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Random Variables. . .

As noted earlier, variability is omnipresent in the busi-

ness world. To model variability probabilistically, we need

the concept of a random variable.

A random variable is a numerically valued variable which

takes on different values with given probabilities.

Examples:

The return on an investment in a one-year period

The price of an equity

The number of customers entering a store

The sales volume of a store on a particular day

The turnover rate at your organization next year
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Types of Random Variables. . .

Discrete Random Variable:

— one that takes on a countable number of possible

values, e.g.,

• total of roll of two dice: 2, 3, . . . , 12

• number of desktops sold: 0, 1, . . .

• customer count: 0, 1, . . .

Continuous Random Variable:

— one that takes on an uncountable number of possible

values, e.g.,

• interest rate: 3.25%, 6.125%, . . .

• task completion time: a nonnegative value

• price of a stock: a nonnegative value

Basic Concept: Integer or rational numbers are discrete,

while real numbers are continuous.
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Probability Distributions. . .

“Randomness” of a random variable is described by a

probability distribution. Informally, the probability

distribution specifies the probability or likelihood for a

random variable to assume a particular value.

Formally, let X be a random variable and let x be a

possible value of X . Then, we have two cases.

Discrete: the probability mass function of X specifies

P (x) ≡ P (X = x) for all possible values of x.

Continuous: the probability density function of X is

a function f (x) that is such that f (x) · h ≈ P (x <

X ≤ x + h) for small positive h.

Basic Concept: The probability mass function specifies

the actual probability, while the probability density func-

tion specifies the probability rate; both can be viewed as

a measure of “likelihood.”

The continuous case will be discussed in Chapter 8.
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Discrete Distributions. . .

A probability mass function must satisfy the following

two requirements:

1. 0 ≤ P (x) ≤ 1 for all x

2.
∑

all x P (x) = 1

Empirical data can be used to estimate the probability

mass function. Consider, for example, the number of TVs

in a household. . .

No. of TVs No. of Households x P (x)

0 1,218 0 0.012

1 32,379 1 0.319

2 37,961 2 0.374

3 19,387 3 0.191

4 7,714 4 0.076

5 2,842 5 0.028

101,501 1.000

For x = 0, the probability 0.012 comes from 1,218/101,501.

Other probabilities are estimated similarly.
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Properties of Discrete Distributions. . .

Realized values of a discrete random variable can be viewed

as samples from a conceptual/theoretical population.

For example, suppose a household is randomly drawn, or

sampled, from the population governed by the probabil-

ity mass function specified in the previous table. What

is the probability for us to observe the event {X = 3}?
Answer: 0.191. That X turns out to be 3 in a random

sample is called a realization. Similarly, the realization

X = 2 has probability 0.374.

We can therefore compute the population mean, variance,

and so on. Results of such calculations are examples of

population parameters.

Details. . .
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Population Mean — Expected Value. . .

The population mean is the weighted average of all

of its values. The weights are specified by the proba-

bility mass function. This parameter is also called the

expected value of X and is denoted by E(X).

The formal definition is similar to computing sample mean

for grouped data:

µ = E(X) ≡
∑

all x

x P (x) . (1)

Example: Expected No. of TVs

Let X be the number of TVs in a household.

Then,

E(X) = 0 · 0.012 + 1 · 0.319 + · · · + 5 · 0.028

= 2.084

The Excel function SUMPRODUCT() can be used for

this computation.
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Interpretation

What does it mean when we say E(X) = 2.084 in the

previous example? Do we “expect” to see any household

to have 2.084 TVs?

The correct answer is that the expected value should be

interpreted as a long-run average. Formally, let x1,

x2, . . . , xn be n (independent) realizations of X ; then,

we expect :

E(X) = lim
n→∞

1

n

n
∑

i=1

xi .

Such a statement is called a law of large numbers.

Thus, in the previous example, the average number of

TVs in a large number of randomly-selected households

will approach the expected value 2.084.
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Population Variance. . .

