv) < lS(w) then lS((wtv)tv) > lS(wtv) which implies (by the previous part of this proof)

wtv(v) ∈ R+, which in turn implies that w(−v) ∈ R− =⇒ −w(v) ∈ R− =⇒ w(v) ∈ R−. Now if

w(v) ∈ R− =⇒ lS(wtv) > lS(w) then lS(wtv) < lS(w) =⇒ w(v) ∈ R+ which is a contradiction

(since we have just proved lS(wtv) < lS(w) =⇒ w(v) ∈ R−) therefore w(v) ∈ R− =⇒ lS(wtv) <

lS(w). This completes the proof.

Lemma 9.1.4. Let (W,S) be a Weyl system, for w ∈W , lS(w) = |Rw|.

Proof. We will use induction to prove this. If lS(w) = 1 for some w ∈ W then |Rw| = lS(w), as

shown in Lemma 9.1.1. Let us assume that if lS(w) = k for some w ∈W then lS(w) = |Rw|. Now let

w ∈W such that lS(w) = k+ 1, then there exists some sv ∈ S (v is the corresponding positive root

such that sv(v) = −v) such that lS(wsv) = k. By our induction hypothesis |Rwsv | = lS(wsv) = k.

By Theorem 9.1.3 since |Rwsv | < |Rw| therefore v ∈ Rw. But since wsv(v) = w(−v) = −w(v) ∈ R+,
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therefore v 6∈ Rwsv . However, for all the other roots u ∈ R+, u 6= v, u ∈ Rw ⇐⇒ u ∈ Rwsv , this is

because sv permutes the set R+ \ {v} (by Lemma 9.1.1), therefore

sv
(
R+ \ {v}

)
= R+ \ {v}

=⇒ wsv
(
R+ \ {v}

)
= w

(
R+ \ {v}

)
which implies

R− ∩ wsv(R+ \ {v}) = R− ∩ w(R+ \ {v})

but since wsv(v) ∈ R+ therefore R− ∩ wsv(R+ \ {v}) = R− ∩ wsv(R+), thus

R− ∩ wsv(R+) = R− ∩ w(R+ \ {v})

Now v ∈ Rw, therefore R− ∩ w(R+ \ {v}) = {R− ∩ w(R+)} \ {−v}, as a result we have

R− ∩ wsv(R+) = [R− ∩ w(R+)] \ {−v}

=⇒ [R− ∩ wsv(R+)] ∪ {−v} = R− ∩ w(R+)

Observe that |R−∩w(R+)| = |R+∩w−1(R−)| = |Rw| and |R−∩wsv(R+)| = |R+∩(wsv)
−1(R−)| =

|Rwsv |, thus we have

|R− ∩ wsv(R+)|+ |{−v}| = |R− ∩ w(R+)|

=⇒ k + 1 = |R− ∩ w(R+)| = |Rw|

Lemma 9.1.5. If w ∈W , where (W,S) is a Weyl system. Let s1 · · · sk be a reduced S-decomposition

of w, and the reflection si corresponds to the root vi. Then

R+ ∩ w(R−) = {v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}

Proof. First we will show that

R+ ∩ w(R−) ⊆ {v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}
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v ∈ R+ ∩ w(R−) ⇐⇒ v ∈ R+ and w−1(v) ∈ R−. Since w−1 = sk · · · s1 therefore sk · · · s1(v) ∈

R−. Since v ∈ R+ therefore there exists a minimum number j ≤ k such that sj · · · s1(v) ∈ R−

and sj−1 · · · s1(v), sj−2 · · · s1(v), . . . , s2s1(v), s1(v) ∈ R+. Thus sj−1 · · · s1(v) = vj (since sj(ṽ) =

−ṽ ⇐⇒ ṽ = vj by Lemma 9.1.1), as a result s1 · · · sj−1(sj−1 · · · s1(v)) = s1 · · · sj−1(vj) which is

also the same as v, thus v ∈ {v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}.

Note that the set R+ ∩ w(R−) = Rw−1 and by Lemma 9.1.4 we have lS(w−1) = |Rw−1 |. Also

since lS(w−1) = lS(w) thus |Rw−1 | = lS(w). Now, clearly the set

v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}

has exactly lS(w) distinct elements, therefore

|Rw−1 | = |{v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}|

as a result (in view of the inclusion proved earlier)

R+ ∩ w(R−) = {v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}

Definition 9.1.6 (Inversion sets and inversion sequences). Let (W,S) be a Coxeter system, and

let w ∈W (whose reduced S-decomposition w = s1 · · · sk), then the inversion set of w is the set

inv(w) := R+ ∩ w(R−) = {v1, s1(v2), . . . , s1 · · · sk−2(vk−1), s1 · · · sk−1(vk)}

where vi is the root corresponding to the simple reflection si. The sequence

inv(s1 · · · sk) := (v1, s1(v2), . . . , s1 · · · sk−1(vk))

is called an inversion sequence of s1 · · · sk for the element w. This inversion sequence (for a particular

choice of a reduced S-decomposition) specifies a total order on the set inv(w) called the induced

order.
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For a chosen reduced S-decomposition w = s1 · · · s2 define β1 = v1, βi = s1 · · · si−1(vi), where i =

2, . . . , k. Clearly β1, . . . , βk ∈ R+ and βi 6= βj , if i 6= j, the induced ordering (<) on the set

inv(w) = {β1, . . . , βk}, is given by βi < βj ⇐⇒ i < j. Note that this ordering depends on the

choice of the reduced S-decomposition of w.

Corollary 9.1.7. Let w ∈ W where W is a Weyl group, and let w = s1 · · · sk be a reduced S-

decomposition. If the root vi corresponds to the reflection si then

ss1···sj−1(vj) = s1 · · · sj−1sjsj−1 · · · s1

Proof. We know that ss1···sj−1(vj)(s1 · · · sj−1(vj)) = −s1 · · · sj−1(vj) by Lemma 9.1.1, therefore it

suffices to show that s1 · · · sj−1sjsj−1 · · · s1(s1 · · · sj−1(vj)) = −s1 · · · sj−1(vj).

s1 · · · sj−1sjsj−1 · · · s1(s1 · · · sj1(vj)) = s1 · · · sj−1sj(vj)

= s1 · · · sj−1(−vj)

= −s1 · · · sj−1(vj)

Lemma 9.1.8 (Matsumoto’s (left) strong Exchange condition). Let (W,S) be a Coxeter system and

let T be the closure of S under conjugation. If lS(tw) < lS(w) for some t ∈ T and let w = s1 · · · sk

be an S-decomposition (not necessarily reduced), then there exists an index j such that

tw = s1 · · · ŝj · · · sk

where s1 · · · ŝj · · · sk is the S-decomposition of w with the jth entry deleted. Furthermore if the

decomposition s1 · · · sk is reduced then j is unique.

Proof. Here, we will prove this for a Weyl group but it is true in general for finite Coxeter groups.

In fact any group generated by the a set of involutions is a Coxeter if and only if it satisfies the

exchange condition. Let (W,S) be a Weyl system and let w ∈W whose S-decomposition is s1 · · · sk.

We will first show that the set inv(w) = {β1, . . . , βk} is the same as the set

exch(w) := {γ ∈ R+|tγs1 · · · ŝi · · · sk = w, for some 1 ≤ i ≤ k}
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where tγ ∈ T is the reflection corresponding to the root γ ∈ R+. Let βj ∈ inv(w), βj =

s1 · · · sj−1(vj), where vj is the root corresponding to the reflection sj . Then

sβjs1 · · · ŝj · · · sk = ss1···sj−1(vj)s1 · · · ŝj · · · sk

= s1 · · · sj−1sjsj−1 · · · s1s1 · · · ŝj · · · sk

= s1 · · · sk = w

Furthermore since |lS(w)| = |inv(w)| (in a similar way as in Lemma 9.1.4) the set inv(w) = exch(w).

To prove the statement of this lemma all we need to show is that for any tγ ∈ T if lS(tγw) ≤ lS(w)

then γ ∈ inv(w). To this end we observe that if lS(tγw) < lS(w) which implies lS(w−1t−1
γ ) =

lS(w−1tγ) < lS(w−1) and that in turn implies w−1(γ) ∈ R−. Thus γ ∈ R+ ∩ w(R−) =⇒ γ ∈

inv(w).

For the uniqueness part we observe that if w = s1 · · · sk is a reduced S-decomposition with

lS(w) = k and if tw = s1 · · · ŝi · · · sj · · · sk = s1 · · · si · · · ŝj · · · sk then that implies si+1 · · · sj =

si · · · sj−1 =⇒ si+1 · · · sj−1 = si · · · sj . Therefore w = s1 · · · ŝi · · · ŝj · · · sk is another reduced

S-decomposition of w, which contradicts the assumption that lS(w) = k.

We have a similar ‘right’ version of this lemma as follows.

Lemma 9.1.9 (Matsumoto’s (right) strong Exchange condition). Let (W,S) be a Coxeter system

and let T be the closure of S under conjugation. If lS(wt) < lS(w) for some t ∈ T and let

w = s1 · · · sk be an S-decomposition (not necessarily reduced), then there exists an index j such that

wt = s1 · · · ŝj · · · sk

where s1 · · · ŝj · · · sk is the S-decomposition of w with the jth entry deleted. Furthermore if the

decomposition s1 · · · sk is reduced then j is unique.

Proof. If lS(wt) < lS(w) then lS(tw−1) < lS(w−1), therefore by Lemma 9.1.8 there exists an index

i such that tw−1 = sk · · · ŝi · · · s1, which in turn implies that wt = s1 · · · ŝi · · · sk. The uniqueness

part can be proved in a similar way as in Lemma 9.1.8.
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9.2 Root Order

Definition 9.2.1. For a Coxeter system (W,S), the longest element w0 ∈W is defined by any one

of these equivalent definitions.

