Strange Ěxpectations

Nathan Williams (UTD)
Joint with Marko Thiel (Marshall Wace LLP) and Eric Stucky (UMN)

UCLA Combinatorics Seminar

December 3, 2020

Blue checkmark:

1
 Cores
 AND
 THE COROOT LATTICE

Cores

An a-rim hook of λ is a connected boundary strip of a boxes.

$$
a=5
$$

- For a fixed $a \in \mathbb{N}$, we can try to remove all a-rim hooks.
- Order doesn't matter!?!
- Partitions with no a-rim hooks are called a-cores.

AbACI

The a-abacus records the boundary of λ on a runners. $a=5$ Removing an a-rim hook pushes an • up a runner.

$\therefore a$-cores are those shapes that are "flush" on the a-abacus.

Generating 2-cores

Label points (i, j) in $\mathbb{N} \times \mathbb{N}$ by content $(i-j) \bmod 2$.

- s_{0} adds or removes all boxes with content 0
- s_{1} adds or removes all boxes with content 1 .

GEnERATING 3-CORES

"Same thing" for $a=3$: label by content $\bmod 3$:

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

- s_{0} adds/dels 0 boxes
- s_{1} adds/dels 1 boxes
- s_{2} conjugates (?!?)

Generating 3-cores

"Same thing" for $a=3$: label by content $\bmod 3$:

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

- s_{0} adds/dels 0 boxes
- s_{1} adds/dels 1 boxes
- s_{2} conjugates (?!?)

Generating a-CORES

Same thing for higher a:

- label by content moda
- s_{i} adds/removes all boxes with content i

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

GEnERATING a-CORES

Same thing for higher a:

- label by content moda
- s_{i} adds/removes all boxes with content i

0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0
0	1	2	0	1	2
2	0	1	2	0	1
1	2	0	1	2	0

Lattice Points

a-cores are really integer points in \mathbb{R}^{a} with zero sum $\left(\mathcal{Q}_{a}\right)$:

- "balance" the abacus and
- record the heights of the runners.

On \mathbb{R}^{a} :

- s_{i} swaps the i and $(i+1)$ st coordinates
- s_{0} swaps the first and last coordinates (and adds $e_{1}-e_{a}$).

Generalizing

This set \mathcal{Q}_{a} is a (co)root lattice of type A...so

- $\mathcal{Q}_{a} \mapsto$ coroot lattice \mathcal{Q}^{\vee}
- $\mathfrak{S}_{a} \mapsto$ Weyl group W
- $\widetilde{\mathfrak{S}}_{a} \mapsto$ affine Weyl group $\widetilde{W}=W \ltimes \mathcal{Q}^{\imath}=W \ltimes(\widetilde{W} / W)$.

Exercise: find combinatorial models for the action of classical \widetilde{W} on \mathcal{Q}^{\curlyvee}. (Hint: embed \widetilde{W} into $\widetilde{\mathfrak{S}}_{a}$ and \mathcal{Q}^{\imath} into \mathcal{Q}_{a}).

Nice case: Type A

- a-cores model $\widetilde{W}=\widetilde{\mathfrak{S}}_{a}$ acting on $\mathcal{Q}_{a}=\left\{q \in \mathbb{Z}^{a}: \sum_{i} q_{i}=0\right\}$.

Nice case: Type G_{2}

- 3-cores also model $\widetilde{W}=\widetilde{G}_{2}$ acting on $\mathcal{Q}^{\breve{ }}=\mathcal{Q}_{3}$.

Nice case: Type C

- Self-conjugate 2a-cores model $\widetilde{W}=\widetilde{C}_{a}$ acting on $\mathcal{Q}^{\mathfrak{}}=\mathbb{Z}^{a}$.

1. (Co)root lattices \mathcal{Q}^{\wedge} generalize a-cores.

