Two Kingdoms: Kingdom A \& Kingdom B

Each Kingdom has a king and each Kingdom has a thief.

At the start of each day, the king places two coins on top of his stack of coins (which starts out empty).

At the start of each day, the king places two coins on top of his stack of coins (which starts out empty).

At the end of each day, the thief steals one coin from the stack:

- In Kingdom A (for Above), the thief steals the top coin.
- In Kingdom B (for Below), the thief steals the bottom coin.

At the start of each day, the king places two coins on top of his stack of coins (which starts out empty).

At the end of each day, the thief steals one coin from the stack:

- In Kingdom A (for Above), the thief steals the top coin.
- In Kingdom B (for Below), the thief steals the bottom coin.

At the start of each day, the king places two coins on top of his stack of coins (which starts out empty).

At the end of each day, the thief steals one coin from the stack:

- In Kingdom A (for Above), the thief steals the top coin.
- In Kingdom B (for Below), the thief steals the bottom coin.

At the start of each day, the king places two coins on top of his stack of coins (which starts out empty).

At the end of each day, the thief steals one coin from the stack:

- In Kingdom A (for Above), the thief steals the top coin.
- In Kingdom B (for Below), the thief steals the bottom coin.

Question

After an infinite number of days, how many coins are left?

"Turtles all the way down..."

- The set of all sets that don't contain themselves. (Russell)
- There are different kinds of infinity! (cardinals and ordinals)
- There are different sizes of infinity! $(|\mathbb{R}|>|\mathbb{N}|)$
- You can choose one shoe from each pair of an infinite collection of pairs of shoes (take the left one from each pair), but the story is different for socks! (Axiom of Choice)
- There are true arithmetical statements that "can't be proven with arithmetic."

Answer?

Every day, the king puts down two coins. Every day, the thief steals one. A net gain of one coin. Therefore, an infinite number of coins. . . right?

Kingdom A (for Above): Label Coins

Kingdom A (for Above): Label Coins

Kingdom A (for Above): Label Coins

Kingdom A (for Above): Label Coins

All odd numbered coins are left. ∞ odd numbers, hence ∞ coins left in A.

Kingdom B (for Below): Label Coins

2.

Kingdom B (for Below): Label Coins

Kingdom B (for Below): Label Coins

Kingdom B (for Below): Label Coins

If you think there are ∞ coins left, name a single one!

Kingdom B (for Below): Label Coins

If you think there are ∞ coins left, name a single one! You can't-because there are none.

