
Sensitivity Analysis: An Example

Consider the linear program:

Maximize z = −5x1 +5x2 +13x3

Subject to:
−x1 +x2 +3x3 ≤ 20 (1)
12x1 +4x2 +10x3 ≤ 90 (2)

x1, x2, x3 ≥ 0 .

After introducing two slack variables s1 and s2 and executing the Simplex algorithm to
optimality, we obtain the following final set of equations:

z +2x3 +5s1 = 100 , (0)
−x1 +x2 +3x3 +s1 = 20 , (1)
16x1 −2x3 −4s1 +s2 = 10 . (2)

Our task is to conduct sensitivity analysis by independently investigating each of a set of
nine changes (detailed below) in the original problem. For each change, we will use the
fundamental insight to revise the final set of equations (in tableau form) to identify a new
solution and to test the new solution for feasibility and (if applicable) optimality.

We will first recast the above equation systems into the following pair of initial and final
tableaus.

Initial Tableau: Basic z x1 x2 x3 s1 s2

Variable 1 5 −5 −13 0 0 0
s1 0 −1 1 3 1 0 20
s2 0 12 4 10 0 1 90

Final Tableau: Basic z x1 x2 x3 s1 s2

Variable 1 0 0 2 5 0 100
x2 0 −1 1 3 1 0 20
s2 0 16 0 −2 −4 1 10

The basic variables associated with this final tableau are x2 and s2; therefore, the current
basic feasible solution is (x1, x2, x3, s1, s2) = (0, 20, 0, 0, 10), which has an objective-
function value of 100.

An inspection of the initial tableau shows that the columns associated with z, s1, and s2

form a 3 × 3 identity matrix. Therefore, the P matrix will come from the corresponding
columns in the final tableau. That is, we have

P =

 1 5 0
0 1 0
0 −4 1

 ;
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and the final tableau equals the matrix product of this P and the initial tableau, i.e.,
TF = P×TI .

Our basic approach for dealing with parameter changes in the original problem is in two
steps. In the first step, we will revise the final tableau by multiplying the same P to the
new initial tableau; in other words, despite a revision in TI , we intend to follow the original
sequence of pivots. After producing a revised TF , we will, in the second step, take the
revised TF as the starting point and initiate any necessary further analysis of the revised
problem.

We now begin a detailed sensitivity analysis of this problem.

(a) Change the right-hand side of constraint (1) to 30.

Denote the right-hand-side constants in the original constraints as b1 and b2. Then, the
proposed change is to revise b1 from 20 to 30, while retaining the original value of b2 at 90.
With this change, the RHS column in the initial tableau becomes 0

30
90

 .

Since the rest of the columns in the initial tableau stays the same, the only necessary revision
in TF will be in the RHS column. To determine this new RHS column, we multiply P to
the above new column to obtain: 1 5 0

0 1 0
0 −4 1

×
 0

30
90

 =

 150
30
−30

 .

Since the basic variables in the final tableau are x2 and s2, the solution associated with the
revised TF is (x1, x2, x3, s1, s2) = (0, 30, 0, 0, −30). With a negative value for s2, this
(basic) solution is not feasible.

Geometrically speaking, increasing the value of b1 from 20 to 30 means that we are relaxing
the first inequality constraint. Relaxing a constraint is tantamount to enlarging the feasible
set; therefore, one would expect an improved optimal objective-function value. The fact
that the revised solution above is not feasible is not a contradiction to this statement. It
only means that additional work is necessary to determine the new optimal solution.

What causes the infeasibility of the new solution? Recall that the original optimal solution is
(x1, x2, x3, s1, s2) = (0, 20, 0, 0, 10). Since x1, x3, and s1 are serving as nonbasic variables,
the defining equations for this solution are: x1 = 0, x3 = 0, and −x1 +x2 +3x3 = 20. Now,
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imagine an attempt to increase the RHS constant of the last equation from 20 to 20 + δ

(say) while maintaining these three equalities. As we increase δ (from 0), we will trace out
a family of solutions. That the new solution is infeasible simply means that if δ is made
sufficiently large (in this case, δ = 10), then this family of solutions will eventually exit the
feasible set.

More formally, suppose the original RHS column is revised to 0
20 + δ

90

 ; or alternatively, to

 0
20
90

 +

 0
δ
0

 .

Then, after premultiplying this new column by P, we obtain 1 5 0
0 1 0
0 −4 1

 ×

 0
20 + δ

90



=

 1 5 0
0 1 0
0 −4 1

×


 0
20
90

 +

 0
δ
0




=

 1 5 0
0 1 0
0 −4 1

×
 0

20
90

 +

 1 5 0
0 1 0
0 −4 1

×
 0

δ
0



=

 100
20
10

 +

 5δ
δ

−4δ



=

 100 + 5δ
20 + δ

10− 4δ

 .