1. lS(w0) ≥ lS(w) for all w ∈W i.e. w0 has maximal length.

2. lS(w0w) = lS(w0)− lS(w), for all w ∈W

3. lS(w0s) < lS(w0), for all s ∈ S

Proposition 9.2.2. The three definitions of the longest element—1, 2 and 3, are equivalent.

Proof. It is easy to see that 2 =⇒ 1, (since lS(w0w) = lS(w0) − lS(w) =⇒ lS(w0w) + lS(w) =

lS(w0) =⇒ lS(w) ≤ lS(w0)) and 1 =⇒ 3 (since w0s ∈ W for all s ∈ S therefore by 1 lS(w0s) <

lS(w0)). To see that 3 =⇒ 2, it suffices to show that w−1 is S-final in w0, i.e. w0 = w̃w−1, with

w̃ ∈W and lS(w0) = lS(w̃)+lS(w−1), because if w0 = w̃w−1 then lS(w0w) = lS(w̃w−1w) = lS(w̃) =

lS(w0)− lS(w−1) = lS(w0)− lS(w). We will use induction on the length lS(w) of w ∈W (the same

w as in 3). If lS(w) = 1 then let w = s̃ ∈ S. By the hypothesis of the proof lS(w0s̃) < lS(w0),

therefore using a similar argument as in Lemma 9.1.8 we can show that

vs̃ ∈ {γ ∈ R+|s1 · · · ŝi · · · sksγ = w0 for some 1 ≤ i ≤ k}

where γ is the root corresponding to the reflection sγ , vs̃ is the root corresponding to the reflection

s̃ and s1 · · · sk is any reduced S-decomposition of w0. Thus w0 = us̃−1 and lS(w0) = lS(u)+lS(s̃−1).

Now for the induction step we will show that w0 = w̃w−1. There exists v ∈W and s ∈ S such that

w−1 = v−1s and lS(w−1) = lS(v−1) + lS(s). Since lS(v−1) < lS(w) by induction hypothesis there

exists ṽ ∈W such that w0 = ṽv−1. By our assumption lS(w0s) < lS(w0), therefore by Lemma 9.1.9

w0s = ṽv−1s = ṽ′v−1 (because v−1s is reduced )

=⇒ w0ss = w0 = ṽ′v−1s = ṽ′w−1

where ṽ′ represents v with a letter omitted in its decomposition.
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The longest element is an involution—lS(w2
0) = lS(w0) − lS(w0) = 0, and is unique—if w is of

the same length as w0 then lS(w0w) = lS(w0)− lS(w) = 0, which implies that w and w0 are inverse

of each other, and by the involution property we just showed w0 = w. It is also easy to see that

the ‘left’ versions of these statements are also true—lS(ww0) = lS(w0)− lS(w) for all w ∈ W , and

lS(sw0) < lS(w0), for all s ∈ S.

So, in summary, there is a longest element in W , (denoted by w0) i.e. for every w ∈W , w ≤S w0

(≤S being the right weak order)— a similar argument as in the proof of the last proposition could

be used to show that for any w ∈W , w0 can be written as w0 = w−1w̃ such that lS(w0) = lS(w−1)+

lS(w̃) for some w̃ ∈W , consequently it follows that w0 = wŵ such that lS(w0) = lS(w) + lS(ŵ) for

some ŵ ∈W . Similarly for every w ∈W , w0 ≥S w where ≥S is the left weak order i.e. there exists

w′ ∈W such that w0 = w′w and lS(w0) = lS(w′) + lS(w).

As we have already seen for a given element w ∈ W a particular choice of a reduced S-

decomposition of w induces a total order on the set inv(w)—if w = s1 · · · sk is a reduced S-

decomposition of w then the induced order on the set inv(w) is given by

s1 < s1(v2) < · · · < s1s2 · · · si−1(vi).

It is easy to notice that the weak right order ≤S implies the inclusion order on the set inv(w).

Theorem 9.2.3. w ≤S w′ ⇐⇒ inv(w) ⊆ inv(w′)

Proof. If w ≤S w′ then there exists a reduced S-decomposition of w′, say w′ = s1 · · · sk such that

w = s1 · · · si where i < k. It follows that

inv(w) = {v1, s1(v2), . . . , s1 · · · si−1(vi)} ⊆ inv(w′) = {s1, s1(v2), . . . , s1 · · · sk−1(vk)}.

Since for every w ∈W , w ≤S w0, therefore inv(w) ⊆ inv(w0), thus R+ ⊆ inv(w0), on the other

hand, all inversion sets are subsets of R+, we have R+ = inv(w0). Therefore defining an order

on the set inv(w0) defines an order on all the roots in R+, and we already have an order defined

on the inversion sets—the induced order. Now we will define an order on the positive roots and

correspondingly define an order on the set of all reflections.
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Definition 9.2.4 (Root order). The total order induced (on the set of positive roots) by an

inversion sequence (of a particular reduced S-decomposition) for the longest element, is called

the root order. If s1 · · · sk is a particular reduced S-decomposition of w0 then we will denote the

associated root order by inversion sequence inv(s1 · · · sk)

Since inv(w0) = R+, therefore root order is a total order on all the positive roots R+ how-

ever since the longest element has multiple non-commutation equivalent reduced S-decompositions,

therefore there are multiple root orders. An interesting question to ask here would be—is any arbi-

trary ordering of R+, a root order? The answer in general is - no. The next theorem characterizes

roots orders.

Theorem 9.2.5 ((Papi, 1994)). An order (<′) on the set R+ is a root order if and only if for every

v1, v2 ∈ R+ if av1 + bv2 ∈ R+, (where a and b are positive real numbers) then either

v1 <
′ av1 + bv2 <

′ v2

or

v2 <
′ av1 + bv2 <

′ v1

In (Dyer, 1993) M. Dyer defined a reflection order as follows.

Definition 9.2.6. An order <∗ on the set of reflections T is called a reflection order if for any

two reflections t1 and t2 in T the positive roots vt1 , vt1t2t1 , . . . , vt2t1t2 , vt2 are of the form avt1 + bvt2

(where a, b are positive real numbers), and either

t1 <
∗ t1t2t1 <

∗ · · · <∗ t2t1t2 <∗ t2

or

t2 <
∗ t2t1t2 <

∗ · · · <∗ t1t2t1 <∗ t1

where vti is the root corresponding to the reflection ti.
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For any given total order (<) on the set R+ we can determine a total order (<′) on the set of

reflections T in the following way

v1 < v2 ⇐⇒ tv1 <
′ tv2

where v1 and v2 are positive roots and tv1 and tv2 are the corresponding reflections. It has been

shown in (Dyer, 1993) that any total order (<′) on T is a reflection order if and only if the

corresponding order (<) of R+ is a root order. Now finally we make the definition that we have

been building up to!

Definition 9.2.7 (Coxeter order). Let c denote a reduced S-word for a Coxeter element in W

then the total order given by inv(w0(c)) on the positive roots (and correspondingly on the set of

reflections) is the Coxeter order and is denoted by ≤c.

If c1 and c2 are two reduced S-decomposition of a Coxeter element c then c1 ≡ c2. However,

the Coxeter order ≤c1 is different from the Coxeter order ≤c2 . This gives us a preorder on the set

of reflections.

Definition 9.2.8 (Coxeter preorder). Let c be a Coxeter element, and let RedS(c) be the set of

reduced S-decompositions of c, then we define a Coxeter preorder on the set of reflection (denoted

by ≤c) as t1 ≤c t2 if t1 ≤c t2 for some reduced S-decomposition c ∈ RedS(c).

Observe that we can have t1 ≤c t2 and t2 ≤c t1 hold together if for a reduced S-decomposition

c1 of c we have t1 ≤c1 t2 and for another reduced S-decomposition c2 of c we have t1 ≤c2 t2. In the

corresponding proset t1 will be considered equivalent to t2.
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CHAPTER 10

TWO-PART FACTORIZATIONS UNDER FACTORIZATION MUTATION

AND QUIVERS UNDER MUTATION.

A set partition of the set {1, . . . , n} into blocks is called noncrossing if the convex hulls of its blocks

don’t overlap each other when placed on a circle in a cyclic order as vertices of a regular n-gon. In

other words a partition is called noncrossing if for every 0 ≤ u < v < w < x ≤ n if u ∼ w and v ∼ x

then u ∼ v ∼ w ∼ x, where a ∼ b indicates that a and b are in the same block of the partition, and

u, v, w, x are in {1, . . . , n}.

Noncrossing partitions are also defined for finite Coxeter systems (Brady and Watt, 2002; Bessis,

2003). For any Coxeter element c in a Coxeter group W an element w ∈ W is a c−noncrossing

partition if w ≤T c, where T is the set of reflections in W . We will denote the set of c−noncrossing

partition by NC(W, c).

Theorem 10.0.1. The set NC(W, c) is a lattice under the absolute order.

This theorem has been independently and differently proven in (Bessis, 2003; Brady and Watt,

2008; Ingalls and Thomas, 2009; Reading, 2011). The c−noncrossing lattice is denoted by

NCL(W, c) := [e, c]Abs(W )

where e (the identity element) and c are the lattice’s minimal and maximal, respectively.

Theorem 10.0.2 ((Reading, 2008)). Let (W,S) be a Coxeter system and let c be a Coxeter element

in W . Let W〈s〉 denote the parabolic subgroup generated by S\{s} and let c〈s〉 be the Coxeter element

for W〈s〉 obtained by deleting s from the defining word for c then [e, c〈s〉] in W〈s〉 is isomorphic to

[e, c〈s〉] in W . In particular every element below c〈s〉 in W is in W〈s〉 and vice versa.

