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Important Distributions. . .

Certain probability distributions occur with such regular-

ity in real-life applications that they have been given their

own names. Here, we survey and study basic properties

of some of them.

We will discuss the following distributions:

• Binomial

• Poisson

• Uniform

• Normal

• Exponential

The first two are discrete and the last three continuous.
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Binomial Distribution. . .

Consider the following scenarios:

— The number of heads/tails in a sequence of coin flips

— Vote counts for two different candidates in an election

— The number of male/female employees in a company

— The number of accounts that are in compliance or not

in compliance with an accounting procedure

— The number of successful sales calls

— The number of defective products in a production run

— The number of days in a month your company’s com-

puter network experiences a problem

All of these are situations where the binomial distribution

may be applicable.
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Canonical Framework. . .

There is a set of assumptions which, if valid, would lead

to a binomial distribution. These are:

• A set of n experiments or trials are conducted.

• Each trial could result in either a success or a failure.

• The probability p of success is the same for all trials.

• The outcomes of different trials are independent.

• We are interested in the total number of successes in

these n trials.

Under the above assumptions, let X be the total number

of successes. Then, X is called a binomial random

variable, and the probability distribution of X is called

the binomial distribution.
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Binomial Probability-Mass Function. . .

Let X be a binomial random variable. Then, its probability-

mass function is:

P (X = x) =
n!

x!(n − x)!
px(1 − p)n−x (1)

for x = 0, 1, 2, . . . , n.

The values of n and p are called the parameters of the

distribution.

To understand (1), note that:

• The probability for observing any sequence of n in-

dependent trials that contains x successes and n − x

failures is pn(1 − p)n−x.

• The total number of such sequences is equal to
(

n

x

)

≡ n!

x!(n − x)!

(i.e., the total number of possible combinations when

we randomly select x objects out of n objects).
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Example: Multiple-Choice Exam

Consider an exam that contains 10 multiple-choice ques-

tions with 4 possible choices for each question, only

one of which is correct.

Suppose a student is to select the answer for every ques-

tion randomly. Let X be the number of questions the

student answers correctly. Then, X has a binomial

distribution with parameters n = 10 and p = 0.25.

(Convince yourself that all assumptions for a binomial

distribution are reasonable in this setting.)

What is the probability for the student to get no answer

correct? Answer:

P (X = 0) =
10!

0!(10 − 0)!
(0.25)0(1 − 0.25)10−0

= (0.75)10

= 0.0563
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What is the probability for the student to get two an-

swers correct? Answer:

P (X = 2) =
10!

2!8!
(0.25)2(1 − 0.25)8

= 45 · (0.25)2 · (0.75)8

= 0.2816

What is the probability for the student to fail the test

(i.e., to have less than 6 correct answers)? Answer:

P (X ≤ 5) =

5
∑

i=0

P (X = i)

= 0.0563 + 0.1877 + 0.2816 + 0.2503

+0.1460 + 0.0584

= 0.9803

Binomial probabilities can be computed using the Excel

function BINOMDIST(). Two other examples are given

in a separate Excel file.
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Binomial Mean and Variance. . .

It can be shown that

µ = E(X) = np

and

σ2 = V (X) = np(1 − p) .

For the previous example, we have

• E(X) = 10 · 0.25 = 2.5.

• V (X) = 10 · (0.25) · (1 − 0.25) = 1.875.
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Poisson Distribution. . .

The Poisson distribution is another family of distributions

that arises in a great number of business situations. It

usually is applicable in situations where random “events”

occur at a certain rate over a period of time.

Consider the following scenarios:

— The hourly number of customers arriving at a bank

— The daily number of accidents on a particular stretch

of highway

— The hourly number of accesses to a particular web

server

— The daily number of emergency calls in Dallas

— The number of typos in a book

— The monthly number of employees who had an ab-

sence in a large company

— Monthly demands for a particular product

All of these are situations where the Poisson distribution

may be applicable.
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Canonical Framework. . .

Like the Binomial distribution, the Poisson distribution

arises when a set of canonical assumptions are reasonably

valid. These are:

• The number of events that occur in any time interval

is independent of the number of events in any other

disjoint interval. Here, “time interval” is the standard

example of an “exposure variable” and other interpre-

tations are possible. Example: Error rate per page in

a book.

• The distribution of number of events in an interval is

the same for all intervals of the same size.

• For a “small” time interval, the probability of observ-

ing an event is proportional to the length of the inter-

val. The proportionality constant corresponds to the

“rate” at which events occur.

• The probability of observing two or more events in

an interval approaches zero as the interval becomes

smaller.
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Under the above assumptions, let λ be the rate at which

events occur, t be the length of a time interval, and X be

the total number of events in that time interval. Then, X

is called a Poisson random variable and the proba-

bility distribution of X is called the Poisson distrib-

ution.