2

MACDONALD'S IDENTITIES AND
 THE SIZE STATISTIC

gen. func for $\stackrel{\text { parations }}{\downarrow \text { bythoxes }}$

It a-tuple of
partitions a-cores
Theorem
parlyins

$$
\prod_{i=1}^{\infty} \frac{1}{1-x^{i}}=\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{a i}}\right)^{a} \overbrace{q \in \operatorname{core}(a)} x^{\text {size }(q)} .
$$

Macdonald's affine denominator formula

Theorem (I. G. Macdonald 1971, Kac and Moody)

$$
\prod_{\alpha \in \widetilde{\Phi}^{+}}\left(1-e^{-\alpha}\right)^{m u l t(\alpha)}=\sum_{w \in \widetilde{W}}(-1)^{\ell(w)} e^{w(\rho)-\rho} .
$$

- generalizes Weyl's denominator formula for simple Lie algebras
- explicit: imaginary roots indexed by \mathbb{Z} with multiplicity n

Famous Specializations

Specializations of

$$
\prod_{\alpha \in \widetilde{\Phi}^{+}}\left(1-e^{-\alpha}\right)^{m_{\alpha}}=\sum_{w \in \widetilde{W}}(-1)^{\ell(w)} e^{w(\rho)-\rho}
$$

for various root systems give many famous partition identities:

- Euler's pentagonal number theorem $(q)_{\infty}=\sum_{i=-\infty}^{\infty}(-1)^{i} q^{i(3 i-1) / 2}$
- $(q)_{\infty}^{3}=\sum_{i=0}^{\infty}(-1)^{i}(2 i+1) q^{i(i+1) / 2}$
- Jacobi's triple product identity
- Dyson's identity for Ramanjuan's τ-function $\tau(n)=\sum \frac{(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)}{1!2!3!4!}$
- $(q)_{\infty}^{\text {dimg }}$ for any simple Lie algebra \mathfrak{g} (adjoint or short adjoint)
- ...many more

Dyson's "Missed Opportunities"

Pursing these identities further by my pedestrian methods, I found that there exists a formula of the same degree of elegance as [Dyson's formula for Ramanujan's τ function] for the d th power η whenever d belong to the following sequence of integers:

$$
d=3,8,10,14,15,21,24,26,28,35,36, \ldots
$$

If the numbers had appeared in the context of a problem in physics, I would certainly have recognized them as the dimensions of the finite-dimenstional simple Lie algebras.
Except for 26. Why 26 is there I still do not know.

- F. Dyson "Missed Opportunities"

Dyson's "Missed Opportunities"

This was another missed opportunity, but not a tragic one, since MacDonald cleaned up the whole subject very happily without any help from me. The only thing he did not clean up is the case $d=26$, which remains a tantalizing mystery.

- F. Dyson "Missed Opportunities"

Dyson's "Missed Opportunities"

A more careful study of Macdonald's article reveals that the identity for the 26th power of $\eta(x)$ is not really such a mystery. It is related to the exceptional group F_{4} of dimension 52, where the space of dual roots F_{4}^{\sim} and the space of roots F_{4} are not the same... A similar situation prevails in the case of the algebra G_{2} of dimension 14... The identities for $\eta^{26}(x)$ and $\eta^{7}(x)$ are considerably more complicated.

- M. Monastyrskii "Appendix to F. J. Dyson's paper 'Missed Opportunities"'

Specializations for simply-LAced TYPE
Theorem (Macdonald) In simply-laced type,

$$
\begin{aligned}
& \prod_{i=1}^{\infty} c\left(x^{i}\right)=\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{h i}}\right)^{n} \sum_{q \in Q} x^{\left\langle\frac{h}{2} q-\rho, q\right\rangle}, \\
& \text { coxeter number, } \\
& \text { where } \\
& e^{\alpha} \longmapsto \omega_{h}^{h+(q)}
\end{aligned}
$$

h is the Coxeter number, $c(x)$ is the characteristic polynomial of a Coxeter element.