The population variance is calculated similarly. It is the

weighted average of the squared deviations from the

mean. Formally,

σ2 = V (X) ≡
∑

all x

(x − µ)2P (x) . (2)

Since (2) is an expected value (of (X −µ)2), it should be

interpreted as the long-run average of squared deviations

from the mean. Thus, the parameter σ2 is a measure of

the extent of variability in successive realizations of X .

Similar to sample variance, there is a “short-cut” formula:

σ2 = V (X) =
∑

all x

x2P (x) − µ2 . (3)

The standard deviation is given by:

σ =
√

σ2 . (4)
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Example: Variance of No. of TVs

Let X be the number of TVs in a household.

Then,

V (X) = (0 − 2.084)2 · 0.012 + · · · + (5 − 2.084)2 · 0.028

= 1.107 ;

or,

V (X) = 02 · 0.012 + · · · + 52 · 0.028 − 2.0842

= 1.107 .

Thus, on average, we expect X to have a squared devi-

ation of 1.107 from the mean 2.084.

The standard deviation is: σ =
√

1.107 = 1.052.
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General Laws. . .

Expected-Value Calculations. . .

Calculations involving the expected value obey the fol-

lowing important laws:

1. E(c) = c

— the expected value of a constant (c) is just the

value of the constant

2. E(X + c) = E(X) + c

— “translating” X by c has the same effect on the

expected value; in other words, we can distribute

an expected-value calculation into a sum

3. E(cX) = c E(X)

— “scaling” X by c has the same effect on the ex-

pected value; in other words, we can pull the con-

stant c out of an expected-value calculation
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Variance Calculations. . .

Calculations involving the variance obey the following im-

portant laws:

1. V (c) = 0

— the variance of a constant (c) is zero

2. V (X + c) = V (X)

— “translating” X by c has no effect on the variance

3. V (cX) = c2 V (X)

— “scaling” X by c boosts the variance by a factor

of c2; in other words, when we pull out a constant

c in a variance calculation, the constant should be

squared (note however that the standard deviation

of cX equals c times the standard deviation of X)
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Example: Sales versus Profit

The monthly sales, X , of a company have a mean of

$25,000 and a standard deviation of $4,000. Profits,

Y , are calculated by multiplying sales by 0.3 and sub-

tracting fixed costs of $6,000.

What are the mean profit and the standard deviation of

profit?

We know that:

E(X) = 25000 ,

V (X) = 40002 = 16000000 , and

Y = 0.3X − 6000 .

Therefore,

E(Y ) = 0.3E(X) − 6000

= 0.3 · 25000 − 6000

= 1500

and

σ =
√

0.32 V (X)

=
√

0.09 · 16000000

= 1200 .
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Bivariate Distributions. . .

Up to now, we have looked at univariate distributions,

i.e., probability distributions in one variable.

Bivariate distributions, also called joint distribu-

tions, are probabilities of combinations of two variables.

For discrete variables X and Y , the joint probability dis-

tribution or joint probability mass function of X and Y

is defined as:

P (x, y) ≡ P (X = x and Y = y)

for all pairs of values x and y.

As in the univariate case, we require:

1. 0 ≤ P (x, y) ≤ 1 for all x and y

2.
∑

all x

∑

all y P (x, y) = 1
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Example: Houses Sold by Two Agents

Mark and Lisa are two real estate agents. Let X and

Y be the respective numbers of houses sold by them

in a month. Based on past sales, we estimated the

following joint probabilities for X and Y .

X

0 1 2

0 0.12 0.42 0.06

Y 1 0.21 0.06 0.03

2 0.07 0.02 0.01

Thus, for example P (0, 1) = 0.21 , meaning that the

joint probability for Mark and Lisa to sell 0 and 1

houses, respectively, is 0.21. Other entries in the table

are interpreted similarly.