Lemma 10.0.3. Let s1 be S-initial in a Coxeter element c and let c = s1r2 · · · rn be a T -

factorization of c then the reflections r2, . . . , rn are in W〈s1〉.

84



Proof. If s is S-initial in c then there exists a reduced S-factorization of c, say, c = s1s2 · · · sn

such that si’s are all simple reflections. This implies that the element r2 · · · rn is actually the

parabolic Coxeter element c〈s1〉 = s2 · · · sn. By Theorem 10.0.2 therefore the interval [e, c〈s1〉]Abs(W )

is an exact copy of the interval [e, c〈s1〉]Abs(W〈s1〉)
. Since the reflections r2, . . . , rn are all T−initial

in r2 · · · rn, therefore appear in the lattice [e, c〈s1〉]Abs(W ), and consequently must appear in the

lattice [e, c〈s1〉]Abs(W〈s1〉)
. Now since every element in the lattice [e, c〈s1〉]Abs(W〈s1〉)

are in W〈s1〉 thus

r2, . . . , rn are in W〈s1〉.

We can prove a similar result for a simple reflection that is S-final in c.

Lemma 10.0.4. Let sn be S-final in a Coxeter element c and let c = r1 · · · rn−1sn be a T -

factorization of c then the reflections r1, . . . , rn−1 are in W〈sn〉.

Lemma 10.0.5 ((Speyer, 2007)). Let w0 be the longest element in W then w0(c) is initial in c∞,

where c denotes an S-word for a Coxeter element c.

It must be noted here that w0(c) may not be a prefix in the word c∞, for example for the

Coxeter element c = s1s2s3, w0(s1s2s3) is the following underlined subword in (s1s2s3)∞

s1 s2 s3|s1 s2 s3|s1 s2 s3| · · ·

Lemma 10.0.6. Let c denote a reduced S-word for a Coxeter element c, then c is a prefix in w0(c).

Proof. Any element in W is S-initial in the element w0, in particular any Coxeter element is S-

initial in w0. Also the word c is lexicographically minimal in the word c∞. Since the word w0(c) is

defined to be the lexicographically first subword of the word c∞ that is a reduced S-expression for

w0, therefore c is a prefix in w0(c).

Lemma 10.0.7. Let ss2 · · · sn be a reduced S-word for a Coxeter element c, then w0(s2 · · · sns) is

commutation equivalent to s̄w0(ss2 · · · sn)sw
−1
0 . However, if s is the last letter in an S-word, say

s1 · · · sn−1s for c, then w0(ss1 · · · sn−1) is commutation equivalent to sw0(s1 · · · sn−1s)sw
−1
0 . Here s̄w

(or ws̄) denotes the word obtained by removing an initial (or the final) letter s from a word w.
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Proof. By Lemma 10.0.6, let w0(ss2 · · · sn) = ss2 · · · sN . Using Lemma 10.0.5 we can say that the

word w0(ss2 · · · sn) = ss2 · · · sN is initial in the word (ss2 · · · sn)∞, therefore the word s2 · · · sN is initial

in (s2 · · · sns)∞, thus by Lemma 9.0.2, s2 · · · sN is initial in w0(s2 · · · sns). However lS(s2 · · · sN )+1 =

lS(w0(s2 · · · sns)), therefore w0(s2 · · · sns) ≡ s2 · · · sN si for some si ∈ S. Here the ‘≡’ (instead of ‘=’)

is due to the fact that s2 · · · sN is initial in w0(s2 · · · sns) and not necessarily a prefix.

s2 · · · sN si = ss2 · · · sN

=⇒ si = s−1
N · · · s

−1
2 ss2 · · · sN

=⇒ si = s−1
N · · · s

−1
2 s−1sss2 · · · sN

=⇒ si = w−1
0 sw0

Consequently, w0(s2 · · · sns) ≡ s̄w0(ss2 · · · sn)sw
−1
0 .

On the other hand if s1 · · · sn−1s is a reduced S-word for c, (here s is the final letter of the

word), then there exists a Coxeter element c′ = scs−1 whose S-factorization is ss1 · · · sn−1, with s

as its first letter. Therefore w0(s1 · · · sn−1s) ≡ s̄w0(ss1 · · · sn−1)sw
−1
0 ⇐⇒ sw0(s1 · · · sn−1s)sw

−1
0 ≡

w0(ss1 · · · sn−1). This will make sense if sw
−1
0 is final in w0(s1 · · · sn−1s) which is shown in the next

lemma.

Lemma 10.0.8. For a Coxeter element c ∈ W , let s1s2 · · · sn be a reduced S-factorization for c,

then the word s
w−1
0

1 s
w−1
0

2 · · · sw
−1
0

n is final in the word w0(s1s2 · · · sn).

Proof. By Lemma 10.0.6 any s1s2 · · · sn is a prefix of the word w0(s1s2 · · · sn). By the first part of

Lemma 10.0.7 if we remove the letters s1, s2, . . . , sn, sequentially, from the beginning of the word

s1s2 · · · sn and then add them to the end of the word then we get back s1s2 · · · sn and therefore

obtain

s̄n · · · s̄2s̄1w0(s1s2 · · · sn)s
w−1
0

1 s
w−1
0

2 · · · sw
−1
0

n ≡ w0(s1s2 · · · sn)

This proves the desired result.

Lemma 10.0.9 ((Reading and Speyer, 2011)). Let c be a Coxeter element in a Coxeter group W

and let c be a reduced S-word for c. Let s be initial in c then for any two reflections r1 and r2 in

T ∩W〈s〉, r1 ≤c r2 ⇐⇒ r1 ≤s̄cs r2, where T is the set of reflections.
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Definition 10.0.10 (Cambrian rotation). Let c be a Coxeter element in a Coxeter system (W,S).

For any s ∈ S such that s is S-initial in c we define a left Cambrian rotation to be the conjugation

of c by s to obtain a new Coxeter element s−1cs. Similarly for any s ∈ S such that s is S-final in

c we define the right Cambrian rotation to be the conjugation of c by s to obtain a new Coxeter

element scs−1.

Lemma 10.0.11. Let c be a Coxeter element and let s1 · · · sn be a reduced S-word for c and let the

word s1 · · · sj be a prefix of the word w0(s1 · · · sn). Then the first letter in the word

sj · · · s1w0(s1 · · · sn)s
w−1
0

1 · · · sw
−1
0

j

is S-initial in the Coxeter element s−1
j · · · s

−1
1 cs1 · · · sj. Similarly, if sj · · · sN is a suffix of the word

w0(s1 · · · sn) then the last letter in the word

sw0
j · · · s

w0
N w0(s1 · · · sn)̄sN · · · s̄j

is S-final in the Coxeter element sw0
j · · · s

w0
N c
(
sw0
N

)−1 · · ·
(
sw0
j

)−1
.

Proof. For any word w let rev(w) denote the reverse of the word w. Since s1 · · · sn is a pre-

fix of the word w0(s1 · · · sn) by Lemma 10.0.6 therefore if j < n then it follows directly. To

see that it is in general true for any j, recall that the word w0(s1 · · · sn) is initial in the word

(s1 · · · sn)∞ by Lemma 10.0.5. For the second part of the lemma, we observe that by Lemma 10.0.5,

w0

(
rev

(
s
w−1
0

1 · · · sw
−1
0

n

))
is initial in

(
rev

(
s
w−1
0

1 · · · sw
−1
0

n

))∞
. Since s

w−1
0

1 s
w−1
0

2 · · · sw
−1
0

n is final in the

word w0(s1s2 · · · sn) we can conclude that w0

(
rev

(
s
w−1
0

1 · · · sw
−1
0

n

))
≡ rev (w0(s1 · · · sn)). This gives

us the desired result.

Lemma 10.0.12. Fix a reduced S-word c = s1 · · · sn for a Coxeter element c in W . Given any

reflection t, there exists a word w which is a prefix of the word w0(s1 · · · sn) and a reduced S-word

c′ for the Coxeter element w−1cw such that tw is a simple reflection and is the minimal element in

the order ≤c′ and if t ≤c t1 ≤c t2 then tw1 ≤c′ t
w
2 and if t1 ≤c t ≤c t2 then tw2 ≤c′ t

w
1 .

Similarly there exists a word w̃ which is a suffix of the word w0(s1 · · · sn) and a reduced S-word

ĉ for the Coxeter element w̃cw̃−1 such that tw̃ is a simple reflection and is the maximal in the order

≤ĉ and if t1 ≤c t2 ≤c t then tw̃1 ≤ĉ t
w̃
2 and if t1 ≤c t ≤c t2 then tw̃2 ≤ĉ t

w̃
1 .
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Proof. Let w0(s1 · · · sn) = s1 · · · sN . Then there exists w = s1 · · · sm−1 a prefix of w0(s1 · · · sn) such

that t = swm. This existence is guaranteed by the fact that the set R+ and the set inv(w0(c)) are the

same. Using Lemma 10.0.7 and Lemma 10.0.11 there exists a reduced S-word c′ for the Coxeter

element w−1cw such that sm · · · sN s
w−1
0

1 · · · sw
−1
0

m−1 is commutation equivalent to w0(c′).

Now, if t ≤c t1 ≤c t2 then t = s1 · · · sm · · · s1, t1 = s1 · · · sm · · · sm+a · · · sm · · · s1 and t2 =

s1 · · · sm · · · sm+a · · · sm+b · · · sm+a · · · sm · · · s1, for some a, b such that N ≥ m + b > m + a > m

and s1 · · · sm · · · sm+a · · · sm+b is a prefix of the word w0(s1 · · · sn). Therefore conjugating t, t1 and

t2 by w gives tw = sm, t
w
1 = sm · · · sm+a · · · sm and tw2 = sm · · · sm+a · · · sm+b · · · sm+a · · · sm, which

clearly respects the order tw ≤c′ t
w
1 ≤c′ t

w
2 .