$$
(1,2, \ldots, a)
$$

$$
\begin{aligned}
& \widetilde{G}_{a}, h=a, n=a-1, c(x)=\frac{1-x^{a}}{1-x} \\
& \prod_{i=1}^{\infty} \prod_{i=1}^{\infty} \prod_{i=1}^{1-x^{a i}} \sum_{q \in Q}^{\infty} x^{a+N n^{n}} \sum^{\left\langle\frac{a}{2} q-p, q\right\rangle}
\end{aligned}
$$

Non-SIMPLY-LACED TYPE

(8.16) Theorem. Let R be a reduced irreducible finite root system such that $\|\alpha\|=1$ for all $\alpha \in R$. Then

$$
\begin{aligned}
\sum_{\lambda \in L(R)} X^{h^{-1}\|h \lambda+\rho\|^{2}} & =\eta\left(X^{h}\right)^{l} \cdot X^{l / 24} \prod_{n=1}^{\infty} c\left(X^{n}\right) \\
& =\eta\left(X^{h}\right)^{l} \prod_{i=1}^{l} \eta\left(\omega_{i} X\right)
\end{aligned}
$$

where $c(X)$ is the characteristic polynomial and $\omega_{1}, \ldots, \omega_{1}$ the eigenvalues of a Coxeter element of $W(R)$.

When R contains roots of different lengths, the formula corresponding to (8.16) is more complicated, and we shall not reproduce it here.

Non-SIMPLY-LACED TYPE

Theorem (Macdonald)

$$
\sum_{\boldsymbol{q} \in Q} x^{\left\langle\frac{h}{2} q-\rho, \boldsymbol{q}\right\rangle}=\prod_{i=1}^{\infty}\left[\left(1-x^{i}\right)^{n_{s}}\left(1-x^{r i}\right)^{n_{\ell}}\left(\prod_{\alpha \in \Phi_{s}}\left(1-x^{i} \omega^{\mathrm{ht}(\alpha)}\right)\right)\left(\prod_{\alpha \in \Phi_{\ell}}\left(1-x^{r i} \omega^{\mathrm{ht}(\alpha)}\right)\right)\right], \text { where }
$$

n_{s} / n_{ℓ} count the number of short/long roots, ω is a primitive hth root of unity, r is the ratio of the length of a long to short root, Φ_{s} / Φ_{ℓ} are the sets of short/long roots, $h t(\alpha)$ is the height of the root α.

For several reasons, Marko and I missed the correct definition for the statistic size in the non-simply-laced types.

1. (Co)root lattices $\mathcal{Q}^{»}$ generalize a-cores.
2. The quadratic form

$$
\operatorname{size}(q)=\left\langle\frac{h}{2} q-\rho^{2}, q\right\rangle
$$

generalizes the statistic "number of boxes" on cores.

3

Simultaneous cores AND the Sommers Region

Theorem (Anderson 2002)

For a, b coprime, there are $\frac{1}{a+b}\binom{a+b}{b}$ partitions that are simultaneously a-cores and b-cores.

Sommers Regions

By division, write $b=t_{b} a+r_{b}$ with $0<r<a$. The condition for $q=\left(q_{1}, \ldots, q_{a}\right) \in \mathcal{Q}_{a}$ to also be a b-core is

$$
q_{i}-q_{i+r_{b}} \geq-t_{b} \text { and } q_{i}-q_{i+a-r_{b}} \leq t_{b}+1
$$

More generally, write $b=t_{b} h+r_{b}$ with $0<r<h$.

Definition

For a root system Φ and b coprime to h, the Sommers region is

$$
\mathcal{S}_{b}=\left\{x \in V: \begin{array}{c}
\langle x, \alpha\rangle \geq-t_{b} \text { for } \alpha \in \Phi_{r_{b}}, \\
\langle x, \alpha\rangle \leq t_{b}+1 \text { for } \alpha \in \Phi_{h-r_{b}}
\end{array}\right\} .
$$

So coroot points in \mathcal{S}_{b} are "simultaneous cores" in other types. Enumeration?

