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Abstract. Let g be a simple Lie algebra. In this paper we use a particular PBW basis connect a lifting
of the positive root lattice of g into its quantum group, and connect the leading term of the lifting to
the positive cluster fan.

1. Motivation

In linear algebra, we often learn a great deal about a vector space and its constituent vectors by
endowing it with a particular basis, and studying the properties of the basis. For example, choosing an
orthogonal basis of an inner product space allows us to easily calculate coefficients of an expansion of a
given vector by projecting onto each basis vector. The content of the expansion holds information which
sometimes has an intuitive interpretation (like the "harmonic content" of a function).

While we will not be working in an inner product space, we will aim to accomplish a similar thing,
finding the expansion of a given monomial in terms of a chosen basis in the quantum group associated
to a simple Lie algebra g. We study the terms that show up in the expansion, and distinguishing
characteristics of their coefficients. On a more combinatorial note, we will also wish to track these
coefficients in their “straightening” to the basis, and to see the significance of the “leading term” in a
combinatorial setting. Informally, we will be lifting elements of the quantum group up to the Weyl
group (more accurately, to the positive cluster fan) in a specific manner, and tracking what happens in
the latter to make conclusions about the former. Before discussing this, we will need some background
knowledge to formulate the quantum group associated to a simple Lie algebra, PBW basis, and the
positive cluster fan, which we address in the following section.

2. Semisimple Lie Algebras, Root Systems, and Coxeter groups

The quantum group is a deformation of the universal enveloping algebra of a Lie algebra g. We will
use root systems or Dynkin diagrams in its formulations, and to this end we give some background on
the subject to have the tools needed. As most of the subject is a little removed from the result we wish
to prove and the area we will concern ourselves with, provided here are only definitions and relevant
theorems from the study of Lie algebras which are necessary to understand where everything is coming
from.

Definition 2.1. A Lie algebra is a vector space over a field F (usually of characteristic 0) combined
with an operation called the Lie bracket [·, ·], which satisfies:
(a) [ax+ by, z] = a[x, z] + b[y, z] (Bilinearity)
(b) [x, x] = 0 (Alternativity)
(c) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi Identity),
where x, y, z are vectors, and a, b are scalars. Endowing R3 with the cross product gives an example

of a familiar Lie Algebra most have performed calculations in before. We will be restricting ourselves to
Lie algebras where F will stand for the complex numbers unless stated otherwise.

Definition 2.2. A subalgebra H of a given Lie algebra L is a subspace closed under the Lie bracket. An
ideal of L is a subspace I such that [L, I] ⊂ I, where [L, I] is the set {[l, i] : l ∈ L, i ∈ I}.

Definition 2.3. A Lie algebra is said to be simple if it has no proper nontrivial ideals. It is said to be
semisimple if it may be written as a direct sum of simple Lie algebras.

The main tool for classifying simple Lie algebras is the notion of a root system.

Definition 2.4 (Root System). A finite set of non-zero vectors Φ ⊂ Rn is said to be a root system of a
subspace E if it satisfies the following conditions.
(a) SpanΦ = E

1
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(b) ∀α ∈ Φ, the only vectors parallel to α in Φ are ±α
(c) ∀α ∈ Φ, Φ is closed under reflection by the hyperplane perpendicular to α
(d) if α, β ∈ Φ, the projection of β on α is an integer or half integer multiple of α

Reflecting α through the hyperplane perpendicular β, for example, to corresponds to projecting α
onto β, flipping this portion, and then adding the remaining part of α to this. For Φ to be closed under
this, we need that α - 2 (β,α)

(β,β)β ∈ Φ for α, β ∈ Φ, where (·, ·) is the normal dot product. Similarly,

condition (d) just says ∀α, β ∈ Φ, 2 (α,β)
(α,α) ∈ Z. As it will be useful later in writing the Cartan matrix, we

will write this asymmetrical product as ⟨a, b⟩ = 2 (α,β)
(α,α)

The collection of these reflections forms a group under composition, as function composition is always
associative, and each reflection is its own inverse.

Definition 2.5. The Weyl group of a root system Φ is the collection of reflections {σα}α∈Φ. This group
is a subgroup of GL(E), as reflections are invertible linear transformations. It is also viewable very
clearly as a subgroup of the symmetric group, SΦ, since each reflection just permutes around elements
of Φ.

It is notable that the Weyl group is finite as a subgroup of the permutations on the roots.
We get to the main theorem motivating these definitions .

Theorem 2.6. Every semisimple Lie Algebra is uniquely determined by an associated root system.

The origin of root systems at least vaguely explained, we now wish to establish some key theorems and
definitions relating to root systems and the Weyl group. Most of these results are contained in [Hum12],
and we follow the structure of a survey of root systems done by Joshua Ruiter in 2019 [Rui19].

Definition 2.7. A root system is said to be reducible if it is writable as a disjoint union of orthogonal
sets Φ = Φ1 ⊔ Φ2 where orthogonality means that any vector from Φ1 is orthogonal to any vector from
Φ2

Theorem 2.8. Every root system decomposes into a direct sum of irreducible root systems.

From here it becomes clear that classification of irreducible root systems gives us classification of all
root systems. Fortunately, this famous problem is already done for us, and we explore the irreducibles
explicitly later. Another question related to root systems is similar to that of finding a basis for a vector
space, and thus gets the following name.

Definition 2.9. A base of root system Φ spanning vector space E is a basis ∆ of E, ∆ ⊂ Φ, with the
property that every element of Φ is expressible as an integer combination of of elements of ∆, where the
sign of all the integer coefficients is the same. We have, for β ∈ Φ

β =
∑
α∈∆

kαα

with kα ∈ Z all having the same sign.

This condition of sign consistency allows us the notion of positive and negative roots with respect to
a given base, the elements of which are called simple roots.

Definition 2.10. With ∆ as before, we say α ∈ ∆ is a simple root, and say ∆ composes the simple roots.
Denote by Φ+, the set of positive roots, that is, the set Φ+ = {

∑
α∈∆ kαα : kα ≥ 0}, and the negative

roots by Φ− = {
∑

α∈∆ kαα : kα ≤ 0}. The height of a positive root β is the sum of the coefficients of the
simple roots required to write it.

As every vector space has a basis, so too will every root system have a base. We state it as a theorem.

Theorem 2.11. Every root system has a base.

