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Cores
and

the coroot lattice



Cores
An a-rim hook of ⁄ is a connected boundary strip of a boxes.

‘æ

I For a fixed a œ N, we can try to remove all a-rim hooks.

I Order doesn’t matter!?!
I Partitions with no a-rim hooks are called a-cores.

a--5



Abaci

The a-abacus records the boundary of ⁄ on a runners.

Removing an a-rim hook pushes an • up a runner.

‘æ

) a-cores are those shapes that are “flush” on the a-abacus.

9--5



Generating 2-cores

Label points (i , j) in N ◊ N by content (i ≠ j) mod 2.

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 1 0

ÿ

I s0 adds or removes all boxes with content 0

I s1 adds or removes all boxes with content 1.
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Generating 3-cores

“Same thing” for a = 3: label by content mod 3:

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

I s0 adds/dels 0 boxes

I s1 adds/dels 1 boxes

I s2 conjugates (?!?) ÿ

¥3
To 9°

* -4-7%1-70
?

→
of '



Generating 3-cores

“Same thing” for a = 3: label by content mod 3:

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

I s0 adds/dels 0 boxes

I s1 adds/dels 1 boxes

I s2 conjugates (?!?) ÿ



Generating a-cores

Same thing for higher a:

I label by content mod a
I si adds/removes all boxes

with content i

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

ÿ
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Generating a-cores

Same thing for higher a:

I label by content mod a
I si adds/removes all boxes

with content i

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

0 1 2 0 1 2

2 0 1 2 0 1

1 2 0 1 2 0

ÿ



Lattice Points

a-cores are really integer points in Ra
with zero sum (Qa):

I “balance” the abacus and

I record the heights of the runners.

‘æ ‘æ

On Ra
:

I si swaps the i and (i + 1)st coordinates

I s0 swaps the first and last coordinates (and adds e1 ≠ ea).

IE
\
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Generalizing

This set Qa is a (co)root lattice of type A. . . so

I Qa ‘æ coroot lattice Q ‹

I Sa ‘æ Weyl group W
I ÂSa ‘æ a�ne Weyl group ÊW = W n Q ‹

= W n (ÊW /W ).

Exercise: find combinatorial models for the action of classical ÊW
on Q ‹

. (Hint: embed ÊW into ÂSa and Q ‹
into Qa).



Nice case: type A
I a-cores model ÊW = ÂSa acting on Qa = {q œ Za

:
q

i qi = 0}.

ÿ



Nice case: type G2

I 3-cores also model ÊW = ÂG2 acting on Q ‹

= Q3.

ÿ

So¥ . -•



Nice case: type C
I Self-conjugate 2a-cores model ÊW = ÂCa acting on Q ‹

= Za
.

ÿ



1. (Co)root lattices Q ‹

generalize a-cores.
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Macdonald’s identities
and

the size statistic



Theorem
ŒŸ

i=1

1

1 ≠ x i =

A ŒŸ

i=1

1

1 ≠ xai

Ba ÿ

qœcore(a)
x size(q).

‘æ
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↓ by
# boxes
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for
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Macdonald’s affine denominator formula

Theorem (I. G. Macdonald 1971, Kac and Moody)
Ÿ

–œÂ�+

(1 ≠ e≠–
)
mult(–)

=
ÿ

wœ ÂW
(≠1)

¸(w)ew(fl)≠fl.

I generalizes Weyl’s denominator formula for simple Lie algebras

I explicit: imaginary roots indexed by Z with multiplicity n



Famous Specializations

Specializations of

Ÿ

–œÂ�+

(1 ≠ e≠–
)
m– =

ÿ

wœ ÂW
(≠1)

¸(w)ew(fl)≠fl

for various root systems give many famous partition identities:

I Euler’s pentagonal number theorem

(q)Œ =
qŒ

i=≠Œ(≠1)
iqi(3i≠1)/2

I (q)
3
Œ =

qŒ
i=0(≠1)

i
(2i + 1)qi(i+1)/2

I Jacobi’s triple product identity

I Dyson’s identity for Ramanjuan’s · -function

·(n) =
q (a≠b)(a≠c)(a≠d)(a≠e)(b≠c)(b≠d)(b≠e)(c≠d)(c≠e)(d≠e)