Note that the sum of all entries must equal to 1.
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Marginal Probabilities

In the previous example, the marginal probabilities are

calculated by summing across rows and down columns:

X

0 1 2

0 0.12 0.42 0.06 0.6

Y 1 0.21 0.06 0.03 0.3

2 0.07 0.02 0.01 0.1

0.4 0.5 0.1 1.0

This gives us the probability mass functions for X and Y

individually :

X Y

x P (x) y P (y)

0 0.4 0 0.6

1 0.5 1 0.3

2 0.1 2 0.1

Thus, for example, the marginal probability for Mark to

sell 1 house is 0.5.
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Independence

Two variables X and Y are said to be independent if

P (X = x and Y = y) = P (X = x)P (Y = y)

for all x and y. That is, the joint probabilities equal the

product of marginal probabilities. This is similar to the

definition of independent events.

In the houses-sold example, we have

P (X = 0 and Y = 2) = 0.07 ,

P (X = 0) = 0.4 , and P (Y = 2) = 0.1 .

Hence, X and Y are not independent.
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Properties of Bivariate Distributions. . .

Expected values, Variances, and Standard De-

viations. . .

These marginal parameters are computed via earlier for-

mulas.

Consider the previous example again. Then, for Mark,

we have

E(X) = 0.7 ,

V (X) = 0.41 , and

σX = 0.64 ;

and for Lisa, we have

E(Y ) = 0.5 ,

V (Y ) = 0.45 , and

σY = 0.67 .
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Covariance. . .

The covariance between two discrete variables is de-

fined as:

COV (X,Y ) ≡
∑

all x

∑

all y

(x − µX)(y − µY )P (x, y) . (5)

This is equivalent to:

COV (X,Y ) =
∑

all x

∑

all y

xy P (x, y) − µXµY . (6)

Example: Houses Sold

COV (X,Y ) = (0 − 0.7)(0 − 0.5) · 0.12 + · · ·
+(2 − 0.7)(2 − 0.5) · 0.01

= −0.15 ;

or,

COV (X,Y ) = 0 · 0 · 0.12 + · · · + 2 · 2 · 0.01

−0.7 · 0.5
= −0.15 .
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Coefficient of Correlation. . .

As usual, the coefficient of correlation is given by:

ρX,Y ≡ COV (X,Y )

σXσY

. (7)

Example: Houses Sold

ρX,Y =
−0.15

0.64 · 0.67
= −0.35 .

This indicates that there is a bit of negative relationship

between the numbers of houses sold by Mark and Lisa.

Is this surprising?
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Sum of Two Variables. . .

The bivariate distribution allows us to develop the prob-

ability distribution of the sum of two variables, which is

of interest in many applications.

In the houses-sold example, we could be interested in the

probability for having two houses sold (by either Mark

or Lisa) in a month. This can be computed by adding

the probabilities for all combinations of (x, y) pairs that

result in a sum of 2:

P (X + Y = 2) = P (0, 2) + P (1, 1) + P (2, 0) = 0.19 .

Using this method, we can derive the probability mass

function for the variable X + Y :

x + y P (x + y)

0 0.12

1 0.63

2 0.19

3 0.05

4 0.01
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The expected value and variance of X + Y obey the fol-

lowing basic laws. . .

1. E(X + Y ) = E(X) + E(Y )

2. V (X + Y ) = V (X) + V (Y ) + 2 COV (X, Y )

If X and Y happens to be independent, then

COV (X, Y ) = 0 and thus

V (X + Y ) = V (X) + V (Y ).

Example: Houses Sold

E(X + Y ) = 0.7 + 0.5 = 1.2 ,

V (X + Y ) = 0.41 + 0.45 + 2 (−0.15) = 0.56 , and

σX+Y =
√

0.56 = 0.75 .

Note that the negative correlation between X and Y

had a variance-reduction effect on X + Y . This is

an important concept. One application is that invest-

ing in both stocks and bonds could result in reduced

variability or risk.
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Business Applications. . .

Although our discussion may have seemed somewhat on

the theoretical side, it turns out that some of the most

applicable aspects of probability theory to business prob-

lems are through the concept of random variables.

We now describe a number of application examples. . .
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Mutual Fund Sales. . .