Just as bases for a vector space are not unique, bases for a root system are not either. To formulate
Dynkin diagrams and furthermore the quantum group, We will want to capture some information about
the root system itself through a base without worrying about the specifics of which base we selected and
whether or not it impacted that information, and so it is useful to have the following fact as well. I
particularly like Ruiter’s ordering in presenting this idea, and thus have opted to shadow his approach.

Theorem 2.12. The Weyl group W of a root system Φ acts simply transitively on the set of basis of Φ
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An element of the Weyl group, say s, acts on a base in the obvious way by applying the reflection s to
each element of the base. We want to encode the information of the root system into a familiar object
to study its properties further. To this end, we will define the Cartan matrix, and then have almost all
the tools in our toolbox to define the quantum group associated to a simple Lie algebra.

Definition 2.13. Let ∆ be a base of root system Φ. Give the simple roots of the base an arbitrary
ordering, writing ∆ = {α1, α2, . . . , αn} and define the Cartan matrix C to be the n × n matrix with
entries

Cij = ⟨αi, αj⟩

Now, since W acts simply transitively on the set of bases by the proceeding theorem, and since the
product ⟨sαi, sαj⟩ = ⟨αi, αj⟩ for Weyl group element s, we see that C is independent of choice of basis.
Selecting a different ordering of ∆ just permutes rows and columns of the matrix, so it is quite indifferent
to any choices we made. This indifference is inherited by the Dynkin diagram.

Definition 2.14. Let Φ have base ∆ with an ordering of the simple roots{α1, α2, . . . , αn}, and C
the corresponding Cartan Matrix. Construct a graph with vertices labelled 1 through n, and connect
max(|Cij |, |Cji|) edges between vertices i and j. If Cij ̸= Cji, the edges drawn are given a direction
from the shorter root to the longer root, and otherwise they are left undirected. This graph is called the
Dynkin diagram of a root system. Forgetting the directions on the graph yields the Coxeter graph.

From here we confirm that it is indifferent of the choice of base or order given to the roots, and thus
encapsulates the essence of the root system in an efficient and unobscured manner. If we could just draw
a Dynkin diagram for all the irreducible root systems, we would be done with total classification. We
return to this in the following section after finishing the all the necessary background knowledge for our
main result.

Definition 2.15. Given a root system Φ with simple roots ∆ = {α1, α2, . . . , αn}, define the simple
reflections of the Weyl group W to be the set S = {s1, s2, . . . , sn} where si is the reflection over the
hyperplane perpendicular to αi. we say w = si1si2 · · · siN is a word for w ∈ W , and if the expression
is reduced, that it is a reduced word. Sometimes, we will index reflections (not necessarily simple), by
the root with which the hyperplane is perpendicular, writing sβ for the reflection across the hyperplane
perpendicular to β.

As bases aren’t unique, neither are selections of simple reflections. In addition, just as the simple
roots generate the root system, the simple reflections will generate the Weyl group. We state this as a
theorem.

Theorem 2.16. The simple reflections generate the Weyl group.

We have then that every element of the Weyl group is expressible as a product of simple reflections,
which motivates the notion of "length" of an element of the Weyl group with respect to a choice of simple
reflections.

Definition 2.17. the length function ℓ : W → N is defined ℓ(w) = n where n is the smallest integer
such that w is writable as a product of n elements in S

From the definition of the length function, the preceding theorem, and our knowledge that the Weyl
group is finite, it follows that there is a maximal element as well. We will often refer to such an element
as the longest element and concern ourselves with a reduced expression for it (and the corresponding
order it induces on the positive roots). We write it as a definition.

Definition 2.18. The longest element of the Weyl group W with respect to choice of simple roots S is an
element w of maximal length. Write w = si1si2 · · · siN , and denote β1 = αi1 , and βk = si1si2 · · · sik−1

αik .
The ordered set {β1, β2, . . . , βN} is called an induced ordering of the roots, and it is said to be induced
by the expression for w.

With that definition in mind, we should hope that this collection of roots actually contains them all,
so that we induce a total ordering. Fortunately, it is the case, and we state it as a theorem.

Theorem 2.19. Let Φ be a root system with base ∆ = {α1, α2, . . . , αn}, and W be the corresponding
Weyl group, generated by S. Let w = si1si2 · · · siN be a reduced expression for the longest element. The
collection {βi : 1 ≤ i ≤ N} defined according to βk = si1si2 · · · sik−1

αik is the actually the collection of
positive roots with respect to ∆. In particular, βi ̸= βj for i ̸= j
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It is clear by this theorem that the length of the longest element of the Weyl group is actually exactly
the number of positive roots. It is also notable that not just any ordering on the positive roots is
obtainable in this fashion, and there is a criterion to tell when an ordering may be induced in this
fashion. (add reference for this).

Weyl groups are a special case of well studied Coxeter systems, and this more general framework gives
us many tools to work with. We briefly define the braid relations of a Coxeter group, which give us
better insight into the picture when we lift to the quantum group, specifically telling us why An is so
well behaved. More details may be found in [Hum90], and we follow the structure of [Per].

Definition 2.20. A Coxeter system is a pair (W,S), with W a group and S ⊂ W a set of generators
satisfying the following relations:

s2 = 1

(ss′)m(s,s′) = 1

with m(s, s′) ≥ 2 for s ̸= s′, where it is possible that m(s, s′) = ∞ if there is no relation. Elements of S
are referred to as simple reflections. The above relation may be expressed as

ss′ss′ . . . = s′ss′s . . .

where there is m(s, s′) terms on either side. such relations are called braid relations.

Now, going back to our discussion regarding the longest element of the Weyl group, we want to relate
all possible reduced words for this element. Thankfully, any two reduced expressions happen to be related
in a very nice way.

Definition 2.21. Given a reduced expression w = si1si2 · · · rur · · · stsiN , with st = ts and rur = uru,
we say the new reduced expression formed by exchanging the adjacent reflections s and t is obtained
by a commutation move. The new reduced expression obtained by replacing rur with uru is said to be
obtained by a braid move.

In general, if the braid relation is more complicated than uru = rur (i.e. ur · · · = ru · · · with m(u, r)
reflections on each side), the braid move replaces one side of the equality with the other.

We now can state the key theorem relating all the reduced expressions for the longest element of the
Weyl group.

Theorem 2.22 (Matsumoto’s theorem). Any two reduced expressions for the longest word of the Weyl
group are related by a sequence of commutation and/or braid moves.