1!2!3!4!
I (q)

dimg
Œ for any simple Lie algebra g

(adjoint or short adjoint)
I . . . many more



Dyson’s “Missed Opportunities”

Pursing these identities further by my pedestrian methods,
I found that there exists a formula of the same degree of
elegance as [Dyson’s formula for Ramanujan’s · function]
for the dth power ÷ whenever d belong to the following
sequence of integers:

d = 3, 8, 10, 14, 15, 21, 24, 26, 28, 35, 36, . . .

If the numbers had appeared in the context of a problem
in physics, I would certainly have recognized them as the
dimensions of the finite-dimenstional simple Lie algebras.
Except for 26. Why 26 is there I still do not know.

— F. Dyson “Missed Opportunities”



Dyson’s “Missed Opportunities”

This was another missed opportunity, but not a tragic one,
since MacDonald cleaned up the whole subject very happily
without any help from me. The only thing he did not clean
up is the case d = 26, which remains a tantalizing mystery.

— F. Dyson “Missed Opportunities”



Dyson’s “Missed Opportunities”

A more careful study of Macdonald’s article reveals that
the identity for the 26th power of ÷(x) is not really such
a mystery. It is related to the exceptional group F4 of
dimension 52, where the space of dual roots F ‹

4 and the
space of roots F4 are not the same. . . A similar situation
prevails in the case of the algebra G2 of dimension 14. . .
The identities for ÷26

(x) and ÷7
(x) are considerably more

complicated.
— M. Monastyrskii “Appendix to F. J. Dyson’s paper ‘Missed

Opportunities”’



Specializations for simply-laced type

Theorem (Macdonald) In simply-laced type,

ŒŸ

i=1
c(x i

) =

A ŒŸ

i=1

1

1 ≠ xhi

Bn ÿ

qœQ
xÈ h

2 q≠fl,qÍ, where

h is the Coxeter number,
c(x) is the characteristic polynomial of a Coxeter element.

e' whtH
h

47 . . .

/a)

&
,

h -- a
,
n = a- 1

,

ccx) =

IT:÷m .fi#i*-z.i-a-..-a
. >

of c-Q
i = 1 I _- I



Non-simply-laced type



Non-simply-laced type

Theorem (Macdonald)
ÿ

qœQ
xÈ h

2 q≠fl,qÍ =
Œr

i=1

C

(1 ≠ x i
)
ns (1 ≠ x ri

)
n¸

A
r

–œ�s
(1 ≠ x iÊht(–)

)

B A
r

–œ�¸

(1 ≠ x riÊht(–)
)

BD

, where

ns/n¸ count the number of short/long roots,
Ê is a primitive hth root of unity,
r is the ratio of the length of a long to short root,
�s/�¸ are the sets of short/long roots,
ht(–) is the height of the root –.



ÿ

For several reasons, Marko and I missed the correct definition for

the statistic size in the non-simply-laced types.

> I

z
I

I

• iii. :



1. (Co)root lattices Q ‹

generalize a-cores.

2. The quadratic form

size(q) =

=h
2

q ≠ fl ‹, q
>

generalizes the statistic “number of boxes” on cores.
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Simultaneous cores
and

the Sommers Region



Theorem (Anderson 2002)
For a, b coprime, there are 1

a+b
!a+b

b
"

partitions that are
simultaneously a-cores and b-cores.

‘æ
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Sommers regions

By division, write b = tba + rb with 0 < r < a. The condition for

q = (q1, . . . , qa) œ Qa to also be a b-core is

qi ≠ qi+rb Ø ≠tb and qi ≠ qi+a≠rb Æ tb + 1.

More generally, write b = tbh + rb with 0 < r < h.

Definition
For a root system � and b coprime to h, the Sommers region is

Sb =

I

x œ V :
Èx , –Í Ø ≠tb for – œ �rb ,

Èx , –Í Æ tb + 1 for – œ �h≠rb

J

.

