

# Circuit Envelope Simulation





# What is Circuit Envelope ?

- Time samples the modulation envelope (not carrier)
- Compute the spectrum at each time sample
- Output a time-varying spectrum
- Use equations on the data
- Faster than HB or Spice in many cases
- Integrates with System Simulation & Agilent Ptolemy



# Test circuits with realistic signals





### **Circuit Envelope Technology**



NOTE: V(t) can be complex - am or fm or pm



### ...more on CE Technology

Captures time and frequency characteristics:





### **Example: AMP with RF pulse**



Step time is critical for sampling the envelope: rise, fall, and modulation rate. Therefore, Step (sample time) is NOT the same as Transient.



ADS 2009 (version 1.0) Copyright Agilent Technologies 2009

### Envelope Setup tab in the controller

#### Example setup: one tone with 3 harmonics

#### Stop time

- Determines resolution bandwidth of spectrum.
- Large enough to resolve spectral components of interest.

#### Time step

- Determines modulation bandwidth of the spectrum.
- Small enough to capture highest modulation frequency.









## Envelope Setup tab (continued)



#### Other CE tabs...

| Initial Guess                                     | Same as          | s Harmoni         | c Bala  | nce            | ins |
|---------------------------------------------------|------------------|-------------------|---------|----------------|-----|
| Transient Assisted Harmonic Balance               |                  |                   |         |                |     |
| ⊙ Auto ◯ On ◯ O                                   | f                |                   |         |                |     |
| Advanced Transient Set                            | tings            |                   |         |                |     |
| Harmonic Balance Assist                           | ed Harmonic Bala | ance              |         |                |     |
| - Initial Guess                                   |                  |                   |         |                |     |
| Use Initial Guess File                            |                  |                   |         |                |     |
| Regenerate Initial Guess for ParamSweep (Restart) |                  |                   |         |                |     |
| Final Solution                                    |                  | Env Para          | ams     |                |     |
| Write Final Solution                              | 6                | Env Params        |         |                | 1   |
|                                                   |                  | Integration       | Backw   | vard Euler 🛛 😽 |     |
| Env Params – Use<br>for convergence<br>issues.    |                  | Sweep offset      |         | None 💌         |     |
|                                                   | E                | Turn on all no    | oise    |                |     |
|                                                   | C                | Device Fitting—   |         |                |     |
|                                                   |                  | Bandwidth fra     |         | 1              |     |
|                                                   | – Use            | Relative tolera   | ance    |                |     |
|                                                   | nce              | Absolute tolera   | ance    |                |     |
|                                                   | E                | 🖌 Warn when p     | oor fit |                |     |
|                                                   | E                | Use fit when poor |         |                |     |
|                                                   |                  | Skip fit at bas   | seband  |                |     |

Same as Harmonic Balance except for the bottom button: calculate startup transient instead of waiting for steady state.

| Oscillator            |                        |              |      |
|-----------------------|------------------------|--------------|------|
| Enable Oscillator A   | nalysis                |              |      |
| Method                | Use Oscport            | ~            |      |
| Specify Oscillator No | odes                   |              |      |
| Node Plus             |                        | ~            | ,    |
| Node Minus            |                        | <b>X</b>     | more |
| Fundamental Index     | 1                      |              |      |
| Harmonic Number       | 1                      |              |      |
| Octaves to Search     | 2.0                    |              |      |
| Steps per Octave      | 20.0                   |              |      |
|                       | startup transient      |              |      |
| .0                    |                        |              |      |
| Same as               | HB.                    | Outpu        | t    |
| -Save by hierard      | thy:                   | ]            | - 1  |
|                       |                        | Maximum Dept | h    |
| Node Volta            | ges:                   | 2            |      |
| Measureme             | Measurement Equations: |              |      |
| Branch Cur            | rents                  | 999          |      |
| Pin Curren            | ts                     | - 11         | 1    |
| For dev               | ice types              | All 🕑        |      |

### Other CE tabs (continued)

| Solver                                                                     |   |
|----------------------------------------------------------------------------|---|
| Convergence                                                                | 2 |
| Convergence ④ Auto (Preferred) 〇 Advanced (Robust) 〇 Basic (Fast)<br>Mode: |   |
| Max. Iterations:   Robust  Fast  Custom                                    |   |
| Advanced Continuation Parameters                                           |   |
| Matrix Solver                                                              |   |
| Solver Type: 💿 Auto Select 🔘 Direct 🔘 Krylov                               |   |
| Matrix Re-use:   Fast  Robust                                              |   |
| Krylov Restart  Robust Low Mem Noise and Solver are the                    |   |
| Advanced Krylov Pa                                                         |   |
| Memory Management Same as HB.                                              |   |
| Matrix Bandwidth                                                           |   |
| FFT Options:      Minimize memory and runtime O Minimize aliasing          |   |
| Waveform Memory Reduction: Noise                                           |   |
| Use dynamic wa 🗹 NoiseCons                                                 |   |
| Use compact fre                                                            |   |
|                                                                            |   |
|                                                                            | ¥ |
|                                                                            |   |
|                                                                            |   |
|                                                                            |   |
|                                                                            |   |
| Add Cut Paste                                                              |   |
|                                                                            |   |
|                                                                            |   |
| V Nonlinear noise                                                          |   |

| LAB |  |
|-----|--|
|     |  |

| Fast Cosim                                                                                                   |           |  |  |  |
|--------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Enable fast cosimulation                                                                                     |           |  |  |  |
| Characterization                                                                                             |           |  |  |  |
| <ul> <li>Build model</li> </ul>                                                                              |           |  |  |  |
| <ul> <li>Use previous data (select only if the circuit remains<br/>unchanged between simulations)</li> </ul> |           |  |  |  |
| Set Characterization Parameters                                                                              |           |  |  |  |
| - Model simulation                                                                                           |           |  |  |  |
| Apply frequency compensation (filter)                                                                        |           |  |  |  |
| Place filter at Input 🔗                                                                                      |           |  |  |  |
| Add delay                                                                                                    |           |  |  |  |
| Delay 0.0                                                                                                    | sec 🗸     |  |  |  |
| - Verification                                                                                               |           |  |  |  |
| Stop time                                                                                                    | 0.0 sec 💌 |  |  |  |
| Accept tolerance 1e-3                                                                                        |           |  |  |  |
| -Node names                                                                                                  |           |  |  |  |
| Active input                                                                                                 |           |  |  |  |
| IQ pair                                                                                                      |           |  |  |  |
|                                                                                                              |           |  |  |  |

**Cosim** is for use with Ptolemy cosimulations. It builds a behavioral model (Automatic Verification Modeling) for single input/output RF circuits which runs faster than cosimulating with the device model.





### Lab 8:

# **Circuit Envelope Simulations**



#### **Steps in the Design Process**



#### First, simulate using an RF pulse



#### Next, use a GSM source and demodulators





Also, insert a filter at **Vin** to alter the phase. See the difference at fm\_demods.



#### Plot: bits\_out and fm\_demod



### Plot the GSM BW spectrum with with and without windowing.



#### Finally, use AMP\_1900 with the GSM source



#### **Optional - channel power calculation**

On a new page in DDS, write two equations:

Limits: defines the bandwidth and channel\_pwr: calculates power in the channel.

Eqnlimits= {-(270KHz / 2), (270KHz / 2)}

Eqn channel\_pwr=10\*log(channel\_power\_vr ( Vout[1], 50, limits, "Kaiser"))+30