Matsumoto’s theorem relates reduced expressions, but sometimes we will concern ourselves with unre-
duced expressions (some subset of them anyway). For this, we introduce the concept of a Hurwitz move

Definition 2.23. Given a word (si1 , si2 , . . . , sij , sij+1
, . . . , sir ), the word obtained by transforming to

(si1 , si2 , . . . , sij+1
, s−1

ij+1
sijsij+1

, . . . , sir ) is said to be related to the original word by a Hurwitz move.

The expressions a given starting reduced word actually have a rich combinatorial structure, one aspect
of which may be considered as a simplicial complex in the following manner. We take our reduced word
to be the special case of a Coxeter element, say c = snsn−1 · · · s2s1s, and consider the collection of all
reflections which may be obtained from simple reflections by conjugation a finite number of times (for
example, in the symmetric group, these would be transpositions (i j): This example is of particular
interest to us). From here, find all products of these reflections of length n which are equal to c. The sets
consisting of these are maximal simplices, and then closing down the simplices generates the simplicial
complex. From here, we aim to define the positive cluster fan, albeit with suggestive notation, working
directly with formal integer combinations of the reflections themselves at times, instead of with roots.
We write some preliminary definitions for ease of explanation.

Definition 2.24. Given a set of simple reflections {sα}α ∈ I, with I an index set (usually a base ∆) a
Hurwitz reflection is a reflection which is obtained from simple reflections via conjugation (i.e. picking
a "seed" reflection and applying conjugation by other reflections some amount of times). The simplicial
complex defined above corresponding to Coxeter element c will be called the c-complex

Definition 2.25. Given a set of simple reflections {sα}α∈I and Coxeter element c, the positive cluster fan
is the set of non-negative linear combinations of Hurwitz reflections such that for each such combination,
the set of reflections with non-zero coefficient belongs to the c-complex. points where all the coefficients
are non-negative integers are called lattice points on the cluster fan.
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Alternatively, we could associate to each Hurwitz reflection to a positive root (associate sα to α in
the natural way), and have the same positive cluster fan. We illustrate the idea with an example.

Example 2.26. Consider the symmetric group Sn+1 with simple reflections chosen to be simple trans-
positions si = (i i + 1) for 1 ≤ i ≤ n, and take coxeter element c = snsn−1 · · · s2s1. We fix an
order on the Hurwitz reflections corresponding to an order for the roots and find all products of them
that are equal to c. Our c-complex actually has a Catalan number of such maximal simplices, and we
close the simplices under subsets to complete the c-complex. The positive cluster fan will be all non-
negative linear combinations of reflections which lie in the simplicial complex. For example, the element
5 · sn + 1 · sn−1 + 2 · s1s2s1 has non-zero coefficients corresponding to reflections which are a subset of
the maximal simplex snsn−1 · · · s1(s1s2s1), so that it is indeed in the positive cluster fan. An element
s1 + s1s2s1 + s2 would not be in the positive cluster fan, however, since there is no maximal simplex
containing all three of those reflections (the Hurwitz move preserves multiplicity of each root mod2,
counting them as elements in a product. Here there is not an admissible number of s2’s here, and adding
any Hurwitz reflections would only change it by 0 modulo 2). With any Weyl group like this we could
instead looked at positive combinations of roots, where in this case (i j) corresponds to αi+α2+ . . . αj−1

in An - We cover this explicitly in the following section.

We are now ready to talk about the quantum group associated to a simple Lie algebra g, but it is
probably better to familiarize ourselves with the irreducible root systems so that the proof of our main
result slides through easier.

3. The Irreducible Root Systems

All Dynkin diagrams are located at the end of the section.

Example 3.1 (The An root system). Let ϵi for 1 ≤ i ≤ n+1 be the standard basis of Rn+1, and define

An = {±(ϵi − ϵj) : 1 ≤ i < j ≤ n+ 1}
This collection of vectors satisfies all the properties of a root system. It is simply laced (i.e. all the
roots are the same length), and we can quickly see what its Weyl group W looks like after picking an
appropriate set of simple roots. To this end, the usual selection of simple roots is

αi = ϵi − ϵi+1 for 1 ≤ i ≤ n.

Reflection through αi’s hyperplane swaps the coordinates ϵi and ϵi+1, making it correspond to the
transposition (i i+ 1) of the symmetric group Sn+1. Since transpositions generate the whole symmetric
group, we see that the Weyl group of the An root system is precisely the symmetric group Sn+1.

An important fact for us in particular is that αi + αi+1 + · · · + αj for i ≤ j ≤ n make up all the
positive roots, and that they have corresponding Weyl group element (i j + 1). This, combined with
the relation (i i+ 1)(i+1 i+2) = (i i+ 2), where the exponent denotes conjugation, actually gives us the
complete picture (we have the braid relations m(s, s′) = 3 for s ̸= s′ with s′ and s permuting an element
in common, and m(s, s′) = 2 otherwise), so that we are able to write reduced expressions for an arbitrary
word in the quantum group lifted up to the Weyl group explicitly. It will be clear what this means to us
shortly.

Some examples of the possible orderings induced by reduced expression of the longest word would be
the linear order, which organizes the roots as {α1, α1 +α2, α2, α1 +α2 +α3, α2 +α3, α3, . . . , αn}, or the
lexicographical order, organizing the roots as {α1, α1 + α2, . . . , α1 + · · ·+ αn, α2, . . . , αn}

Example 3.2 (The Bn root system). Using the same notation as before for a basis of Rn, we may write

Φ = {±ϵk, ϵi ± ϵj : k, i, j ∈ {1, 2, . . . , n}}

This is the collection of all integer vectors in Rn of length 1 or
√
2. The standard base of simple roots is

selected as

αi = ϵi − ϵi+1 for 1 ≤ i ≤ n− 1

αn = ϵn

The Weyl group of Bn is the group of signed permutations on the set {−n,−n+1, . . . ,−1, 1, . . . , n−1, n},
That is, the set

WBn = {σ : σ is a permutation on {−n,−n+ 1, . . . ,−1, 1, . . . , n− 1, n} ∋ σ(i) = −σ(−i) ∀i}
We see, upon inspection, that the simple reflection corresponding to roots of the form ϵi − ϵi+1 performs
the same as it does in An, giving the (signed) transposition (i i+ 1), where the signed condition implies
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that −i → −(i+ 1) and −(i+ 1) → −i. Finally, the short root corresponds to the signed transposition
(n −n). From here it is clear we can generate the whole group of signed permutations, and we are ready
to work in the quantum group.