So coroot points in Sb are “simultaneous cores” in other types.

Enumeration?



The fundamental alcove A0

Write Â– for the highest root of �. We can express Â– =
qn

i=1 ci–i .

Definition
The fundamental alcove has vertices 0,

Ê ‹

1
c1

, · · · , Ê ‹

n
cn

.

Theorem
For b coprime to h, there is an element wb œ ÊW such that
wb(Sb) = bA0. In particular, |Q ‹ fl Sb| = |Q ‹ fl bA0|.



Counting lattice points in bA0

Write c = lcm(c1, . . . , cn) with Â– =
qn

i=1 ci–i .

Theorem (R. Suter 1998)
For b coprime to c,

|Q ‹ fl bA0| =
1

|W |

nŸ

i=1
(b + ei).

Proof.
The generating function

nŸ

i=0

1

1 ≠ x ci
=

ÿ

bœN
|� ‹ fl bA0| xb

counts coweights inside of bA0. Expand case-by-case and (by

coprimality) divide by the index of connection f = |�/Q|.



Counting lattice points in bA0

Theorem (R. Suter 1998)
For b coprime to c,

|Q ‹ fl bA0| =
1

|W |

nŸ

i=1
(b + ei).

Theorem (M. Haiman 1994)
For b coprime to c,

|Q ‹ fl bA0| =
1

|W |

nŸ

i=1
(b + ei).



Ehrhart I

Generalizing Pick’s theorem for lattice points in lattice polygons...

Theorem (E. Ehrhart 1962) Fix
I A lattice L ƒ Rn

I a convex polytope P
with rP having vertices in L (r œ N).

Then the lattice point enumerator enumerator

PL
(b) = |bP fl L|

is a quasipolynomial of degree n in b with period dividing r .



Theorem (M. Haiman 1994)
For b coprime to c,

|Q ‹ fl bA0| =
1

|W |

nŸ

i=1
(b + ei).

Proof.
(A) By Ehrhart theory, Q fl pA0 is a quasipolynomial of period fa,

since aA0 has integral vertices in the coweight lattice so that

faA0 is integral in the lattice Q.

(B) By Dirichlet’s theorem on primes in arithmetic progressions,

there are infinitely many primes p in any residue class

b mod fa.

(C) The lattice points Q fl pA0 are in bijection with W -orbits on

Q/pQ. By the lemma that is not Burnside’s, this can be

computed as
1

|W |
q

wœW |Fix(w |Q/pQ)|.

:')
¥(

"

:)



Proof.
(D) The matrix for the reflection representation V of w in the

root basis has integral coe�cients and for p a su�ciently

large prime has the same rank as over R and so

|Fix(w)| = pdimFix(w |V )
.

(E) By Shephard-Todd,

1

|W |
ÿ

wœW
|Fix(w |Q/pQ)| =

1

|W |
ÿ

wœW
pdimFix(w |V )

=
1

|W |

nŸ

i=1
(p + ei).



1. (Co)root lattices Q ‹

generalize a-cores.

2. The quadratic form

size(q) =

=h
2

q ≠ fl ‹, q
>

generalizes the statistic “number of boxes” on cores.

3. Lattice points Q ‹ fl Sb generalize simultaneous cores.
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Armstrong’s Conjecture
and

our generalization



Around 2011, D. Armstrong conjectured the following theorem.

Theorem (P. Johnson 2015) For gcd(a, b) = 1,

E
⁄œcore(a,b)

(size(⁄)) =
(a ≠ 1)(b ≠ 1)(a + b + 1)

24
= E

⁄œcore(a,b)
⁄=⁄|

(size(⁄)).

P. Johnson gave a beautiful proof of this conjecture using a

generalization of Ehrhart theory (the “Paul-ynomial” method).



Ehrhart II

Theorem Fix
I A lattice L ƒ Rn

I a convex polytope P
with rP having vertices in L, and

I a polynomial h : Rn æ R of degree d.
Then the weighted lattice point enumerator enumerator

PL
h (b) =

ÿ

qœbPflL
h(x)

is a quasipolynomial of degree n + d in b with period dividing r .