The fundamental alcove A_{0}

Write $\widetilde{\alpha}$ for the highest root of Φ. We can express $\widetilde{\alpha}=\sum_{i=1}^{n} c_{i} \alpha_{i}$.
Definition
The fundamental alcove has vertices $0, \frac{\omega_{1}}{c_{1}}, \cdots, \frac{\omega_{n}}{c_{n}}$.

Theorem

For b coprime to h, there is an element $w_{b} \in \widetilde{W}$ such that $w_{b}\left(\mathcal{S}_{b}\right)=b A_{0}$. In particular, $\left|\mathcal{Q}^{\curlyvee} \cap \mathcal{S}_{b}\right|=\left|\mathcal{Q}^{\curlyvee} \cap b A_{0}\right|$.

Counting lattice points in $b A_{0}$

Write $c=\operatorname{Icm}\left(c_{1}, \ldots, c_{n}\right)$ with $\widetilde{\alpha}=\sum_{i=1}^{n} c_{i} \alpha_{i}$.
Theorem (R. Suter 1998)
For b coprime to c,

$$
\left|\mathcal{Q}^{\vee} \cap b A_{0}\right|=\frac{1}{|W|} \prod_{i=1}^{n}\left(b+e_{i}\right)
$$

Proof.
The generating function

$$
\prod_{i=0}^{n} \frac{1}{1-x^{c_{i}}}=\sum_{b \in \mathbb{N}}\left|\wedge^{\vee} \cap b A_{0}\right| x^{b}
$$

counts coweights inside of $b A_{0}$. Expand case-by-case and (by coprimality) divide by the index of connection $f=|\Lambda / \mathcal{Q}|$.

Counting lattice points in $b A_{0}$

Theorem (R. Suter 1998)
For b coprime to c,

$$
\left|\mathcal{Q}^{\widetilde{ }} \cap b A_{0}\right|=\frac{1}{|W|} \prod_{i=1}^{n}\left(b+e_{i}\right) .
$$

Theorem (M. Haiman 1994)
For b coprime to c,

$$
\left|\mathcal{Q}^{\breve{ }} \cap b A_{0}\right|=\frac{1}{|W|} \prod_{i=1}^{n}\left(b+e_{i}\right) .
$$

Ehrhart I

Generalizing Pick's theorem for lattice points in lattice polygons...
Theorem (E. Ehrhart 1962) Fix

- A lattice $L \simeq \mathbb{R}^{n}$
- a convex polytope \mathcal{P} with $r \mathcal{P}$ having vertices in $L(r \in \mathbb{N})$.
Then the lattice point enumerator enumerator

$$
\mathcal{P}^{L}(b)=|b \mathcal{P} \cap L|
$$

is a quasipolynomial of degree n in b with period dividing r.

Theorem (M. Maiman 1994)

For b coprime to c,

$$
\left|\mathcal{Q}^{\check{ }} \cap b A_{0}\right|=\frac{1}{|W|} \prod_{i=1}^{n}\left(b+e_{i}\right)
$$

Proof.

(A) By Ehrhart theory, $\mathcal{Q} \cap p A_{0}$ is a quasipolynomial of period $f a$, since $a A_{0}$ has integral vertices in the coweight lattice so that $f_{a} A_{0}$ is integral in the lattice \mathcal{Q}.
(B) By Dirichlet's theorem on primes in arithmetic progressions, there are infinitely many primes p in any residue class $b \bmod f a$.
(C) The lattice points $\mathcal{Q} \cap p A_{0}$ are in bijection with W-orbits on $\mathcal{Q} / p \mathcal{Q}$. By the lemma that is not Burnside's, this can be computed as $\frac{1}{|W|} \sum_{w \in W}\left|\operatorname{Fix}\left(\left.w\right|_{\mathcal{Q} / p \mathcal{Q}}\right)\right|$.

Proof.