However, because we will require an inductive proof of our main result, building the Dynkin diagram
for Bn+1 out of the one for Bn, it is actually more convenient for us to flip this base around, selecting

αi = ϵi+1 − ϵi for 1 ≤ i ≤ n− 1

α1 = ϵ1

Notably, this generates a different set of positive roots, but by our previous work we know not to worry
too much about these differences, and of course we see the Weyl group behaves the same.

Example 3.3 (The Cn root system). The Cn root system is very similar to the Bn root system, but the
short root becomes the long root. Again using the same notation as before for a basis of Rn. Cn is the
collection of integer vectors in Rn of length

√
2 together with vectors of the form 2λ, with λ an integer

vector of length one.
A choice of simple roots is basically the same as Bn, selecting

αi = ϵi − ϵi+1 for 1 ≤ i ≤ n− 1

αn = 2ϵn

A quick calculation shows the Weyl group is indeed the same as that for Bn.

Example 3.4. The Dn root system is the collection of vectors from Rn that are of length
√
2. They

have choice of simple roots

αi = ϵi − ϵi+1 for 1 ≤ i ≤ n− 1

αn = ϵn−1 + ϵn

By our analysis of the An and Bn root systems, we can tell the last simple root performs a negation on
the (n− 1)st and nth coordinates, and also swaps them as a transposition. In the way we generated the
whole group of signed permutations with one negation previously, now we can only generate the group
of signed permutations that change signs an even number of times, as our last simple reflection flips two
coordinates every time in combination with the other simple reflections.

The Weyl group is thus the group of signed permutations on the set {−n,−n+1, . . . ,−1, 1, . . . , n−1, n},
where each signed permutation changes an even number of signs.

There are more irreducible root systems, but for brevity we just give the Dynkin diagrams for all the
irreducible root systems and omit further discussion.

A n

B n

C n

D n

F 4 G 2

E 6

E
7

E
8

Figure 1. All Irreducible root systems. Image from https://upload.wikimedia.org/
wikipedia/commons/0/0c/Finite_Dynkin_diagrams.svg

Theorem 3.5 (Cartan, Killing). Figure 1 is a complete list of all the irreducible Dynkin diagrams.

4. The quantum group associated to a simple Lie algebra

Finally, we are in a position to build the quantum group associated to a simple Lie algebra g. We
present two formulations, one following Tingley’s construction [Tin16], and one used in the QuaGroup
package [dGGT22], helpful for explicit computer calculation.

https://upload.wikimedia.org/wikipedia/commons/0/0c/Finite_Dynkin_diagrams.svg
https://upload.wikimedia.org/wikipedia/commons/0/0c/Finite_Dynkin_diagrams.svg
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Definition 4.1. Let ν be an indeterminate over Q. For a positive integer n, The symmetric quantum
number [n], also called the Gaussian number is defined as

[n] = νn−1 + νn−3 + · · ·+ ν−n+3 + ν−n+1

The Gaussian factorial [n]! is defined as [n][n− 1] · · · [1] for n > 0, with [0]! = 1 The Gaussian binomial
is [

n
k

]
=

[n]!

[k]![n− k]!

A quick calculation shows that [n] = qn−q−n

q−q−1 .
The following definition has one technical detail related to the symmetrizability of the Cartan ma-

trix, but for us is not really important. In particular, given a root system Φ, selecting a base ∆ =
{α1, α2, . . . , αn} and writing the Cartan matrix C, this symmetrizability condition implies the exis-
tence of a unique sequence of positive integers d1, . . . , dn with greatest common divisor 1 such that
diCji = djCij . We set the following quantity (αi, αj) = djCij from here on, and define for β ∈ Φ

qβ = q
(β,β)

2

From here, we define, for non negative integer n, [n]α = [n]ν=qα , and similarly for the other Gaussian
numbers.

Definition 4.2 (The quantum group, QuaGroup formulation). Let g be a Lie algebra, and Φ be the
corresponding root system with base ∆ = {α1, α2, . . . , αn}. The quantum group Uq(g), or quantized
enveloping algebra, is the associative algebra with one over Q(q) generated by Fα,Kα,K

−1
α , Eα for

α ∈ ∆, subject to the following relations

KαK
−1
α = K−1

α Kα = 1,KαKβ = KβKα

EβKα = q−(α,β)KαEβ

KαFβ = q−(α,β)FβKα

EαFβ = FβEα + δα,β
Kα −K−1

α

qα − q−1
α

together with, for α ̸= β

1−⟨β,α⟩∑
k=0

(−1)k
[
1− ⟨β, α⟩

k

]
α

E1−⟨β,α⟩−k
α EβE

k
α = 0

1−⟨β,α⟩∑
k=0

(−1)k
[
1− ⟨β, α⟩

k

]
α

F 1−⟨β,α⟩−k
α FβF

k
α = 0

We now find an intuitive decomposition for this algebra, viewing it as a vector space, and basically
quoting the QuaGroup manual for the theorem statement [dGGT22].

Theorem 4.3. Uq(g) = U−⊗U0⊗U+ as vector spaces, where U− is the subalgebra generated by all the
Fα, U0 by the Kα, and U+ by the Eα

In our case, we will usually look at the lower half generated by the Fα’s, but there is an obvious
symmetry in any case. We move on to constructing a basis for this space. U0 has basis Kr1

α1
· · ·Krn

αn
for

ri integers. Denote rβ,alpha = ⟨β, α⟩, and define the algebra automorphism Tα by

Tα(Eα) = −FαKα

Tα(Eβ) =

rβ,α∑
i=0

(−1)iq−i
α E

(rβ,α−i)
α EβE

(i)
α if α ̸= β

Tα(Kβ) = KβK
(rβ,α
α

Tα(Fα) = −K−1
α Eα

Tα(Fβ) =

rβ,α∑
i=0

(−1)iqiαF
(i)
α FβF

(rβ,α−i)
α

With E
(k)
α = Ek

α/[k]α! and analogously for F
(k)
α .
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Definition 4.4. Fixing a reduced expression w = si1si2 · · · siN , define root vectors
Fk = Tαi1

· · ·Tαik−1
(Fαik

).The monomials F
(m1)
1 F

(m2)
2 · · ·F (mN )

N and E
(n1)
1 E

(n2)
2 · · ·E(nN )

N with mi, ni

non-negative integers form PBW bases of U− and U+ respectively. Taking monomials over all the PBW
root vectors for the Fk, Ek,Kα in the order F

(m1)
1 F

(m2)
2 · · ·F (mN )

N Kr1
α1

· · ·Krn
αn

E
(n1)
1 E

(n2)
2 · · ·E(nN )

N form
the PBW monomials.