Now, for the case t1 ≤c t ≤c t2, it suffices to show that for any reduced S-word c̃ for a Coxeter

element and for a word u1 · · ·uN commutation equivalent to w(c̃), u1 is the maximal reflection in

the order ≤c̃′ , and for all the other reflections if vi ≤c̃ vj then vu1i ≤c̃′ v
u1
j where c̃′ is a reduced

S-word for the Coxeter element u−1
1 c̃u1. This follows from the following observations. u1 is S-initial

in c̃ by Lemma 10.0.11 thus using Lemma 10.0.7 we obtain w0(c̃′) = u2 · · ·uNu
w−1

0
1 and we also have

u1 ≤c̃ u1u2u1 ≤c̃ · · · ≤c̃ u1u2 · · ·uN−1uNuN−1 · · ·u2u1.

u2 ≤c̃′ · · · ≤c̃′ u2 · · ·uN−1uNu
w−1

0
1 uNuN−1 · · ·u2

where u2 · · ·uN−1uNu
w−1

0
1 uNuN−1 · · ·u2 = u1 and c′ = u2 · · ·unu1.

The other part can be similarly proved.

Definition 10.0.13. Let c be a Coxeter element in a Coxeter system (W,S), and |S| = n. Any

reduced T -decomposition: c = r1 · · · rn will be called a two-part factorization if there exists an

index i such that, r1 ≤c · · · ≤c ri and ri+1 ≤c · · · ≤c rn where ≤c is Coxeter order. We may use a

divider ‘|’ to indicate the index of partition—r1 · · · ri|ri+1 · · · rn. We will call the word r1 · · · ri the

left part and the word ri+1 · · · rn the right part of the two-part factorization.

We will denote the set of all two-part factorizations of c by Fact2(c).
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Definition 10.0.14. Let c be a Coxeter element, and let Fc = r1 · · · ri|ri+1 · · · rn be a two-part

factorization of c. A factorization mutation on Fc at rk (1 ≤ k ≤ i) denoted by µfact
k (Fc) is the

action µl−1µl−2 · · ·µk+1µk(Fc), where l is the index (i+ 1 ≤ l ≤ n) such that rl ≤c rk ≤c rl+1.

Essentially, we choose a reflection say rk from the left part of the two-part factorization and

through a series of Hurwitz move we ‘push’ it to a new position on the right part of the two-part

factorization such that the resulting decomposition is still a two-part factorization.

Since any Coxeter elements can be written as a product of all the simple reflections, each

appearing exactly once, therefore we can start by writing a reduced S-word for a Coxeter element

and add a divider ‘|’ at the end of it and perform factorization mutations on it to obtain all possible

two-part factorizations. By Theorem 4.3.4 all the reduced T -decompositions for a Coxeter element

can be obtained by Hurwitz moves, therefore all two-part factorizations, being a subset of all the

reduced T -decompositions, can also be obtained by Hurwitz moves.

It is not obvious that the resulting factorization of c is also a two-part factorization. The next

lemma will address this concern.

Lemma 10.0.15. For a Coxeter element c in a Coxeter group W let Fc denote a two part factoriza-

tion of c then µfact
k (Fc) ∈ Fact2(c), where k is an index on the left part of the two-part factorization

Fc.

Proof. Let Fc = r1 · · · rk · · · ri|ri+1 · · · rj · · · rl be a two-part factorization such that ri+1 ≤c · · · ≤c

rj ≤c rk ≤c · · · ≤c ri. Let

F ′c = r1 · · · rk−1r
rk
k+1 · · · r

rk
i r

rk
i+1 · · · r

rk
j rkrj+1 · · · rl

We will show that F ′c is a two-part factorization of c, i.e. µfact
k (Fc) is a two-part factorization.

Let w0(c) = s1 · · · sN then all the reflections in the group W may be arranged as follows in the

order ≤c

s1 ≤c s1s2s1 ≤c · · · ≤c s1s2 · · · sN · · · s2s1

and they may be alternatively arranged as follows in the order ≤s̄1cs1

s2 ≤s̄1cs1 s2s3s2 ≤s̄1cs1 · · · ≤s̄1cs1 s2s3 · · · sNsw
−1

1 sN · · · s3s2︸ ︷︷ ︸
s1

.
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This follows from the result w0(̄s1cs1) ≡ s̄1w0(c)s
w−1

0
1 (Lemma 10.0.7). So, if we have a two-part

factorization, say `1 · · · `q|r1r2 · · · rq′ that respects the order ≤c, then performing a left Cambrian

rotation would give us a new two-part factorization involving modified reflections (t gets modified

to ts1), that respects the order ≤s̄1cs1 , and the new two-part factorization would either be

`s11 · · · `
s1
q |r

s1
1 r

s1
2 · · · r

s1
q′

or

`s11 · · · `
s1
q r

s1
1 |r

s1
2 · · · r

s1
q′ .

In summary, a Cambrian rotation, either doesn’t affect the position of the ‘|’ or just pushes it to

the right by a position. Consequently, while undoing this Cambrian rotation, either the ‘|’ stays

put or moves left by a position, depending on whether it has moved earlier or not.

With this in mind now we observe that since R+ = inv(w0(c)) therefore there exists a simple

reflection sm, such that w0 = rks1 · · · ŝm · · · sN , i.e. s1 · · · sm · · · s−1
1 = rk. Set w = s1 · · · sm−1

then rk = wsmw
−1. Conjugating c by w−1 = sm−1 · · · s1 (which is equivalent to m − 1 Cambrian

rotations) we obtain a new Coxeter element w−1cw (call it c′) and w0(c′) ≡ sm · · · sNsw
−1

1 · · · sw−1

m−1

(by repeated application of Lemma 10.0.7 and Lemma 10.0.11). These m− 1 Cambrian rotations

give us a new two-part factorization involving modified reflections (t gets modified to tw
−1

) that

respects the order≤c’ (up to commutation of commuting letters) in which sm is the minimal element.

We now choose the subword rk · · · ri|ri+1 · · · rj from Fc (the subword in Fc that gets affected due

to the factorization mutation at rk) and observe it as we conjugate each of the reflections in it

by w−1 and thus obtain the following two-part factorization that respects the order ≤c′ (up to

commutation of commuting letters)

smr
w−1

k+1 · · · rw
−1

i rw
−1

i+1 · · · rw
−1

j |. (10.1)

This follows from our earlier discussion about how reflections move around the ‘|’ due to Cam-

brian rotations and the fact that sm is the minimal element in ≤c′ . We also notice here that since

sm is S-initial in c′ therefore by Lemma 10.0.3 the reflections rw
−1

k+1 , . . . , r
w−1

i , rw
−1

i+1 , · · · , rw
−1

j are

in W〈sm〉. At this point we perform a factorization mutation on smr
w−1

k+1 · · · rw
−1

i rw
−1

i+1 · · · rw
−1

j | at

90



sm, which results in the following two-part factorization that still respects the order ≤c′ (upto

commutation)

r
(wsm)−1

k+1 · · · r(wsm)−1

i r
(wsm)−1

i+1 · · · r(wsm)−1

j

∣∣∣sm. (10.2)

Here the reflections r
(wsm)−1

k+1 , . . . , r
(wsm)−1

i , r
(wsm)−1

i+1 , · · · , r(wsm)−1

j are in W〈sm〉
1. For any root v ∈

R+
〈sm〉, sm(v) = v + kvsm , where vsm is the root corresponding to the reflection sm and k is some

non-negative number. Therefore,

r
(wsm)−1

k+1 ≤s̄mc′sm rw
−1

k+1

...
...

...

r
(wsm)−1

i ≤s̄mc′sm rw
−1

i

r
(wsm)−1

i+1 ≤s̄mc′sm rw
−1

i+1

...
...

...

r
(wsm)−1

j ≤s̄mc′sm rw
−1

j .

Using the fact that r
(wsm)−1

k+1 , . . . , r
(wsm)−1

i , r
(wsm)−1

i+1 , · · · , r(wsm)−1

j , rw
−1

k+1 , . . . , r
w−1

i , rw
−1

i+1 , · · · , rw
−1

j are

in W〈sm〉 along with Lemma 10.0.9 we get

1Instead of performing the factorization mutation on Equation (10.1) if we performed another Cambrian
rotation by conjugating c′ by sm, then we would have obtained the factorization

r
(wsm)−1

k+1 · · · r(wsm)−1

i r
(wsm)−1

i+1 · · · r(wsm)−1

j sm

∣∣∣.
which respects the order ≤s̄mc′sm (up to commutation of commuting letters) where sm would have
been the maximal simple reflection and using Lemma 10.0.4 we could say that the reflections

r
(wsm)−1

k+1 , . . . , r
(wsm)−1

i , r
(wsm)−1

i+1 , · · · , r(wsm)−1

j are in W〈sm〉.
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r
(wsm)−1

k+1 ≤c′ r
w−1

k+1

...
...

...

r
(wsm)−1

i ≤c′ r
w−1

i

r
(wsm)−1

i+1 ≤c′ r
w−1

i+1

...
...

...

r
(wsm)−1

j ≤c′ r
w−1

j .

Now we will undo the effect of the left Cambrian rotations that we performed earlier, so as to

revert back to our original order, i.e. ≤c. This can be done by conjugating each of the reflections

in the two-part factorization Equation (10.2) by w. The effect of this ‘undoing’ is quite simple on

sm, viz. swm = rk but to see how it affects the other reflections we need to understand that if we

conjugated each of the reflections in Equation (10.1) by w then we would end up with

swmr
w−1w
k+1 · · · rw

−1w
i |rw−1w

i+1 · · · rw−1w
j

which is exactly what we started with, but since the reflections in Equation (10.2) have ‘moved’

earlier in the order ≤c′ than in Equation (10.1) therefore conjugating them by w would either give

us the two-part factorization

r1 · · · rk−1r
rk
k+1 · · · r

rk
i

∣∣rrki+1 · · · r
rk
j rkrj+1 · · · rl

or the same factorization with the ‘|’ shifted to the right. In either case we obtain a two-part

factorization.