Let µ ≡ λt; then, µ can be interpreted as the average, or

mean, number of events in an interval of length t.
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Poisson Probability-Mass Function. . .

Let X be a Poisson random variable. Then, its probability-

mass function is:

P (X = x) = e−µ µx

x!
(2)

for x = 0, 1, 2, . . . .

The value of µ is the parameter of the distribution. For

a given time interval of interest, in an application, µ can

be specified as λ times the length of that interval.

Example: Typos

The number of typographical errors in a “big” textbook

is Poisson distributed with a mean of 1.5 per 100

pages.

Suppose 100 pages of the book are randomly selected.

What is the probability that there are no typos? An-

swer:

P (X = 0) = e−µ µx

x!
= e−1.5 1.50

0!
= 0.2231
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Suppose 400 pages of the book are randomly selected.

What are the probabilities for having no typos and

for having five or fewer typos? Answers:

P (X = 0) = e−1.5·4 (1.5 · 4)0

0!

= 0.002479

and

P (X ≤ 5) =
5

∑

i=0

P (X = i)

= 0.0025 + 0.0149 + 0.0446 + 0.0892

+0.1339 + 0.1606

= 0.4457

Poisson probabilities can be computed using the Excel

function POISSON(). Further numerical examples of the

Poisson distribution are given in a separate Excel file.
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Mean and Variance

It can be shown that

E(X) = µ

and

V (X) = µ .

Interpretation of (2)

The form of (2) seems mysterious. The best way to un-

derstand it is via the binomial distribution.

Consider a time interval and divide it into n equally-sized

subintervals. Suppose n is very large so that either one

or zero event can occur in a subinterval. Suppose further

that the probability for an event to occur in a subinterval

is µ/n, independent of what occurs in other subintervals.
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Under these assumptions, the total number of events, X ,

in that interval has a binomial distribution with parame-

ters n and µ/n. That is,

P (X = x) =
n!

x!(n − x)!

(µ

n

)x (

1 − µ

n

)n−x

(3)

for x = 0, 1, 2, . . . , n.

Note that E(X) = n ·(µ/n) = µ, suggesting that (3) and

(1) are “consistent.” Indeed, it can be shown that as n

approaches ∞, (3) becomes (2). This useful fact is called

Poisson approximation to the binomial distribution.

We will see several other examples of such limiting ap-

proximations in future chapters. They provide simple

and accurate approximations to otherwise unmanageable

expressions.
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General Continuous Distributions. . .

Recall that a continuous random variable or distribu-

tion is defined via a probability density function. Let

f(x) (nonnegative) be the density function of variable X .

Then, f(x) is the rate at which probability accumulates

in the neighborhood of x. In other words,

f(x) h ≈ P (x < X ≤ x + h)

when h (a positive number) is sufficiently small. It follows

from this rate interpretation that for any interval (x1, x2],

we have

P (x1 < X ≤ x2) =

∫ x2

x1

f(x) dx ; (4)

moreover, we must have
∫ ∞

−∞
f(x) dx = 1 .

Note that the probability for a continuous random vari-

able to assume any particular value is 0; this can be seen

by setting x1 = x2 in (4).
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Recall further that the integral of a function over an inter-

val is the area under that function over the given interval.

We can therefore visualize P (x1 < X ≤ x2) as the area

of the yellow region below:

f(x)

xx
1

x
2
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For −∞ < x < ∞, the function

F (x) ≡ P (X ≤ x) =

∫ x

−∞
f(y) dy

(i.e., let x1 = −∞ and x2 = x in (4)) is called the

cumulative distribution function of X . F (x) can also

be used to describe a random variable, since f(x) is the

derivative of F (x).

Various probabilities of interest regarding a variable X

can all be computed via either f(x) or F (x).

We next discuss three important continuous distributions:

uniform, normal, and exponential.
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Uniform Distribution. . .

The uniform distribution is the simplest example of a con-

tinuous probability distribution. A random variable X is

said to be uniformly distributed if its density function is

given by:

f(x) =
1

b − a
(5)

for −∞ < a ≤ x ≤ b < ∞.

Visually, we have

f(x)

xba

where the shaded region has area (b − a)[1/(b − a)] = 1

(width times height).
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The values a and b are the parameters of the uniform

distribution. It can be shown that

E(X) =
a + b

2
and V (X) =

(b − a)2

12
.

The standard uniform density has parameters a = 0 and

b = 1; and hence f(x) = 1 for 0 ≤ x ≤ 1 and 0 other-

wise. The Excel function RAND() “pretends” to generate

independent samples from this density function.

19



Example: Gasoline Sales

Suppose the amount of gasoline sold daily at a service

station is uniformly distributed with a minimum of

2,000 gallons and a maximum of 5,000 gallons.