Theorem 4.5. The PBW basis forms a basis for the quantum group. In particular, PBW monomials
for the upper and lower halves form bases for the upper and lower halves respectively.

A slightly more intuitive definition, particularly in the simpler cases of a Lie algebra of type ADE,
comes from [Tin16], which we restate briefly below for convenience.

Definition 4.6 (The quantum group, Tingley formulation). Let g be a Lie algebra of type ADE. Given
the Dynkin diagram, index the nodes of the graph, referring to the indexing set as I. As the Dynkin
diagram is a graph, we can talk about adjacent nodes. From here, Lets Ei,Fi,Ki for i ∈ I be generators,
subject to the following relations
for i ̸= j ∈ I we have

KiK
−1
i = K−1

i Ki = 1,KiKj = KjKi,KiEiK
−1
i = q2Ei

KiFiK
−1
i = q−2Fi, EiFj − FjEi = 0, EiFi − FiEi =

Ki −K−1
i

q − q−1

additionally, if i is adjacent to j

E2
i Ej + EjE

2
i = (q + q−1)EiEjEi

F 2
i Fj + FjF

2
i = (q + q−1)FiFjFi

and otherwise Ei commute with Ej , Fi with Fj , and KiEjK
−1
i = Ej , KiFjK

−1
i = Fj .

From here we define our algebra automorphism Ti to create the PBW basis.

Definition 4.7. The algebra automorphism Ti for i a node of the Dynkin diagram will be the function
defined as

Ti(Fj) =


Fj i not adjacent to j

FjFi − qFiFj i adjacent to j

−K−1
j Ej i = j

Ti(Ej) =


Ej i not adjacent to j

EiEj − qEjEi i adjacent to j

−FjKj i = j

Ti(Kj) =


Kj i not adjacent to j

KiKj i adjacent to j

K−1
j i = j

From here in similar fashion, given a fixed reduced expression for the longest element w = si1si2 · · · siN
we define root vectors

Fw;β1
:= Fi1

Fw;β2
:= Ti1Fi2

...
Fw;βN

:= Ti1Ti2 · · ·TiN−1
FiN

When the expression for w is obvious, we suppress it. Finally, building monomials of the root vectors
in the same manner as the QuaGroup formulation gives us the PBW basis. Tingley proves many useful
facts simply in the case of and ADE type Lie algebra, and we reference some of his lemmas later in the
text.
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5. The An root system and associated quantum group

Theorem 5.1 (Walks in A2). Let Uq(g) be the quantum group on A2 with ordering on the positive roots
α1, α1 + α2, α2. Then the following formula holds.

(1) F (n)
α2

F (m)
α1

=

min(n,m)∑
j=0

q(n−j)(m−j)F (m−j)
α1

F
(j)
α1+α2

F (n−j)
α2

To prove this we use induction and one lemma.

Lemma 5.2.

(2) F (n)
α2

Fα1
= Fα1+α2

F (n−1)
α2

+ qnFα1
F (n)
α2

similarly,

(3) Fα2
F (n)
α1

= F (n−1)
α1

Fα1+α2
+ qnF (n−1)

α1
Fα2

Proof. In A2 with the chosen ordering we have the following basic commutation relations
(i) Fα2Fα1 = Fα1+α2 + qFα1Fα2

(ii) Fα1+α2Fα1 = q−1Fα1Fα1+α2

(iii) Fα2
Fα1+α2

= q−1Fα1+α2
Fα2

We now proceed by induction to prove the lemma, say in the F
(n)
α2 Fα1

case. The base case follows by the
first commutation relation, so suppose it holds for n− 1, and we show it holds for n.

F (n)
α2

Fα1
=

Fα2

[n]
F (n−1)
α2

Fα1 =
Fα2

[n]
[Fα1+α2F

(n−2)
α2

+ qn−1Fα1F
(n−1)
α2

]

This becomes, distributing and applying the basic commutation relations, (and remembering the PBW
type monomials exponents wrap the symmetric quantum integers [n] into them)

= q−1 [n− 1]

[n]
Fα1+α2F

(n−1)
α2

+ qn−1 1

[n]
Fα1+α2F

(n−1)
α2

+ qnFα1F
(n)
α2

grouping terms, we use that [n] = q−1[n− 1] + qn−1 to get

= Fα1+α2
F (n−1)
α2

+ qnFα1
F (n)
α2

and the induction is complete. The case for Fα2
F

(n)
α1 is similar, just using explicit calculation and

leveraging properties of the symmetric quantum integers. □

It is clear, if we had chosen a different reduced expression for the longest word (s2s1s2 instead of
s1s2s1), we would exchange the labels α1 and α2, and everything passes through just the same with the
analogous statement. We are now ready to move to the proof of the original statement.

Proof of Theorem 5.1. Let n be fixed, and m a positive integer with n ≥ m in the expression F
(n)
α2 F

(m)
α1 .

We induct on m for fixed n. The base case is handled by lemma 5.2, so we move on to the inductive
step.

F (n)
α2

F (m)
α1

= F (n)
α2

F (m−1)
α1

Fα1

[m]
= [

m−1∑
j=0

q(n−j)(m−1−j)F (m−1−j)
α1

F
(j)
α1+α2

F (n−j)
α2

]
Fα1

[m]

pulling the Fα1

[m] into the sum and applying lemma 5.2 gives

=

m−1∑
j=0

1

[m]
q(n−j)(m−1−j)F (m−1−j)

α1
F

(j+1)
α1+α2

[j + 1]F (n−j−1)
α2

+

m−1∑
k=0

1

[m]
q(n−k)(m−1−k)qn−kq−kF (m−k)

α1
[m− k]F

(k)
α1+α2

F (n−k)
α2

]

To reconcile these sums into one sum, we notice the terms with the same PBW monomial combine when
k = j + 1 ⇐⇒ j = k − 1. plugging in j = k − 1 in the first sum gives the summand

1

[m]
q(n−k+1)(m−k)F (m−k)

α1
F

(k)
α1+α2

[k]F (n−k)
α2
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and the bottom gives
1

[m]
q(n−k)(m−k)q−kF (m−k)

α1
[m− k]F

(k)
α1+α2

F (n−k)
α2

Combining them and looking only at the coefficient in front of the PBW monomial gives

q(m−k)(n−k)

[m]
(qm−k[k] + q−k[m− k])

using the form [m] = qm−q−m

q−q−1 simplifies the top expression to

q(m−k)(n−k) q
m−k(qk + q−k) + q−k(qm−k + q−m+k)

qm − q−m
= q(m−k)(n−k)

so the terms combine as they should. Looking at the terms which do not combine, we see j = m− 1 in
the first sum corresponds to