This entire episode of multiple conjugations didn’t actually change the Coxeter element c.

However, it gave rise to a new factorization for c and the ‘|’ accordingly shifted to adjust for this

change. This can be verified from the following steps
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rkrk+1 · · · riri+1 · · · rj

=(ww−1)rk(ww
−1)rk+1(ww−1) · · · (ww−1)ri(ww

−1)ri+1(ww−1) · · · (ww−1)rj(ww
−1)

=w
[
(w−1rkw)(w−1rk+1w) · · · (w−1riw)(w−1ri+1w) · · · (w−1rjw)

]
w−1

=w
[
smr

w−1

k+1 · · · rw
−1

i rw
−1

i+1 · · · rw
−1

j

]
w−1

=w
[
r

(wsm)−1

k+1 · · · r(wsm)−1

i r
(wsm)−1

i+1 · · · r(wsm)−1

j

]
smw

−1

=w
[
(smw

−1rk+1wsm)(w−1w) · · · (w−1w)(smw
−1rjwsm)(w−1w)

]
smw

−1

=(wsmw
−1)rk+1(wsmw

−1) · · · (wsmw−1)rj(wsmw
−1)(wsmw

−1)

=rrkk+1 · · · r
rk
j rk

Definition 10.0.16. Given a two-part factorization of a Coxeter element c

Fc = `1 · · · `i|ri+1 · · · rn,

we define an associated quiver QFc with n vertices labelled `1, · · · , `i, ri+1, · · · , rn and arrows

• from `b to `a if `a ≤c `b and `b, `a don’t commute,

• from rb to ra if ra ≤c rb and rb, ra don’t commute,

• from ra to `b if ra ≤c `b and ra, `b don’t commute, and

• from `a to rb if `a ≤c rb and rb, `a don’t commute.

The ‘c’ in Fc or QFc may be dropped when the coxeter element c is clearly understood.

Theorem 10.0.17. Let (W,S) be a Coxeter system of simply-laced type. Let c be a Coxeter element

in W and let Fc be a two-part factorization of c, then

µquiv
k (QFc) = Qµfactk (Fc)

.

where QFc is the quiver associated to the two-part factorization Fc and Qµfactk (Fc)
is the quiver

associated to the two-part factorization µfact
k (Fc).
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Proof. It is easy to check for a Coxeter group of type A3, see Figure 10.1. To see that this holds

in general for Coxeter groups of simply-laced type, we consider the following facts from Chapter 8.

Recall that a simply-laced Coxeter group is a Coxeter group whose Coxeter-Dynkin diagram cor-

responds to a simply-laced Dynkin diagrams i.e. Dynkin diagram of type An, Dn, E6, E7, E8. In

Lemma 8.2.10 and Lemma 8.2.11 we have shown that for any quiver, mutation equivalent to an

orientation of a simply-laced Dynkin diagram all its edges have an assigned weight of 1 and all its

3-cycles are cyclic. Also, since quiver mutation at a node only affects the edges incident to the node

and the edges opposite to the node, whenever the node is a part of a 3-cycle; therefore it suffices

to show that for every subword wc in a two-part factorization of a Coxeter element c, containing

the reflection tk, the quiver µquiv
k (Qwc) is the same as the quiver Qµfactk (wc)

, where the subword wc

consists of just the two reflections tl and tk such that in the associated quiver the nodes tk and tl

share an edge; or consists of just the three reflections tm, tn and tk such that in the associated quiver

the nodes tk, tm and tn form a cyclic 3-cycle. In Section 10.2 we have given a case by case proof by

considering all such possible subwords arising in two-part factorizations of Coxeter elements.

10.1 Properties of Factorization Mutation

This section lists a few of the properties of factorization mutation that we will be using in the next

section for our case by case proof.

Lemma 10.1.1. For a factorization mutation of the form

· · · tk · · · tl · · ·
∣∣ · · · −−−→

µquivk

· · · ttkl · · ·
∣∣ · · · tk · · ·

we have tk ≤c ttkl ≤c tl.

Proof. Using the same technique as in Lemma 10.0.15 we perform left Cambrian rotations until

tk is modified to a simple reflection that is also the minimal element in the new Coxeter order

(call it sk). Now it is easy to see that in this new order the modified ttkl appears earlier than the

modified tl but appears later than sk, therefore if we undo the Cambrian rotations we must have

tk ≤c ttkl ≤c tl.
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12 23

24

(12)(24)|(23)

12 24 34

(12)(34)|(24)

12 23 34

(12)(23)(34)|.

12 23 34

(12)|(23)(34)

12 23 34

(12)(23)|(34)

12 23 34

.|(12)(23)(34)

12 13 34

(13)|(12)(34)

13 23

34

(23)|(13)(34)

14 34 23

(23)(34)|(14)

14 24 23

(24)|(14)(23)

14 13 23

(14)(23)|(13)

14 12 23

(14)|(12)(23)

12 13 34

(13)(34)|(12)

12 24 34

(34)|(12)(24)

µ24

µ34

µ23

µ34

µ23

µ12

µ13 µ23

µ12µ34

µ12

µ34

µ12

µ12

µ23

µ14

µ34

µ14

µ23

µ13 µ24

Figure 10.1. A correspondence between factorization mutation and quiver mutation for S3.
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Lemma 10.1.2. For a factorization mutation of the form

· · · tk · · ·
∣∣ · · · tl · · · −−−→

µquivk

· · ·
∣∣ · · · ttkl · · · tk · · ·

we have ttkl ≤c tl ≤c tk.

Proof. Using the same technique as in Lemma 10.0.15 perform Cambrian rotations until tk is

modified to a simple reflection that is also the minimal element (call it sk) in the new Coxeter

order. Now it is easy to see that in this new order sk appears earlier than the modified tl and

consequently the modified ttkl appears earlier than tl and later than sk therefore if we undo the

Cambrian rotations and ttkl happens to end up on the right of | then we must have ttkl ≤c tl ≤c tk.

However if ttkl ends up on the left of | then we must have tl ≤c tk ≤c ttkl , which gives us the next

lemma.

Lemma 10.1.3. For a factorization mutation of the form

· · · tk · · ·
∣∣ · · · tl · · · −−−→

µquivk

· · · ttkl · · ·
∣∣ · · · tk · · ·

we have tl ≤c tk ≤c ttkl .

Lemma 10.1.4. For a factorization mutation of the form

· · · tk · · · tl · · ·
∣∣ · · · −−−→

µquivk

· · · ttkl · · ·
∣∣ · · · tk · · · ,

if tk doesn’t commute with tl then tk doesn’t commute with ttkl .

Proof. It suffices to show that (tkt
tk
l )3 = e.

(tkt
tk
l )3 = (tltk)

3 which is equal to identity since tk doesn’t commute with tl.

Lemma 10.1.5. If tk doesn’t commute with tm and tk doesn’t commute with tn then tn doesn’t

commute with ttkm and tm doesn’t commute with ttkn .

Proof. It suffices to show that (tn(ttkm))3 = e,

(tn(ttkm))3 = tn(ttkm)tn(ttkm)tn(ttkm)
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= tn(tmtktm)tn(tmtktm)tn(tmtktm) = tntmtk(tmtn)tmtk(tmtn)tmtktm

= tntmtk(tmtm)tntktn(tmtm)tktm = tntm(ttkn )tntktm

= tntmtntk(tntn)tktm = tntmtn(tktk)tm

= tn(tmtn)tm = (tntn)(tmtm) = e.

In a similar way it can also be shown that tm(ttkn )3 = e.

Lemma 10.1.6. If tm doesn’t commute with tk, tk doesn’t commute with tn and tn doesn’t commute

with tm then ttkm commutes with tn and ttkn commutes with tm.

Proof. Since tn doesn’t commute with tk and tk doesn’t commute with tm and tm doesn’t commute

with tn therefore [tn, tktmtk] = e, which implies tnt
tk
m = ttkmtn.

Thus ttkm commutes with tn. Similarly it can also be shown that ttkm commutes with tn.

Lemma 10.1.7. If tm doesn’t commute with tk, tk doesn’t commute with tn and tn commutes with

tm then ttkm commutes with ttkn .

Proof.

ttkn t
tk
m = tktn(tktk)tmtk

= tktntmtk

= tktmtntk

= ttkmt
tk
n

10.2 Case by Case Proof of the Correspondence between Factorization Muta-

tion and Quiver Mutation

In all the following cases we perform a factorization mutation at k on a subword wc of a two-part

factorization of a Coxeter element c, and a quiver mutation on the quiver Qwc(associated to the

subword wc) at k.
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10.2.1 Subword wc consisting of two reflections: tk and tl such that the corre-

sponding nodes in Qwc are adjacent

Let wc be any subword of a two-part factorization of a Coxeter element c consisting of two reflections

tk and tl and let the corresponding nodes in the associated quiver Qwc be adjacent i.e. the reflections

tk and tl must not commute. Also, let tk be on the left part of the two-part factorization, so

that we can perform a factorization mutation at k. We will show that for all such subword wc,

µquiv
k (Qwc) = Qµfactk (wc)

.