(D) The matrix for the reflection representation V of w in the root basis has integral coefficients and for p a sufficiently large prime has the same rank as over \mathbb{R} and so $|\operatorname{Fix}(w)|=p^{\operatorname{dimFix}(w \mid v)}$.
(E) By Shephard-Todd,

$$
\begin{aligned}
\frac{1}{|W|} \sum_{w \in W}\left|\operatorname{Fix}\left(\left.w\right|_{\mathcal{Q} / p \mathcal{Q}}\right)\right| & =\frac{1}{|W|} \sum_{w \in W} p^{\operatorname{dimFix}(w \mid v)} \\
& =\frac{1}{|W|} \prod_{i=1}^{n}\left(p+e_{i}\right)
\end{aligned}
$$

1. (Co)root lattices \mathcal{Q}^{\wedge} generalize a-cores.
2. The quadratic form

$$
\operatorname{size}(q)=\left\langle\frac{h}{2} q-\rho^{2}, q\right\rangle
$$

generalizes the statistic "number of boxes" on cores.

4

Armstrong's Conjecture AND

OUR GENERALIZATION

Around 2011, D. Armstrong conjectured the following theorem.
Theorem (P. Johnson 2015) For $\operatorname{gcd}(a, b)=1$,
$\underset{\lambda \in \operatorname{core(}(a, b)}{\mathbb{E}}(\operatorname{size}(\lambda))=\frac{(a-1)(b-1)(a+b+1)}{24}=\underset{\substack{\lambda \in \operatorname{core}(a, b) \\ \lambda=\lambda^{\top}}}{\mathbb{E}}(\operatorname{size}(\lambda))$.
P. Johnson gave a beautiful proof of this conjecture using a generalization of Ehrhart theory (the "Paul-ynomial" method).

Ehrhart II

Theorem Fix

- A lattice $L \simeq \mathbb{R}^{n}$
- a convex polytope \mathcal{P} with $r \mathcal{P}$ having vertices in L, and
- a polynomial $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree d.

Then the weighted lattice point enumerator enumerator

$$
\mathcal{P}_{h}^{L}(b)=\sum_{q \in b \mathcal{P} \cap L} h(x)
$$

is a quasipolynomial of degree $n+d$ in b with period dividing r.

Theorem (Ekhad, Zeilberger, Johnson)

For $\operatorname{gcd}(a, b)=1$, the sixth moment of size on core (a, b) is

$$
\begin{aligned}
& \frac{1}{4184557977600} a b(b-1)(a-1)(a+b+1)(a+b)\left(307561 a^{8} b^{4}+1230244 a^{7} b^{5}+1845366 a^{6} b^{6}+1230244 a^{5} b^{7}\right. \\
& +307561 a^{4} b^{8}-2056306 a^{8} b^{3}-8225224 a^{7} b^{4}-14394142 a^{6} b^{5}-14394142 a^{5} b^{6}-8225224 a^{4} b^{7}-2056306 a^{3} b^{8} \\
& +5372061 a^{8} b^{2}+21488244 a^{7} b^{3}+42976488 a^{6} b^{4}+53720610 a^{5} b^{5}+42976488 a^{4} b^{6}+21488244 a^{3} b^{7}+5372061 a^{2} b^{8} \\
& -6453396 a^{8} b-25813584 a^{7} b^{2}-60704054 a^{6} b^{3}-91764618 a^{5} b^{4}-91764618 a^{4} b^{5}-60704054 a^{3} b^{6}-25813584 a^{2} b^{7} \\
& -6453396 a b^{8}+2985120 a^{8}+11940480 a^{7} b+39743142 a^{6} b^{2}+77437746 a^{5} b^{3}+96285048 a^{4} b^{4}+77437746 a^{3} b^{5} \\
& +39743142 a^{2} b^{6}+11940480 a b^{7}+2985120 b^{8}-11104272 a^{6} b-33312816 a^{5} b^{2}-55521360 a^{4} b^{3}-55521360 a^{3} b^{4} \\
& \\
& -33312816 a^{2} b^{5}-11104272 a b^{6}+2985120 a^{6}+8955360 a^{5} b+23840061 a^{4} b^{2}+32754522 a^{3} b^{3}+23840061 a^{2} b^{4} \\
& +8955360 a b^{5}+2985120 b^{6}-9109476 a^{4} b-18218952 a^{3} b^{2}-18218952 a^{2} b^{3}-9109476 a b^{4}+2985120 a^{4}+5970240 a^{3} b \\
& +8955360 a^{2} b^{2}+5970240 a b^{3}+2985120 b^{4}+8664840 a^{2} b+8664840 a b^{2}-62687520 a^{2}-62687520 a b-62687520 b^{2}
\end{aligned}
$$

Armstronger

Theorem (E. Stucky, M. Thiel, W.)