F
(m)
α1+α2

F (n−m)
α2

and k = 0 corresponds to the term
qmnF (m)

α1
F (n)
α2

rolling everyone into one sum thus gives

F (n)
α2

F (m)
α1

=

m∑
j=0

q(n−j)(m−j)F (m−j)
α1

F
(j)
α1+α2

F (n−j)
α2

The case for m ≥ n for fixed m follows in similar manner, and since any pair of exponents falls into one
of these cases, we are done. □

We see that every possible decomposition of m ·α1+n ·α2 into integer combinations of α1, α1+α2, α2

shows up in this result, and a similar result will be indeed true in An as well. The terms with higher
powers of q correspond to “less efficient” combinations, or combinations where we combined less terms
together. The generalization to An leverages this rank 2 example at each step of the way, using that the
Dynkin Diagram for An may be constructed from the Diagram for An−1 by just appending a vertex to
the right with and edge between the rightmost vertex of An−1, loosely referring to the diagram drawn
as usual.

From this point forward, to have a more concise and meaningful notation, we will write F(i j+1) for
Fαi+···+αj

, indexing the element of the quantum group by the Weyl group element corresponding to the
positive root normally indexing it.

Theorem 5.3 (Basic commutation relations in An). We have the following relations in the lexicographical
order on the quantum group, where (k l) is always written with k < l.

(i) F(j j+1)F(i j) = F(i j+1) + qF(i j)F(j j+1)

(ii) F(j j+1)F(i j+1) = q−1F(i j+1)F(j j+1)

(iii) F(i j+1)F(i j) = q−1F(i j)F(i j+1)

Proof. The reduced expression that induces this ordering is s1s2 · · · sns1s2 · · · sn−1s1 · · · s1s2s1. From
here, the defining relations of the quantum group, and the definition of the root vectors, the relations
follow. In particular, we can use lemma 3.3 of [Tin16] combined with the fact that we may move any
3 vectors that fit the form of Theorem 5.3 to be adjacent via commutation moves (which don’t change
anything), and braid moves that will impact the composition of root vectors uninvolved (they don’t
change root vectors indexed by simple roots). □

From here, knowing the effects of the commutation and braid moves on our root vectors, we see the
linear and lexicographical order are interchangeable. We also see that these relations are exactly the
same shape as the case of A2 in Lemma 5.2. We hope to generalize this idea to any admissible orderings
in a simple manner, stated in the final section.

Definition 5.4. Given a positive integer combination of simple roots m1 · α1 +m2 · α2 + · · ·+mn · αn

and an ordering on the roots {β1, . . . , βN}, we say a walk with respect to order {β1, . . . , βN} on the root
lattice from 0 to m1 · α1 +m2 · α2 + · · ·+mn · αn is a finite sequence of positive roots written in order
such that the sum of all the entries is m1 · α1 +m2 · α2 + · · ·+mn · αn.

When the order is apparent, we will just refer to such a sequence as a walk without mentioning it.
For us, this order will be induced by the reduced word for the longest element taken when formulating
the PBW basis of the quantum group.
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When we discard the order on the walk, we end up with something referred to as a Kostant partition,
which just repackages the simple roots with multiplicity into a collection of positive roots whose sum
preserves multiplicity.

1 3 5

0 0

0

0 2 5

1 0

0

1 2 4

0 1

0

0 1 4

1 1

0

1 1 3

0 2

0

0 2 4

0 0

1

0 0 3

1 2

0

0 1 3

0 1

1

1 0 2

0 3

0

0 0 2

0 2

1

Figure 2. The set of Kostant partitions K(α1+3α2+5α3) ∈ Q+
4 , partially ordered using

the canonical basis of the quantum group U+
q (sl4). Coefficients of roots are arranged by

dominance ordering proposed by Professor Williams of UTD.

Example 5.5. A walk in A3 from 0 to 4 · α1 + 6 · α2 + 5 · α3 could be

(α1, α1 + α2, α1 + α2, α1 + α2 + α3, α2, α2 + α3, α2 + α3, α3, α3, α3)

Where the order is apparent from the order the sequence is written in.

When we write a product of quantum group elements indexed by the simple roots in the reverse order
with multiplicities, we will associate with it a point on the root lattice. Every possible walk to this point
will be realized in the PBW straightening of this expression, and the associated power of q that a given
realized walk comes with will be determined as follows:

Each element in the walk will look behind him and see how many terms he could have combined with
to make a "more efficient" walk, and it will happen that the number of such terms will correspond to
the power of q contributed in that PBW monomial straightening of the expression of the simple roots
taken in the totally wrong order. We give a more precise definition followed by an example.

Definition 5.6. The inversion number of a walk ω = (γ1, γ2, . . . , γl) (γi are positive roots, usually with
repetitions, and l is the length of the sequence) with respect to order {β1, . . . , βN} on the positive roots
is the number

inv(ω) = |{i < j : γi + γj admits a Kostant partition with element of height > max(h(γi), h(γj))}|

Example 5.7. We may use Gap’s QuaGroup package to straighten the small expression below in An,
with n ≥ 3, and interpret its results ourselves. In this case, we have, rather than the lexicographical
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order, the linear order.

F (2)
α3

F (3)
α2

F (1)
α1

=Fα2
Fα1+α2+α3

Fα2+α3
+ q2F (2)

α2
Fα1+α2+α3

Fα3
+

q2Fα1+α2
F

(2)
α2+α3

+ q3Fα1
Fα2

F
(2)
α2+α3

+

q3Fα1+α2
Fα2

Fα2+α3
Fα3

+ q5Fα1
F (2)
α2

Fα2+α3
Fα3

+

q6Fα1+α2
F (2)
α2

F (3)
α3

+ q9Fα1
F (3)
α2

F (2)
α3

Let us examine the q3Fα1
Fα2

F
(2)
α2+α3

term, and see how it got that q3. The Fα1
sees no one behind

him, and contributes no q’s. The Fα2
looks behind him and notices he could have combined with Fα1

to form Fα1+α2 , and thus gives us one q. Each Fα2+α3 looks behind him and notices he could have
combined with Fα1 to form Fα1+α2+α3 , giving us one q each so that they give two q’s. The total number
of q’s comes out to be three.