Case I: Both tk and tl are are on the left part of the two-part factorization and tk ≤c tl

· · · tk · · · tl · · ·
∣∣∣ · · ·

µfactk

��

tk tl
//

µquivk

��
· · · ttkl · · ·

∣∣∣ · · · tk · · · tk ttkl
//

Where the nodes tk and ttkl are adjacent by Lemma 10.1.4 and tk ≤c ttkl by Lemma 10.1.1.

Case II: Both tk and tl on the left part of the two-part factorization and tl ≤c tk

· · · tl · · · tk · · ·
∣∣∣ · · ·

µfactk

��

tk tl
//

µquivk

��
· · · tl · · ·

∣∣∣ · · · tk · · · tl tk
//

Nothing changes, so adjacency and order gets carried over!

Case III: tk on the left part and tl on the right part of the two-part factorization and tl ≤c tk

· · · tk · · ·
∣∣∣ · · · tl · · ·

µfactk

��

tk tl
//

µquivk

��
· · ·
∣∣∣ · · · ttkl · · · tk · · · tk ttkl

//
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Where the nodes tk and ttkl are adjacent by lemma 10.1.4 and ttkl ≤c tk by Lemma 10.1.2.

Alternatively, we might also have the following case, where tk ≤c ttkl by Lemma 10.1.3.

· · · tk · · ·
∣∣∣ · · · tl · · ·

µfactk

��

tk tl
//

µquivk

��
· · · ttkl · · ·

∣∣∣ · · · tk · · · tk ttkl
//

Case IV: tk on the left part and tl on the right part of the two-part factorization and tk ≤c tl

· · · tk · · ·
∣∣∣ · · · tl · · ·

µfactk

��

tk tl
//

µquivk

��
· · ·
∣∣∣ · · · tk · · · tl · · · tk tl

//

Nothing changes, so adjacency and order are carried forward!

10.2.2 Subword wc consisting of three reflections: tk, tm and tn such that the

corresponding nodes in Qwc form a tree with the node tk adjacent to the

other two nodes.

Let wc be any subword of a two-part factorization of a Coxeter element c consisting of three

reflections tm, tn and tk and let the corresponding nodes in the associated quiver Qwc be arranged

as

tm tk tn

or

tm tk tn

Consequently, the reflection tk must not commute with the reflections tn and tm, and the reflection

tm must commute with the reflection tn. Without loss of any generality we may assume that

tm ≤c tn. In Table 10.1 we have marked the cases that conform to these criteria with a X beside

them. We will now show that for all such subwords wc listed in Table 10.1 µquiv
k (Qwc) = Qµfactk (wc)

,
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Table 10.1. Counting all possible subwords (consisting of just 3 reflections) of two-part
factorizations of a Coxeter element such that in the associated quiver the corresponding
three nodes form a tree, with two fixed leaves.

Both tm and tn on the left

tm ≤c tk ≤c tn · · · tm · · · tk · · · tn · · · | · · · tm tk tn X

tk ≤c tm ≤c tn · · · tk · · · tm · · · tn · · · | · · · tm tk tn

tm ≤c tn ≤c tk · · · tm · · · tn · · · tk · · · | · · · tm tk tn

Both tm and tn on the right

tm ≤c tk ≤c tn · · · tk · · · | · · · tm · · · tn · · · tm tk tn X

tk ≤c tm ≤c tn · · · tk · · · | · · · tm · · · tn · · · tm tk tn

tm ≤c tn ≤c tk · · · tk · · · | · · · tm · · · tn · · · tm tk tn

tm on the right and tn on the left

tm ≤c tk ≤c tn · · · tk · · · tn · · · | · · · tm · · · tm tk tn

tk ≤c tm ≤c tn · · · tk · · · tn · · · | · · · tm · · · tm tk tn X

tm ≤c tn ≤c tk · · · tn · · · tk · · · | · · · tm · · · tm tk tn X
tm on the left and tn on the right

tm ≤c tk ≤c tn · · · tm · · · tk · · · | · · · tn tm tk tn

tk ≤c tm ≤c tn · · · tk · · · tm · · · | · · · tn tm tk tn X

tm ≤c tn ≤c tk · · · tm · · · tk · · · | · · · tn tm tk tn X

i.e. the quiver associated to the subword µfact
k (wc) is a cyclic 3-cycle that is obtained by mutating

Qwc at k.
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Case I: µfact
k on the subword · · · tm · · · tk · · · tn · · ·

∣∣∣ · · · replaces tn by ttkn where tm ≤c tk ≤c tn. Thus

there are three possible orderings, viz. tm ≤c tk ≤c ttkn , tm ≤c ttkn ≤c tk and ttkn ≤c tm ≤c tk.

If tm ≤c tk ≤c ttkn then we have

· · · tm · · · tk · · · tn · · ·
∣∣∣ · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · tm · · · ttkn · · ·
∣∣∣ · · · tk · · · tk

tm ttkn

//

Here the node ttkn is adjacent to the nodes tm and tk by Lemma 10.1.5 and Lemma 10.1.4.

Since Lemma 10.1.1 prevents the order ttkn ≤c tk, thus this is the only possible outcome in

this case.

Case II: µfact
k on · · · tk · · ·

∣∣∣ · · · tm · · · tn · · · replaces tm by ttkm, where tm ≤c tk ≤c tn. Thus there

are three possible orderings, viz. tk ≤c tn ≤c ttkm, tk ≤c ttkm ≤c tn and ttkm ≤c tk ≤c tn. If

tk ≤c ttkm ≤c tn then we have

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tm tk tn
//

µquivk ��

· · · ttkm · · ·
∣∣∣ · · · tk · · · tn · · · tk

ttkm tn

//

Here the node ttkm is adjacent to the nodes tn and tk by Lemma 10.1.5 and lemma 10.1.4.

However for the ordering tk ≤c tn ≤c ttkm we have
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· · · tk · · ·
∣∣∣ · · · tm · · · tn · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn
6≡

· · · ttkm · · ·
∣∣∣ · · · tk · · · tn · · · tk

ttkm tn

//

and for the ordering ttkm ≤c tk ≤c tn we have

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn

6≡

· · ·
∣∣∣ · · · ttkm · · · tk · · · tn · · · tk

ttkm tn

//

However, it can be shown that the only possible ordering in this case is tk ≤c ttkm ≤c

tn. In a similar way as in the proof of Lemma 10.0.15, starting with the factorization

· · · tk · · ·
∣∣ · · · tm · · · tn · · · we perform right Cambrian rotations until tn is modified to sn—

the maximal simple reflection in the new order ≤c′ (meanwhile c gets modified to c′). Let t̃k

and t̃m denote the modified tk and tm respectively. At this point t̃k is still on the left and t̃m is

still on the right part of ‘
∣∣’ of the modified two-part factorization of c′, this is because both tm
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and tk appeared earlier in the order ≤c than tn therefore by Lemma 10.0.12 t̃m ≤c′ t̃k ≤c′ sn.

Now, by Lemma 10.0.4, t̃k and t̃m belong to the parabolic subgroup W〈sn〉 and we can drop

the last letter (i.e. sn) from the factorization · · · t̃k · · ·
∣∣ · · · t̃m · · · sn = c′ and thus obtain a

factorization of the parabolic Coxeter element c′〈sn〉, which is of the form · · · t̃k · · · | · · · t̃m · · · .

Again, we replicate Lemma 10.0.15, and perform left Cambrian rotations, (c′〈sn〉 gets modi-

fied to c′′〈sn〉) until t̃m is modified to sm—the minimal simple reflection in the order ≤c′′〈sn〉
.

Meanwhile t̃k gets modified to t̂k. In the modified factorization · · · t̂k · · ·
∣∣sm · · · = c′′〈sn〉 the

subgroup generated by the reflections t̂k and sm is isomorphic to S3. Since sm ≤c′′〈sn〉
t̂k but

t̂k is to the left of sm in the factorization · · · t̂k · · ·
∣∣sm · · · = c′′〈sn〉, therefore we must have

sm ≤c′′〈sn〉
t̂k ≤c′′〈sn〉

st̂km. Thus undoing all the Cambrian rotations we have tk ≤c t
tk
m ≤c tn.

Case III: µfact
k on · · · tk · · · tn · · ·

∣∣∣ · · · tm · · · replaces tn by ttkn , where tk ≤c tm ≤c tn. Thus there are

three possible orderings, viz. tk ≤c tm ≤c ttkn , tk <c t
tk
n ≤c tm and ttkn ≤c tk <c tm. For the

ordering tk ≤c ttkn ≤c tm we have

· · · tk · · · tn · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · ttkn · · ·
∣∣∣ · · · tk · · · tm · · · tk

tm ttkn

//

where the node ttkn is adjacent to the nodes tk and tm due to Lemma 10.1.4 and Lemma 10.1.5

respectively.

For the ordering tk ≤c tm ≤c ttkn we have
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· · · tk · · · tn · · ·
∣∣∣ · · · tm · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn
6≡

· · · ttkn · · ·
∣∣∣ · · · tk · · · tm · · · tk

tm ttkn

//

and for the ordering ttkn ≤c tk ≤c tm we have

· · · tk · · · tn · · ·
∣∣∣ · · · tm · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn

6≡

· · · ttkn · · ·
∣∣∣ · · · tk · · · tm · · · tk

tm ttkn

//

But the case ttkn ≤c tk ≤c tm can be invalidated on the grounds that ttkn ≤c tk by Lemma 10.1.1.

In fact we can show that the only case that will occur is tk ≤c ttkn ≤c tm using a similar

technique as used in Case II:. Starting with the factorization · · · tk · · · tn · · ·
∣∣ · · · tm · · · we

perform right Cambrian rotations until tn is modified to sn—the minimal simple reflection

in the new order ≤c′ (this is accomplished by first performing right Cambrian rotations until

tn becomes the maximal simple reflection and then we perform one more right Cambrian

rotation). Meanwhile tk and tm got modified to t̃k and t̃m respectively. Thus we have the

104



factorization · · · t̃k · · ·
∣∣sn · · · t̃m · · · for the modified Coxeter element c′, where sn ≤c′ t̃k ≤c′

t̃m. This is exactly the case we dealt with in Case II: so we must have t̃k ≤c′ s
t̃k
n ≤c′ t̃m.