Z1
Theorem (Ekhad, Zeilberger, Johnson)
For gcd(a, b) = 1, the sixth moment of size on core(a, b) is

1
4184557977600 ab(b≠1)(a≠1)(a+b+1)(a+b)(307561a8b4+1230244a7b5+1845366a6b6+1230244a5b7

+307561a4b8≠2056306a8b3≠8225224a7b4≠14394142a6b5≠14394142a5b6≠8225224a4b7≠2056306a3b8

+5372061a8b2+21488244a7b3+42976488a6b4+53720610a5b5+42976488a4b6+21488244a3b7+5372061a2b8

≠6453396a8b≠25813584a7b2≠60704054a6b3≠91764618a5b4≠91764618a4b5≠60704054a3b6≠25813584a2b7

≠6453396ab8+2985120a8+11940480a7b+39743142a6b2+77437746a5b3+96285048a4b4+77437746a3b5

+39743142a2b6+11940480ab7+2985120b8≠11104272a6b≠33312816a5b2≠55521360a4b3≠55521360a3b4

≠33312816a2b5≠11104272ab6+2985120a6+8955360a5b+23840061a4b2+32754522a3b3+23840061a2b4

+8955360ab5+2985120b6≠9109476a4b≠18218952a3b2≠18218952a2b3≠9109476ab4+2985120a4+5970240a3b

+8955360a2b2+5970240ab3+2985120b4+8664840a2b+8664840ab2≠62687520a2≠62687520ab≠62687520b2

+626875200).



Armstronger

Theorem (E. Stucky, M. Thiel, W.)
For Xn an irreducible rank n Cartan type with root system �,
and b coprime to h

E
⁄œcore(Xn,b)

(size(⁄)) =
rg ‹

h
n(b ≠ 1)(h + b + 1)

24
, where

h is the Coxeter number of X,
g ‹ is the dual Coxeter number for �

‹,
r is the ratio of the length of a long to short root.

The factor
rg ‹

h is 1 in simply-laced type: g ‹
= h and r = 1.



Special cases

Sa: a-cores, n = a ≠ 1, h = g ‹

= a, r = 1.

rg ‹

h
n(b ≠ 1)(h + b + 1)

24
=

For a even, Ca/2: self-conjugate a-cores, n = a/2, h = a,

g ‹

= a ≠ 1, r = 2.

rg ‹

h
n(b ≠ 1)(h + b + 1)

24
=

✗ ca-Hb¥a+b

Ka-*¥H¥ᵗ



Proof strategy

1. Work with coweights �

‹

rather than coroots Q ‹

:

quadratic forms invariant under W µ O(V )

all �
‹/Q ‹

-orbits are free since b coprime to h
divide at the end by f = |� ‹/Q ‹|

2. Reduce problem from Sb to bA0:

multiplication by a particular element of ÊW
translate size statistic (“remove” dependence on b!)

3. Conclude quasipolynomiality by Ehrhart theory II.

4. Find zeros!

use Ehrhart reciprocity: “small” dilations

of the fundamental alcove contain no interior lattice points.



1. (Co)root lattices Q ‹

generalize a-cores.

2. The quadratic form

size(q) =

=h
2

q ≠ fl ‹, q
>

generalizes the statistic “number of boxes” on cores.

3. Lattice points Q ‹ fl Sb generalize simultaneous cores.

4.

E
⁄œcore(Xn,b)

(size(⁄)) =
rg ‹

h
n(b ≠ 1)(h + b + 1)

24

generalizes Armstrong’s conjecture for expected size.



One more thing: “strange”

E
⁄œcore(Xn,b)

(size(⁄)) =
rg ‹

h
n(b ≠ 1)(h + b + 1)

24

With translations Sb ¡ bA0, the value of size at 0 is given by

≠ 1

2h Èfl ‹, fl ‹Í = ≠ rg ‹

h · n(h + 1)

24
,

equivalent to the strange formula of Freudenthal and de Vries.



Thank you!



Future work

I finite type.

I twisted a�ne type.

I ...