Writing out the walk corresponding here is the real picture of interest, and we pick another term to
further illustrate the point. Consider the q5Fα1

F
(2)
α2 Fα2+α3

Fα3
term, and write the corresponding walk:

(α1, α2, α2, α2 + α3, α3)

α1 sees no one behind him as usual, each α2 sees the α1 behind them and contribute a q each, the
α2 + α3 only sees the one α1 behind him and contributes a q, and the α3 sees the two α2’s behind him
and contributes one q for each α2, for a total of 2 + 1 + 2 = 5 q’s.

We prove this statement generally with a main theorem of interest.

Definition 5.8. Let ω be a walk to a given root lattice point p = m1 · α1 + m2 · α2 + · · · + mn · αn.
Denote by the symbol Fω the PBW type monomial with exponent of each Fx for x a positive root to be
the number of times x shows up in the walk ω.

Definition 5.9. Let ωp be the set of all walks to a root lattice point p. Denote the counting function f
to be the function mapping walks to powers of q in the following manner.

(4) f : Gp → Z ω 7→ inv(ω)

We now state the theorem

Theorem 5.10 (Walks in An). Endow the positive roots of An with their lexicographic order with respect
to their form as reflections in the Weyl group and consider the quantum group with this choice of PBW
basis, and let p = m1 · α1 +m2 · α2 + · · ·+mn · αn. Then

(5) F (mn)
αn

F (mn−1)
αn−1

. . . F (m2)
α2

F (m1)
α1

=
∑

ω walk to p

qf(ω)Fω

Proof. We prove by induction on n, using our previous exposition regarding the mini copies of A2 in An.
The base case is precisely Theorem 5.1, so we move to the inductive step. Suppose the theorem holds
for An−1, and call point p∗ the point obtained from point p by setting mn = 0 we have

F (mn)
αn

F (mn−1)
αn−1

. . . F (m2)
α2

F (m1)
α1

= F (mn)
αn

∑
ω∗ walk to p∗

qf(ω
∗)Fω∗

Pulling F
(mn)
αn into the sum must be treated very carefully, but one part at least is clear - from the

basic commutation relations, each time an Fαn runs into someone he does not commute with, he splits
into two terms, one with the combination applied, and one with the order changed (at the expense of a
q). From here it is clear that every possible walk to point p must occur, and that these walks are the
only terms in the sum (the multiplicity of each αi is conserved at each step). Alternatively, remembering
Theorem 5.1, and applying it successively from right to left in the original straightened expression, we
see that the only coefficients in front of each PBW monomial can be a power of q. Putting these two
observations together gives the following result:

F (mn)
αn

F (mn−1)
αn−1

. . . F (m2)
α2

F (m1)
α1

=
∑

ω walk to p

qg(ω)Fω

for some function g which outputs a positive integer given a walk to p. By linear independence of the
PBW monomials, all that remains is to find this well defined function g, and to prove that is agrees with
f for every walk ω to p.

We show how F
(mn)
αn acts on each summand, splitting it into a collection of new walks. The element

F(n n+1) will commute at no q cost with all the elements F(i j) for j < n, and each F(n n+1) costs one
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q to go past each F(i n) without combining, remembering our basic commutation relations. we write an
arbitrary summand F

(mn)
(n n+1) · F

(j1)
(1 2) . . . F

(jk)
(i n) . . . F

(jl)
(n−1 n), where we have written it so that F(i n) is the

leftmost term in the product that has an n in it. The F(n n+1)’s then go past all the terms to the left
of this element for free, and meet the first crossroads here. By our previous argument, every walk will
show up for sure with exactly some power of q as its coefficient, so we don’t need to do the bookkeeping
of splitting at each step, and only need to see how much q cost we incurred bringing (n n+1)’s past the
other terms without combining for each summand to find the power of q associated to it.

One important fact in this is that the lexicographical order is not disturbed by combining a F(n n+1)

with F(i n), for terms to the right of F(i n) must be of the form F(j k) with i < j < k, so that F(i n+1)

is still ahead of F(j k). This makes the bookkeeping significantly easier. An F(n n+1) combining with
a fixed F(i n) comes at no q cost, and when the newly minted F(i n+1) looks behind him in the walk
sequence, he sees the same people who F(i n) saw previously, but also sees those terms of the form F(j n)

with j < i. But then the number of q’s incurred by pulling the the F(n n+1) through the terms of the
form F(j n) before finally combining with F(i n) plus the number of q’s from the original walk sequence to
p∗ is precisely the number of q’s determined by the counting function f to point p, so that the induction
is complete. □

It is quite interesting to see that exactly one PBW monomial has no q’s as a coefficient in front of
them. This is clear by just applying the straightening from Theorem 5.1 repeatedly and noting that
combining the most terms possible iteratively from right to left is the only way to not incur a q. This
leading term is special, and motivates the following discussion.

The act of combining as many powers of adjacent terms together in the quantum group for An has a
striking resemblance to a Hurwitz move performed on the corresponding element in the Weyl group, but
in this case depends upon the relative sizes of exponents of adjacent terms in a product for the quantum
group. We illustrate with an example, and formalize it afterwards.

Example 5.11. Consider F
(n)
α2 F

(m)
α1 in A2, and write out the positive cluster fan element n · s2 +m · s1

corresponding to this. One can perform the Hurwitz move leading to s1(s1s2s1) on the Weyl group
element s2s1, or the move leading to (s2s1s2)s2, and these two cases become the cases for m > n and
n < m respectively when thinking in the quantum group according to Lemma 5.2 and writing out the
leading term. In the positive cluster fan, n · s2 + m · s1 gets sent to min(n,m)s1s2s1 + |m − n|si for
i = 1, 2 based on sign of m − n. When they are equal, we instead get the subword s1s2s1 = s2s1s2 by
the braid relations, and in the positive cluster fan in this case we end up on a diagonal rather than a
maximal simplex.

This discussion holds in An as well, by the same token of considering the small copies of A2. We state
this explicitly.

Definition 5.12. Assign to each root αr+ . . .+αt its Hurwitz reflection to be sr conjugated by sr+1 and
successively conjugated by each sl in order until finally conjugating by st . Given a monomial in PBW
root vectors F

(mi1 )

βi1
F

(mi2 )

βi2
· · ·F

(mij
)

βij
with each mik > 0, the corresponding Weyl group element will be

the product of reflections sβi1
sβi2

· · · sβij
, where each sβik

is written as its assigned Hurwitz reflection in
terms of simple roots. The corresponding fan lattice element will be mi1 ·sβi1

+mi2 ·sβi2
+ . . .+mij ·sβij

Definition 5.13 (Quantum Hurwitz Move). Given a PBW monomial F (mi1
)

βi1
F

(mi2
)

βi2
· · ·F

(mij
)

βij
with each

mik > 0, the straightening of two adjacent root vectors via an application of Theorem 5.1 performs a
quantum Hurwitz move on the monomial, where the leading term is the only part of interest. The leading
term has corresponding Weyl group element which has been changed by a usual Hurwitz move applied
to the adjacent terms straightened, and corresponding fan lattice element will have the changed Weyl
group element replacing the minimum of the two from the original fan lattice element.