Therefore undoing the Cambrian rotations we must have tk ≤c ttkn ≤c tm.

Case IV: µfact
k on · · · tn · · · tk · · ·

∣∣∣ · · · tm · · · replaces tm by ttkm, where tm ≤c tn ≤c tk. Thus there

are three possible orderings, viz. ttkm ≤c tn ≤c tk, tn ≤c ttkm ≤c tk and tn ≤c tk ≤c ttkm. For the

ordering ttkm ≤c tn ≤c tk we have

· · · tn · · · tk · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · tn · · ·
∣∣∣ · · · ttkm · · · tk · · · tk

ttkm tn

//

The node ttkm is adjacent to tk and tn due to Lemma 10.1.4 and Lemma 10.1.5 respectively.

For the ordering tn ≤c tk ≤c ttkm we have

· · · tn · · · tk · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · tn · · · ttkm · · ·
∣∣∣ · · · tk · · · tk

ttkm tn

//

The case tn ≤c ttkm ≤c tk is not possible since if ttkm ≤c tk, then by Lemma 10.1.2, we must

have ttkm ≤c tm, but tm ≤c tn which implies ttkm ≤c tn, a contradiction!

Case V: µfact
k on · · · tk · · · tm · · ·

∣∣∣ · · · tn · · · replaces tm by ttkm, where tk ≤c tm ≤c tn. Thus there are

three possible orderings, viz. ttkm ≤c tk ≤c tn, tk ≤c ttkm ≤c tn and tk ≤c tn ≤c ttkm. For the

ordering ttkm ≤c tk ≤c tn we have
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· · · tk · · · tm · · ·
∣∣∣ · · · tn · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn

6≡

· · · ttkm · · ·
∣∣∣ · · · tk · · · tn · · · tk

ttkm tn

//

Here the node ttkm is adjacent to the nodes tk and tn due to Lemma 10.1.4 and Lemma 10.1.5

respectively. But this is not possible since tk ≤c ttkm by Lemma 10.1.1. Now for the ordering

tk ≤c ttkm ≤c tn we have

· · · tk · · · tm · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · ttkm · · ·
∣∣∣ · · · tk · · · tn · · · tk

ttkm tn

//

The ordering tk ≤c tn ≤c ttkm is not possible because by Lemma 10.1.1 ttkm ≤c tm and tm ≤c tn,

therefore we must always have ttkm ≤c tn.

Case VI: µfact
k on · · · tm · · · tk · · ·

∣∣∣ · · · tn · · · replaces tn by ttkn , where tm ≤c tn ≤c tk. Thus there are

three possible orderings, viz. ttkn ≤c tm ≤c tk, tm ≤c ttkn ≤c tk and tm ≤c tk ≤c ttkn . For the

ordering ttkn ≤c tm ≤c tk we have
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· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · tm · · ·
∣∣∣ · · · ttkn · · · tk · · · tk

tm ttkn

//

Here, the node ttkn is adjacent to the nodes tk and tm due to Lemma 10.1.4 and Lemma 10.1.5

respectively.

For the case tm ≤c ttkn ≤c tk we have

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · · tm tk tn

//

µquivk ��

µfact
k

��

tk

tm tn

6≡

· · · tm · · ·
∣∣∣ · · · ttkn · · · tk · · · tk

tm ttkn

//

Using a similar technique as used in Case II: we can show that this case will never occur.

Starting with the factorization · · · tm · · · tk · · ·
∣∣ · · · tn · · · we perform left Cambrian rotations

until tm is modified to sm—the minimal simple reflection in the new order ≤c′ . Let t̃n and

t̃k denote the modified tn and tk respectively. Since both tn and tk appeared later than

tn in the order ≤c therefore by Lemma 10.0.12 we will have a factorization of the form

sm · · · t̃k · · ·
∣∣ · · · t̃n = c′. Now, with the help of Lemma 10.0.3 we can drop the letter sm from

the factorization sm · · · t̃k · · ·
∣∣ · · · t̃n and thus obtain a the factorization · · · t̃k · · ·

∣∣ · · · t̃n · · · of

the parabolic Coxeter element c′〈sm〉 with t̃n ≤c′〈sm〉
t̃k. Now we again perform left Cambrian
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rotations until t̃n is modified to the minimal simple reflection, call it sn, in the new order

≤c′′〈sm〉
. Meanwhile tk gets modified to t̂k, thus giving us the factorization · · · t̂k · · ·

∣∣sn · · · =

c′′〈sm〉. Notice that t̂k and sn generates a subgroup isomorphic to S3. Now because sn ≤c′′〈sm〉

t̂k but t̂k appears to the left of sn in the factorization · · · t̂k · · ·
∣∣sn · · · = c′′〈sm〉, therefore

sn ≤c′′〈sm〉
t̂k ≤c′′〈sm〉

t̂snk , consequently tk ≤c ttkn .

And finally for the case tm ≤c tk ≤c ttkn , we have

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tm tk tn
//

µquivk ��

· · · tm · · · ttkn · · ·
∣∣∣ · · · tk · · · tk

tm ttkn

//

Now, let us consider the case where wc is any subword of a two-part factorization of a Coxeter

element c consisting of three reflections tm, tn and tk such that the corresponding nodes in the

associated quiver Qwc are arranged as

tm tk tn

or

tm tk tn

It is required to show that for all such subwords wc, the quiver Qµfactk (wc)
is not a cycle. The

orientations of the edges of Qµfactk (wc)
are already taken care of by the first part of the proof where

we dealt with subwords consisting of just two reflections. So, now we illustrate the remaining 6

cases from Table 10.1.

Case I: wc = · · · tk · · · tm · · · tn · · ·
∣∣∣ · · · and tk ≤c tm ≤c tn

· · · tk · · · tm · · · tn · · ·
∣∣∣ · · ·

µfactk

��

tm tk tn
//

µquivk

��
· · · ttkm · · · ttkn · · ·

∣∣∣ · · · tk · · · ttkm tk ttkn
//
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Here the nodes ttkm and ttkn are non-adjacent by Lemma 10.1.7.

Case II: wc = · · · tm · · · tn · · · tk · · ·
∣∣∣ · · · and tm ≤c tn ≤c tk

· · · tm · · · tn · · · tk · · ·
∣∣∣ · · ·

µfactk

��

tm tk tn
//

µquivk

��
· · · ttkm · · · ttkn · · ·

∣∣∣ · · · tk · · · tm tk tn
//

Case III: wc = · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · and tk ≤c tm ≤c tn

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tm tk tn
//

µquivk

��
· · ·
∣∣∣ · · · tk · · · tm · · · tn · · · tm tk tn

//

Case IV: wc = · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · and tm ≤c tn ≤c tk

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tm tk tn
//

µquivk

��
· · ·
∣∣∣ · · · ttkm · · · ttkn · · · tk · · · tm tk tn

//

Here the nodes ttkm and ttkn are non-adjacent by Lemma 10.1.7.

Case V: wc = · · · tk · · · tn · · ·
∣∣∣ · · · tm · · · and tm ≤c tk ≤c tn

· · · tk · · · tn · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tm tk tn
//

µquivk

��
· · · ttkn · · ·

∣∣∣ · · · ttkm · · · tk · · · ttkm tk ttkn
//

Here the nodes ttkm and ttkn are non-adjacent by Lemma 10.1.7.
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Case VI: wc = · · · tm · · · tk · · ·
∣∣∣ · · · tn · · · and tm ≤c tk ≤c tn

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tm tk tn
//

µquivk

��
· · · tm · · ·

∣∣∣ · · · tk · · · tn · · · tm tk tn
//

10.2.3 Subword wc consisting of three reflections: tk, tm and tn such that the

corresponding nodes in Qwc form a cyclic 3-cycle.

Let wc be any subword of a two-part factorization of a Coxeter element c consisting of three

reflections tm, tn and tk and let the corresponding nodes in the associated quiver Qwc be arranged

as

tk

tm tn

or

tk

tm tn

Therefore, the reflection tk must not commute with the reflections tm and tn and the reflections

tm and tn must not commute with each other. Without loss of any generality we may assume that

tm ≤c tn. In Table 10.2 we have marked the cases that conform to these criteria with a X beside

them.

Now we shall show that in those 3 cases we identified, µquiv
k (Qwc) = Qµfactk (wc)

.

Case I: For wc = · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · and tm ≤c tk ≤c tn, tm is replaced by ttkm in µfact

k (wc).

Therefore we consider the three possible orderings, viz. ttkm ≤c tk ≤c tn, tk ≤c ttkm ≤c tn and

tk ≤c tn ≤c ttkm. If ttkm ≤c tk ≤c tn then we have
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Table 10.2. Counting all possible subwords (consisting of just 3 reflections) of two-part
factorizations of a Coxeter element such that the associated quiver forms a cyclic 3-cycle.