Hence, with δ = 10, we indeed have s2 = −30, which means that the original inequality
constraint 12x1 + 4x2 + 10x3 ≤ 90 is violated. Moreover, this calculation also shows that
in order for 10 − 4δ to remain nonnegative, δ cannot exceed 5/2. In other words, at
δ = 5/2, the family of solutions (0, 20 + δ, 0, 0, 10 − 4δ) “hits” the constraint equation
12x1 + 4x2 + 10x3 = 90; and therefore, progressing further will produce solutions that are
outside the feasible set.

Interestingly, our analysis above holds even if we allow δ to assume a negative value. Such a
case corresponds to a tightening of the constraint −x1 + x2 + 3x3 ≤ 20. A quick inspection
of  100 + 5δ

20 + δ
10− 4δ


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shows that x2 is reduced to 0 when δ reaches −20. It follows that in order to maintain
feasibility, and hence optimality (since the optimality test is not affected by a change in the
RHS column), of solutions of the form (0, 20 + δ, 0, 0, 10 − 4δ), the value of δ must stay
within the range [−20, 5/2].

Another important observation regarding the above calculation is that the optimal objective-
function value will increase from 100 to 100 + 5δ, provided that δ is sufficiently small (so
that we remain within the feasible set). If we interpret the value of b1 as the availability of
a resource, then this observation implies that for every additional unit of this resource, the
optimal objective-function value will increase by 5. Thus, from an economics viewpoint, we
will be unwilling to pay more than 5 (dollars) for an additional unit of this resource. For
this reason, the value 5 is called the shadow price of this resource.

It is interesting to note that the shadow price of the first resource (5, in this case) can be
read directly from the top entry in the second column of P.

It is possible to derive a new optimal solution for the proposed new problem with δ = 10.
The standard approach for doing this is to start from the revised final tableau and apply
what is called the dual Simplex algorithm. As this algorithm is more advanced, we will not
attempt to solve this new problem to optimality.

(b) Change the right-hand side of constraint (2) to 70.

Since the original value of b2 is 90, this is an attempt to reduce the availability of the second
resource by 20. The analysis is similar to that in part (a). Again, we will write the new
RHS column in the initial tableau as 0

20
90

 +

 0
0
δ

 ,

where δ is targeted to assume the value −20. After premultiplying this new column by P,
we obtain  1 5 0

0 1 0
0 −4 1

 ×


 0

20
90

 +

 0
0
δ




=

 100
20
10

 +

 0
0
δ



=

 100
20

10 + δ

 .

4



Hence, for all δ within the range [−10, ∞), solutions of the form (0, 20, 0, 0, 10 + δ) will
remain optimal.

With the particular choice of δ = −20, we have 100
20

10 + δ

 =

 100
20
−10

 .

It follows that the new solution (0, 20, 0, 0, −10) is infeasible. As in part (a), we will not
attempt to derive a new optimal solution.

The shadow price of the second resource can be read directly from the top entry in the third
column of P. In this case, it is given by 0. That the shadow price of the second resource is
equal to 0 is expected. It is a consequence of the fact that in the current optimal solution,
we have s2 = 10 and hence there is already an excess in the supply of the second resource.
In fact, we will have an over supply as long as the availability of the second resource is no
less than 80 (which corresponds to δ = −10).

(c) Change b1 and b2 to 10 and 100, respectively.

Again, we will first consider a revision of the RHS column in TI of the form: 0
20
90

 +

 0
δ1

δ2

 ,

where δ1 and δ2 are two independent changes. After premultiplying this new column by P,
we obtain  1 5 0

0 1 0
0 −4 1

×


 0
20
90

 +

 0
δ1

δ2


 =

 100 + 5δ1

20 + δ1

10− 4δ1 + δ2

 .

With δ1 = −10 and δ2 = 10, the new RHS column in TF is: 50
10
60

 .

Since the new solution (x1, x2, x3, s1, s2) = (0, 10, 0, 0, 60) is feasible, it is also optimal.
The new optimal objective-function value is 50.

(d) Change the coefficient of x3 in the objective function to c3 = 8 (from c3 = 13).
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Consider a revision in the value of c3 by δ; that is, let c3 = 13 + δ. Then, the x3-column in
TI is revised to  −13− δ

3
10

 ; or alternatively, to

 −13
3

10

 +

 −δ
0
0

 .

From the fundamental insight, the corresponding revision in the x3-column in TF is 1 5 0
0 1 0
0 −4 1

×


 −13
3

10

 +

 −δ
0
0


 =

 2
3
−2

 +

 −δ
0
0



=

 2− δ
3
−2

 .

Therefore, if δ = −5, which corresponds to c3 = 8, then the new x3-column in TF is
explicitly given by  2− δ

3
−2

 =

 2− (−5)
3
−2

 =

 7
3
−2

 .