For X_{n} an irreducible rank n Cartan type with root system Φ, and b coprime to h

$$
\underset{\lambda \in \operatorname{core}\left(X_{n}, b\right)}{\mathbb{E}}(\operatorname{size}(\lambda))=\frac{r g^{2}}{h} \frac{n(b-1)(h+b+1)}{24} \text {, where }
$$

h is the Coxeter number of X, g^{2} is the dual Coxeter number for Φ^{2}, r is the ratio of the length of a long to short root.

The factor $\frac{r^{2}}{h}$ is 1 in simply-laced type: $g^{2}=h$ and $r=1$.

Special cases

\mathfrak{S}_{a} : a-cores, $n=a-1, h=g^{2}=a, r=1$.
$\frac{\mathrm{kg}^{\circ}}{\mathrm{h}} \frac{n(b-1)(h+b+1)}{24}=\frac{(a-1)(b-1)(a+b+1)}{24}$

For a even, $C_{a / 2}$: self-conjugate a-cores, $n=a / 2, h=a$, $g^{2}=a-1, r=2$.
$\frac{r g^{2}}{h} \frac{n(b-1)(h+b+1)}{24}=\frac{\frac{2(a-1)}{q} \frac{\frac{b}{4}(b-1)(a+b+1)}{2 Y}}{2 Y}$

Proof strategy

1. Work with coweights Λ^{\wedge} rather than coroots \mathcal{Q}^{2} : quadratic forms invariant under $W \subset O(V)$ all $\Lambda^{2} / \mathcal{Q}^{2}$-orbits are free since b coprime to h divide at the end by $f=\left|\Lambda^{\vee} / \mathcal{Q}^{\vee}\right|$
2. Reduce problem from \mathcal{S}_{b} to $b A_{0}$:
multiplication by a particular element of \widetilde{W}
translate size statistic ("remove" dependence on b !)
3. Conclude quasipolynomiality by Ehrhart theory II.
4. Find zeros!
use Ehrhart reciprocity: "small" dilations
of the fundamental alcove contain no interior lattice points.
5. (Co)root lattices $\mathcal{Q}^{»}$ generalize a-cores.
6. The quadratic form

$$
\operatorname{size}(q)=\left\langle\frac{h}{2} q-\rho^{\nu}, q\right\rangle
$$

generalizes the statistic "number of boxes" on cores.

4.

$$
\underset{\lambda \in \operatorname{core}\left(X_{n}, b\right)}{\mathbb{E}}(\operatorname{size}(\lambda))=\frac{r g^{`}}{h} \frac{n(b-1)(h+b+1)}{24}
$$

generalizes Armstrong's conjecture for expected size.

One more thing: "STRANGE"

$$
\underset{\lambda \in \operatorname{core}\left(X_{n}, b\right)}{\mathbb{E}}(\operatorname{size}(\lambda))=\frac{r g^{\imath}}{h} \frac{n(b-1)(h+b+1)}{24}
$$

With translations $\mathcal{S}_{b} \leftrightarrow b A_{0}$, the value of size at 0 is given by

$$
-\frac{1}{2 h}\left\langle\rho^{\imath}, \rho^{\check{ }}\right\rangle=-\frac{r g^{2}}{h} \cdot \frac{n(h+1)}{24}
$$

equivalent to the strange formula of Freudenthal and de Vries.

THANK YOU!

Future work

- finite type.
- twisted affine type.
- ...