Both tm and tn on the left

tm ≤c tk ≤c tn · · · tm · · · tk · · · tn · · ·
∣∣∣ · · · tk

tm tn

tk ≤c tm ≤c tn · · · tk · · · tm · · · tn · · ·
∣∣∣ · · · tk

tm tn

tm ≤c tn ≤c tk · · · tm · · · tn · · · tk · · ·
∣∣∣ · · · tk

tm tn
Both tm and tn on the right

tm ≤c tk ≤c tn · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · tk

tm tn

X

tk ≤c tm ≤c tn · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · tk

tm tn

tm ≤c tn ≤c tk · · · tk · · ·
∣∣∣ · · · tm · · · tn · · · tk

tm tn
tm on the right and tn on the left

tm ≤c tk ≤c tn · · · tk · · · tn · · ·
∣∣∣ · · · tm · · · tk

tm tn

tk ≤c tm ≤c tn · · · tk · · · tn · · ·
∣∣∣ · · · tm · · · tk

tm tn

tm ≤c tn ≤c tk · · · tn · · · tk · · ·
∣∣∣ · · · tm · · · tk

tm tn

X

tm on the left and tn on the right

tm ≤c tk ≤c tn · · · tm · · · tk · · ·
∣∣∣ · · · tn tk

tm tn

tk ≤c tm ≤c tn · · · tk · · · tm · · ·
∣∣∣ · · · tn tk

tm tn

X

tm ≤c tn ≤c tk · · · tm · · · tk · · ·
∣∣∣ · · · tn tk

tm tn
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· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tk

tm tn

//

µquivk

��
· · ·
∣∣∣ · · · ttkm · · · tk · · · tn · · · ttkm tk tn

//

The adjacency between the nodes tk and ttkm can be explained by Lemma 10.1.4 and the non-

adjacency between the nodes tn and ttkm can be explained by Lemma 10.1.6. If tk ≤c ttkm ≤c tn

then we have

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tk

tm tn

//

µquivk

��
· · · ttkm · · ·

∣∣∣ · · · tk · · · tn · · · ttkm tk tn
//

and finally for tk ≤c tn ≤c ttkm we have

· · · tk · · ·
∣∣∣ · · · tm · · · tn · · ·
µfactk

��

tk

tm tn

//

µquivk

��
· · · ttkm · · ·

∣∣∣ · · · tk · · · tn · · · ttkm tk tn
//

Case II: For wc = · · · tm · · · tk · · ·
∣∣∣ · · · tn · · · and tm ≤c tn ≤c tk, tn is replaced by ttkn in µfact

k (wc).

Therefore we consider the three possible orderings, viz. tm ≤c tk ≤c ttkn , tm ≤c ttkn ≤c tk and
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ttkn ≤c tm ≤c tk If tm ≤c tk ≤c ttkn then we have

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tk

tm tn

//

µquivk

��
· · · tm · · · ttkn · · ·

∣∣∣ · · · tk · · · tm tk ttkn
//

where the adjacency between the nodes tk and ttkn is due to Lemma 10.1.4 and the non-

adjacency between the nodes tm and ttkn is due to Lemma 10.1.6. If tm ≤c ttkn ≤c tk then we

have

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tk

tm tn

//

µquivk

��
· · · tm · · ·

∣∣∣ · · · ttkn · · · tk · · · tm tk ttkn
//

and finally for the case ttkn ≤c tm ≤c tk we have

· · · tm · · · tk · · ·
∣∣∣ · · · tn · · ·

µfactk

��

tk

tm tn

//

µquivk

��
· · · tm · · ·

∣∣∣ · · · ttkn · · · tk · · · tm tk ttkn
//

Case III: For wc = · · · tk · · · tn · · ·
∣∣∣ · · · tm · · · and tk ≤c tm ≤c tn, tn is replaced by ttkn in µfact

k (wc).

So we have three possible orderings, viz. tk ≤c tm ≤c ttkn , tk ≤c ttkn ≤c tm and ttkn ≤c tk ≤c tm.

If tk ≤c tm ≤c ttkn then we have
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· · · tk · · · tn · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tk

tm tn

//

µquivk

��
· · · ttkn · · ·

∣∣∣ · · · tk · · · tm · · · tm tk ttkn
//

Similar to the last two cases, the node tk is adjacent to the node ttkn by Lemma 10.1.4 and the

node tm is not adjacent to the node ttkn by Lemma 10.1.6. Now, for the case tk ≤c ttkn ≤c tm

we have,

· · · tk · · · tn · · ·
∣∣∣ · · · tm · · ·

µfactk

��

tk

tm tn

//

µquivk

��
· · · ttkn · · ·

∣∣∣ · · · tk · · · tm · · · tm tk ttkn
//

and finally we have the following for the case ttkn ≤c tk ≤c tm

· · · tk · · · tn · · ·
∣∣∣ · · · tm · · · tk

tm tn

//

µquivk

��
µfact
k

��

tm tk tn

6≡

· · · ttkn · · ·
∣∣∣ · · · tk · · · tm · · · tm tk ttkn

//

But this is not possible due to lemma 10.1.1.

It is worth mentioning here that quivers associated to two-part factorizations of a Coxeter element

of simply laced type never contain any acyclic 3-cycles. This is because quivers associated to
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the initial two-part factorization (involving the defining simple reflections of the Coxeter element

only on the left part of the two-part factorization) of a Coxeter element of simply-laced type

don’t accommodate any cycles, and by Section 10.2.2 we know that any quiver associated to a

two-part factorization obtained from the initial two-part factorization by factorization mutation

doesn’t contain any acyclic 3-cycles. Therefore in our proof for Section 10.2 we need not consider

sub-quivers which are associated to acyclic 3-cycles.
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CHAPTER 11

RECOVERING BAROT-GRANT-MARSH PRESENTATION

In (Barot and Marsh, 2015), Barot and Marsh have constructed groups from diagrams associated

to a seed in a cluster algebra of finite type, that are preserved under seed mutation. In (Grant and

Marsh, 2017), Grant and Marsh generalized it for braid groups.

Theorem 11.0.1 ((Grant and Marsh, 2017)). Let Q be a quiver, mutation equivalent to an orien-

tation of a simply-laced Dynkin diagram (also known as Dynkin quiver) with vertices v1, v2, . . . , vn.

Let B(Q) denote the group generated by the generators s1, s2, · · · , sn and the following 3 relations

1. sisj = sjsi if vi and vj are non-adjacent in Q.

2. sisjsi = sjsisj if vi and vj are adjacent in Q.

3. si1si2 · · · simsi1 · · · sim−2 = si2si3 · · · simsi1si2 · · · sim−1 for every chordless cycle vi1 → vi2 →

· · · → vim−1 → vim → vi1 in Q.

then B(Q) is isomorphic to the Artin group of the same type as the underlying simply-laced Dynkin

diagram, whose orientation is mutation-equivalent to Q.

In other words let Q be an orientation of a simply-laced Dynkin diagram. Let Q′ be a quiver

obtained by performing a finite number of quiver mutations on Q then B(Q) ∼= B(Q′), and are of

the same simply-laced type as Q.

In Theorem 5.1.2 we have shown that each reduced T -decomposition of a Coxeter element c of a

simply-laced type Coxeter group W encode a presentation of the Artin group B(W ) corresponding

to the Coxeter group W . And since the set of reduced T -decompositions of the Coxeter element c is

transitive under the action of Hurwitz moves (Theorem 4.3.4), therefore reduced T -decompositions

obtained from these Hurwitz moves also encode presentations of the same Artin braid group.

In Chapter 10 we introduced a special class of factorizations of the Coxeter elements called the

two-part factorizations (definition 10.0.13) and a special sequence of successive Hurwitz moves called

factorization mutations (definition 10.0.14). Using a simple rule Definition 10.0.16 to associate these
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two-part factorizations with quivers we have shown that factorization mutations on a two-part

factorization are exactly the quiver mutations on the associated quiver.

Now, since two-part factorizations of a Coxeter element form a subset of the reduced T -

decompositions of the Coxeter element and factorization mutations are just a sequence of successive

Hurwitz moves, furthermore since we can rewrite the relation

si1si2 · · · simsi1 · · · sim−2 = si2si3 · · · simsi1si2 · · · sim−1

in Theorem 11.0.1 as

[si1 , si2 · · · sim−1sims
−1
im−1
· · · s−1

i2
] = e

therefore the relations in our presentation (Theorem 5.1.2) are exactly the relations in the Grant-

Marsh’s presentation, thus it follows:

Theorem 11.0.2. Let s1 · · · sn be a reduced S-decomposition of a Coxeter element c. Let Fact2(c)

denote the set of all two-part factorizations of c and Q denote the quiver associated to the two-part

factorization s1 · · · sn|·, then the Artin group presentations arising from the reduced T -decompositions

in Fact2(c) using Theorem 5.1.2 are precisely the presentations arising from the quivers in the mu-

tation class of Q using Theorem 11.0.1.

Therefore our presentation recovers Grant and Marsh’s presentation as a special case. Starting

with a reduced T -decomposition of a Coxeter element c using Hurwitz moves we can produce all

possible reduced T -decompositions of c. However, only a few of these reduced T -decompositions

will qualify as two-part factorizations. It is only at these points that our presentations coincides

with Grant and Marsh’s presentations. Figure 11.1 demonstrates an example.

117



(12)(23)(34)
∣∣∣·

(12)(24)
∣∣∣(23)

(12) (23) (34)

(12)

(23)

(24)

(12), (23), (34) :

(12)(23)(12) = (23)(12)(23)
(23)(34)(23) = (34)(23)(34)
(12)(34)(12) = (34)(12)(34)

(12)(34) = (34)(12)

(12), (23), (24) :

(12)(23)(12) = (23)(12)(23)
(23)(24)(23) = (24)(23)(24)
(12)(24)(12) = (24)(12)(24)

(12)(23)(24)(23) = (23)(24)(23)(12)
(23)(24)(12)(24) = (24)(12)(24)(23)
(24)(23)(12)(23) = (23)(12)(23)(24)

Definition 10.0.16

Definition 10.0.16

Our
presentation

Our
presentation

Grant-Marsh
presentation

Quiver mutationFactorization mutation

Grant-Marsh
presentation

Figure 11.1. Our presentation vs Grant-Marsh’s presentation.
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