What is the probability that daily sales will fall between

2,500 gallons and 3,000 gallons? Answer:

P (2500 < X ≤ 3000) =
1

5000 − 2000
(3000 − 2500)

= 0.1667 .

Visually, we have

f(x)

x5,0002,000

and the answer corresponds to the area in blue.
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What is the probability that the service station will sell

at least 4,000 gallons? Answer:

P (X > 4000) =
1

5000 − 2000
(5000 − 4000)

= 0.3333 .

Visually, we have

f(x)

x5,0002,000

What is the probability that the service station will sell

exactly 2,500 gallons? Answer: P (X = 2500) = 0,

since the area of a “vertical line” at 2,500 is 0.

f(x)

x5,0002,000
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Normal Distribution. . .

The normal distribution is the most important distrib-

ution in statistics, since it arises naturally in numerous

applications. The key reason is that large sums of

(small) random variables often turn out to be normally

distributed; a more-complete discussion of this will be

given in Chapter 9.

A random variable X is said to have the normal distrib-

ution with parameters µ and σ if its density function is

given by:

f(x) =
1√

2π σ
exp

{

− 1

2

(

x − µ

σ

)2
}

(6)

for −∞ < x < ∞.

It can be shown that

E(X) = µ and V (X) = σ2 .

Thus, the normal distribution is characterized by a mean

µ and a standard deviation σ .
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A typical normal density curve looks like this:

Thus, the curve is bell shaped and is symmetric around

the mean µ. The standard deviation σ controls the “flat-

ness” of the curve.

Details . . .
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Increasing the mean shifts the density curve to the right

. . .

Increasing the standard deivation flattens the density

curve . . .
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Calculating Normal Probabilities. . .

A normal distribution whose mean is 0 and standard de-

viation is 1 is called the standard normal distribution.

In this case, the density function assumes the simpler

form:

f(x) =
1√
2π

e−x2/2 (7)

for −∞ < x < ∞.

Table 3 in Appendix B of the text can be used to cal-

culate probabilities associated with the standard normal

distribution. The Excel function NORMSDIST() (where

“S” is for “standard”) can also be used.

Denote by Z a random variable that follows the standard

normal distribution. Then, Table 3 gives the probability

P (0 < Z ≤ z) for any nonnegative value z; whereas

NORMSDIST() returns P (Z ≤ z) for any z from −∞
to ∞, i.e., values of the cumulative distribution function.

For general parameter values, the Excel function NOR-

MDIST() (without “S” in the middle) can be used di-

rectly. However, . . .
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A standard practice is to convert a normal random vari-

able X with arbitrary parameters µ and σ into a stan-

dardized normal random variable Z with parameters 0

and 1 via the transformation:

Z =
X − µ

σ
; (8)

this is illustrated in:

This shifts the mean 

of X to zero…

0

This changes the 
shape of the curve…

0
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Example 1: Build Time of Computers

Suppose the time required to build a computer is nor-

mally distributed with a mean of 50 minutes and a

standard deviation of 10 minutes.

What is the probability for the assembly time of a com-

puter to be between 45 and 60 minutes? Answer:

We wish to compute P (45 < X ≤ 60). To do this,

we first rewrite the event of interest into a form that is

in terms of a standardized variable Z = (X − 50)/10,

as follows.

P

(

45 − 50

10
<

X − 50

10
≤ 60 − 50

10

)

= P (−0.5 < Z ≤ 1) .

Next, observe that

P (−0.5 < Z ≤ 1) = P (Z ≤ 1) − P (Z ≤ −0.5) .

Using the Excel function NORMSDIST(), we find

that P (Z ≤ 1) = 0.8413 and P (Z ≤ −0.5) = 0.3085.

Hence, the answer is 0.8413 − 0.3085 = 0.5328 .
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Table 3 can also be used for this calculation:

P (−0.5 < Z ≤ 1)

= P (−0.5 < Z ≤ 0) + P (0 < Z ≤ 1)

= P (0 < Z ≤ 0.5) + P (0 < Z ≤ 1)

= 0.1915 + 0.3414

= 0.5328 ,

where the first equality follows from

0

–.5 … 1

the second equality is due to the fact that the normal

density curve is symmetric, and the third equality is

from Table 3.

Is it reasonable to assume that the build time is nor-

mally distributed? Reasoning: The build time can be

thought of as the sum of times needed to build many

individual components.
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Example 2: Stock Returns

Suppose the return of an investment in a stock over a

given time period is normally distributed with a mean

of 10% and a standard deviation of 5%. Reasoning:

Price movement of a stock over the given period can

be thought of as the sum of a “long” sequence of small

movements.

What is the probability of losing money over the given

period? Answer: We wish to determine P (X ≤ 0).