Observe that the x3-column is the only column in TF that requires a revision, the variable
x3 is nonbasic, and the coefficient of x3 in the revised R0 is positive (7, that is). It follows
that the original optimal solution (x1, x2, x3, s1, s2) = (0, 20, 0, 0, 10) remains optimal.

More generally, an inspection of the top entry in the new x3-column, 2− δ
3
−2

 ,

reveals that the original optimal solution will remain optimal for all δ such that 2− δ ≥ 0,
i.e., for all δ in the range (−∞, 2].

(e) Change c1 to −2, a11 to 0, and a21 to 5.

This means that the x1-column in TI is revised from 5
−1
12

 to

 2
0
5

 .
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Since the corresponding new column in TF is 1 5 0
0 1 0
0 −4 1

×
 2

0
5

 =

 2
0
5

 ,

where the top entry, 2, is positive, and since x1 is nonbasic in TF , we see that the original
optimal solution remains optimal.

(f) Change c2 to 6, a12 to 2, and a22 to 5.

This means that the x2-column in TI is revised from −5
1
4

 to

 −6
2
5

 .

The fundamental insight implies that the corresponding new x2-column in TF is 1 5 0
0 1 0
0 −4 1

×
 −6

2
5

 =

 4
2
−3

 .

The fact that this new column is no longer of the form 0
1
0


indicates that x2 cannot serve as a basic variable in R1. It follows that a pivot in the
x2-column is needed to restore x2 back to the status of a basic variable. More explicitly,
the revised final tableau is

Basic z x1 x2 x3 s1 s2

Variable 1 0 4 2 5 0 100
− 0 −1 2 3 1 0 20
s2 0 16 −3 −2 −4 1 10

and we will execute a pivot with the x2-column as the pivot column and R1 as the pivot
row. After this pivot, we obtain

Basic z x1 x2 x3 s1 s2

Variable 1 2 0 −4 3 0 60
x2 0 −1/2 1 3/2 1/2 0 10
s2 0 29/2 0 5/2 −5/2 1 40 .

7



Since x3 now has a negative coefficient in R0, indicating that the new solution is not optimal,
the Simplex algorithm should be restarted to derive a new optimal solution (if any).

(g) Introduce a new variable x4 with c4 = 10, a14 = 3, and a24 = 5.

This means that we need to introduce the new x4-column −10
3
5


into the initial tableau. (The precise location of this new column is not important.) The
corresponding new column in the final tableau will be 1 5 0

0 1 0
0 −4 1

×
 −10

3
5

 =

 5
3
−7

 .

Since this column has a positive entry at the top and since x4 is nonbasic, the current
optimal solution remains optimal. In an application, this means that there is insufficient
incentive to engage in the new “activity” x4.

(h) Introduce a new constraint 2x1 + 3x2 + 5x3 ≤ 50.

After adding a new slack variable s3, this inequality constraint becomes 2x1+3x2+5x3+s3 =
50. Next, we incorporate this equation into the final tableau to obtain

Basic z x1 x2 x3 s1 s2 s3

Variable 1 0 0 2 5 0 0 100
− 0 −1 1 3 1 0 0 20
s2 0 16 0 −2 −4 1 0 10
s3 0 2 3 5 0 0 1 50 .

Observe that x2 participates in the new equation and, therefore, cannot serve as the basic
variable for R1. To rectify this situation, we will execute the row operation (−3)×R1 +R3.
This yields

Basic z x1 x2 x3 s1 s2 s3

Variable 1 0 0 2 5 0 0 100
x2 0 −1 1 3 1 0 0 20
s2 0 16 0 −2 −4 1 0 10
s3 0 5 0 −4 −3 0 1 −10 .
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With s3 = −10, the new basic solution is not feasible. We will not attempt to continue the
solution of this new problem (as it is now necessary to apply the dual Simplex algorithm).

(i) Change constraint (2) to 10x1 + 5x2 + 10x3 ≤ 100.

With this revision, the initial tableau becomes

Basic z x1 x2 x3 s1 s2

Variable 1 5 −5 −13 0 0 0
s1 0 −1 1 3 1 0 20
s2 0 10 5 10 0 1 100 .

After premultiplying this by P, we obtain the revised final tableau below.

Basic z x1 x2 x3 s1 s2

Variable 1 0 0 2 5 0 100
− 0 −1 1 3 1 0 20
s2 0 14 1 −2 −4 1 20

Observe that x2 participates in R2 and, therefore, cannot serve as the basic variable for R1.
To rectify this situation, we will execute the row operation (−1)×R1 + R2. This yields

Basic z x1 x2 x3 s1 s2

Variable 1 0 0 2 5 0 100
x2 0 −1 1 3 1 0 20
s2 0 15 0 −5 −5 1 0 .

Therefore, the new optimal solution is (x1, x2, x3, s1, s2) = (0, 20, 0, 0, 0).
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