Example 5.14. The rightmost to leftmost combination of terms to get a unique leading term in the
expression F

(mn)
αn F

(mn−1)
αn−1 . . . F

(m2)
α2 F

(m1)
α1 performs a quantum Hurwitz move at each step, where the

original corresponding Weyl group element snsn−1 · · · s2s1 gets sent to a subword of snsn−1 · · · (s2s1s2)s2
or snsn−1 · · · s1(s1s2s1) in the first iteration, and continues the combining process from right to left until
completion.

In the case of a totally reversed monomial of simple roots, we see that at each step, the only terms
with non-zero coefficient in the fan lattice point change in such a way to maintain the collection of vectors
with non-zero coefficient to be a subword of the coxeter element c = snsn−1 · · · s1, as the corresponding
Weyl group element is related by Hurwitz move.
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In particular, since the leading term after all the untangling corresponds to an expression in the Weyl
group that is a subword of successive applications of Hurwitz moves on the initial word snsn−1 · · · s2s1,
we have almost proven the following theorem first conjectured by Professor Williams.

Theorem 5.15 (Hurwitz moves in the quantum group). The leading term on the right hand side ex-
pression from Theorem 5.10 has fan lattice point on the positive cluster fan. This correspondence is
bijective, so that for every element in the positive cluster fan, there is a unique unstraightened element
in the quantum group that straightens to it.

Proof. That every unstraightened monomial straightens to have a unique leading term which corresponds
to an element of the positive cluster fan is known. Injectivity follows from preservation of the multiplicity
of each root. Surjectivity follows from the fact that each each positive cluster fan element may be
repackaged backwards to unstraighten in a unique way, just reversing the straightening process from
Theorem 5.10. We conclude they are in bijection. □

We have established our two important results, one regarding walks, and one regarding the nature of
the leading term in the expansion in the simplest case. Specifically, we chose An with a chosen ordering
on the positive roots, untangling an expression in the exact wrong order, but these results are likely
generalizable with the heavy lifting done prior.

6. Generalizations and Future Research

The linear order is special in some sense, but we conjecture the following result, which would follow
immediately if the shape of the relations from Theorem 5.3 remain unchanged under braid moves (the only
change that we predict would occur is reversing the order of the three adjacent root vectors, and changing
the compositions of the middle). If the braid move does not impact relations of the form Theorem 5.3
aside from possible exchanging the places of the non-commuting root vectors, we immediately have the
following proposition.

Proposition 6.1. let w = si1si2 · · · siN be a reduced expression for the longest word, and construct the
PBW basis for the quantum group. Let {γi}ni=1 be the simple roots, re-indexed so that they are in the
order induced by w. Then

F (mn)
γn

F (mn−1)
γn−1

. . . F (m2)
γ2

F (m1)
γ1

=
∑

ω walk to p

qf(ω)Fω

Where lattice point p = m1 · γ1 +m2 · γ2 + · · · +mn · γn. Furthermore, the LHS straightens to have a
unique leading term which corresponds to a lattice point on the positive cluster fan corresponding to the
c-complex with Coxeter element c which multiplies the simple roots in the reverse order from the induced
ordering.

The technique of examining the rank 2 case of An and applying it successively applies in the simply
laced cases, perhaps believable so (after all, all of Tingley’s lemmas hold in these cases), but also indeed
applies to the non-simply laced cases as well, with a caveat accounting for the different length roots. We
show the idea in B2, and perform a similar induction to get to Bn

To address the differing length roots, we wish to ascribe a weight depending on the normalized length
of the vectors normally counted in the inversion number.

Definition 6.2 (Bn inversion number). for shorthand, two positive roots γi, γj satisfy condition ⋆
if γi + γj admits a Kostant partition with element of height > max(h(γi), h(γj). Given a walk ω =
(γ1, γ2, . . . , γl) in Bn, we defined the Bn inversion number

inv(ω) =|{i < j : γi and γj satisfy condition (⋆)}|

+|{i < j : γi and γj satisfy condition (⋆) and |γi| =
√
2}|

Basically, we want to double count those pairs which have a preceding longer root in Bn. We could see
how one may generalize this to an arbitrary root system by counting pairs multiple times based on the
length of the preceding root (normalized to the shortest root). The counting function definition does not
change (except that now it uses this generalized inversion number), nor does the definition for Fω from
the previous section. We illustrate the idea with an small example in B3, again using the QuaGroup
package.

Example 6.3.

F (2)
α3

F (1)
α2

F (2)
α1

=Fα1Fα1+α2+2α3 + qFα1Fα1+α2+α3Fα3 + q4F (2)
α1

Fα2+2α3

+ q4Fα1
Fα1+α2

F (2)
α3

+ q5F (2)
α1

Fα2+α3
Fα3

+ q8F (2)
α1

Fα2+α3
Fα3
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Inspection shows the counting process with the new definition of inversion number checks out.

Proposition 6.4. In Bn, with standard selection of roots in linear ordering α1, α1 +α2, α2, . . . , αn−1 +
αn, αn−1 + 2αn, αn, we have

F (mn)
αn

F (mn−1)
αn−1

. . . F (m2)
α2

F (m1)
α1

=
∑

ω walk to p

qf(ω)Fω

Proof sketch: We will have a rank two case similar to Theorem 5.1 for B2, proving with induction and
properties of symmetric quantum integers. From here, we will effectively use our non-standard choice
of positive roots to imagine what happens when we glue on a long root to the end. Loosely, this is like
gluing a root α0 = ϵ0 − ϵ1 on the left and pulling it through in the induction step, utilizing the rank
two case to split it into every possible walk, and again having a unique term with no q’s obtained by
combining at every step. The only roots for which this new root talks to are those of the form α1 + . . .,
and the elementary relations for combining this vector to α0+α1+ . . . will encode exactly a q2 for every
time we do not combine to form such a vector, which remembers the new lattice point precisely as it
should in the walk interpretation. □
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