Following the steps in the previous example, we obtain

P (X ≤ 0)

= P

(

X − 10

5
≤ 0 − 10

5

)

= P (Z ≤ −2)

= 0.02275 .
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What is the effect of doubling the standard deviation to

10? Answer: A similar calculation yields

P (X ≤ 0) = P

(

X − 10

10
≤ 0 − 10

10

)

= P (Z ≤ −1)

= 0.1587 ,

which is almost 7 times larger than the previous an-

swer. Thus, increasing the standard deviation in-

creases the probability of losing money. This reiter-

ates the fact that the standard deviation is a measure

of risk.

Example 3: Midterm Scores

Why did the frequency distribution of the Midterm scores

resemble a normal density curve? Reasoning: The to-

tal score of an exam is the sum of scores for many

individual problems/parts.
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Finding “z” for Given Probability. . .

Most of the calculations above are of the form: Find the

probability P (Z ≤ z) for a given value of z. Often times,

we are also interested in an inverse problem: Find the

value of zA such that the probability for Z to be greater

than zA equals a specified value A.

Formally, our question is: For what value of zA do we

have

P (Z > zA) = A ? (9)

This can be visualized as:

Questions like these will be relevant in statistical infer-

ence.
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Examples:

Find zA for A = 0.025 (or 2.5%). That is, what is z0.025?

Answer: Observe that

P (Z > z0.025) = 1 − P (Z ≤ z0.025) .

Area = .025

Observer further that

P (Z ≤ z0.025) = 1 − P (Z > z0.025)

= 1 − 0.025

= 0.975 ,

where the second equality follows from the definition

of z0.025.
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Hence, our problem is equivalent to that of finding

z0.025 such that P (Z ≤ z0.025) = 0.975 . That is, we

are interested in the inverse of a cumulative distrib-

ution function; this is similar to finding percentiles

using an ogive. The Excel function NORMSDIST()

(which is a cumulative distribution function) has an

inverse: NORMSINV(). Using this inverse function

with argument 0.975, we find that z0.025 = 1.96 .

For A = 0.05, we have z0.05 = 1.645.

For A = 0.01, we have z0.01 = 2.33.
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Exponential Distribution. . .

Another useful continuous distribution is the exponen-

tial distribution, which has the following probability

density function:

f(x) = λe−λx (10)

for x ≥ 0.

This family of distributions is characterized by a single

parameter λ, which is called the rate. Intuitively, λ can

be thought of as the instantaneous “failure rate” of a

“device” at any time t, given that the device has survived

up to t.

The exponential distribution is typically used to model

time intervals between “random events”. . .
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Examples:

— The length of time between telephone calls

— The length of time between arrivals at a service station

— The life time of electronic components, i.e., an inter-

failure time

An important fact is that when times between random

“events” follow the exponential distribution with rate λ,

then the total number of events in a time period of length

t follows the Poisson distribution with parameter λt.

If a random variable X is exponentially distributed with

rate λ, then it can be shown that

E(X) =
1

λ
and V (X) =

(

1

λ

)2

.
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For λ = 0.5, 1, and 2, the shapes of the expenential

density curve are:

Observe that the greater the rate, the faster the curve

drops. Or, the lower the rate, the flatter the curve.

Several useful formulas are:

P{X ≤ x} = 1 − e−λx

P{X > x} = e−λx

P{x1 < X ≤ x2} = e−λx1 − e−λx2

These correspond to the areas under the density curve to

the left of x, to the right of x, and between x1 and x2,

respectively.
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Example 1: Lifetime of a Battery

The lifetime X of an alkaline battery is exponentially

distributed with λ = 0.05 per hour.

What are the mean and standard deviation of the bat-

tery’s lifetime? Answer:

E(X) = SD(X) =
1

0.05
= 20 hours.

What are the probabilities for the battery to last between

10 and 15 hours and to last more than 20 hours? An-

swer:

P (10 < X ≤ 15) = e−0.05·10 − e−0.05·15 = 0.1341

P (X > 20) = e−0.05·20 = 0.3679

(The Excel function EXP() can be used for these cal-

culations.)
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Example 2: Arrivals at a Gas Station

The arrival rate of cars at a gas station is λ = 40 cus-

tomers per hour. (This is equivalent to saying that the

interarrival times are exponentially distributed with

rate 40 per hour.)

What is the probability of having no arrivals in a 5-

minute interval? Answer:

P (X >
5

60
) = e−40·(5/60) = 0.03567

What are the mean and variance of the number, N , of

arrivals in 5 minutes? Answer:

The variable N has a Poisson distribution with para-

meter µ = λt = 40 · (5/60) = 3.333. Hence,

E(N) = 3.333 and V (N) = 3.333 .

What is the probability for having 3 arrivals in a 5-

minute interval? Answer:

P (N = 3) = e−3.333 3.3333

3!
= 0.2202 .
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