Suppose a mutual fund sales person has a 50% (perhaps

too high, but we will revisit this) chance of closing a sale

on each call she makes. Suppose further that she made

four calls in the last hour.

Consider “closing a sale” a success and “not closing a

sale” a failure. Then, we will study the variables:

X = total number of successes

Y = number of successes before first failure

An interesting question is: How would the distribution

of Y vary for different values of X? This motivates the

concept of a conditional distribution.
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Conditional Probability Distribution

Formally, let X and Y be two random variables. Then,

the conditional probability distribution of Y given X =

x is defined by:

P (y | x) ≡ P (Y = y | X = x)

=
P (Y = y and X = x)

P (X = x)
, (8)

for all values of y.

Given X = x, we can also calculate the conditional ex-

pected value of Y via:

E(Y | X = x) =
∑

all y

y P (y | x) . (9)

These concepts are important, particularly in regression

analysis.

Details are given in C7-01-Fund Sales.xls . . .
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Lottery. . .

The concept of the expected value can be generalized. In

many applications, we are interested in a function of a

random variable. Let X be a random variable, and let

h(X) be a function of X ; then, the expected value of

h(X), written as E(h(X)), is defined by:

E(h(X)) ≡
∑

all x

h(x) P (x) . (10)

In a lottery where the buyer of a ticket picks 6 numbers

out of 50, X can be the number of matches out of the

picked numbers and the actual payoff is a function of X .

We will study the expected payoff and the risk (standard

deviation) involved in buying a lottery ticket.

Details are given in C7-02-Lottery.xls . . .
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Managing Investments. . .

Managing risk is an important part of life. This is par-

ticularly true when we are assessing the desirability of

an investment portfolio. It is necessary not only to look

at the expected return but also to look at the risk. In

this application, we will study how to reduce the risk of

a portfolio.

Consider the following two investments:

Investment 1 Investment 2

Mean Rate of Return 0.06 0.08

Standard Deviation 0.02 0.03

Which would you choose?
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There is no simple answer to this question. The choice

depends on your attitude toward risk.

Some people are risk averse (that is, they try to minimize

their potential losses), but at the same time they may

limit their potential gains. Such a person would probably

pick Investment 1, since by Chebysheff’s inequality, there

is at least a 88.9% chance of getting a positive return on

the investment (i.e., 0.06 plus/minus 3 · 0.02).

On the other hand, people who are not risk averse might

pick Investment 2, for although they might lose as much

as 1% (0.08 − 3 · 0.03), they might gain as much as 17%

(0.08 + 3 · 0.03).
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Now, consider the following two scenarios:

Scenario 1:

Investment 1 Investment 2

Mean Rate of Return 0.06 0.08

Standard Deviation 0.02 0.02

Scenario 2:

Investment 1 Investment 2

Mean Rate of Return 0.08 0.08

Standard Deviation 0.02 0.03

Since the risks are the same in Scenario 1, one should pick

the investment with a higher return.

In Scenario 2, the returns are the same. A risk averse

person would pick the investment with a lower risk. Of

course, not everyone is risk averse.
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Diversification

An important idea is that one should not just invest in

one vehicle. That is, buy a broad spectrum of stocks,

bonds, real estates, money market certificates, etc. Such

a strategy is called diversifying a portfolio.

The point here is that if you invest in, say, stocks and

bonds simultaneously, then it is unlikely for them both to

go down at the same time. When stock prices are increas-

ing, bonds are usually decreasing, and vice versa. In our

statistical language, this means that they are negatively

correlated.

An analysis of a portfolio of 3 investments is given in

C7-03-Portfolio.xls . . .
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Odds and Subjective Probability. . .

In the lottery example, we found that for every dollar in-

vested, we expected a return of only 40 cents. In other

words we lost 60 cents for every dollar invested. Since

one usually does not think of the lottery as a serious in-

vestment but more as a means of entertainment, this is

fine. However, for actual investments we expect to get a

net positive return.

In order to establish a baseline for any wager, investment,

or even an insurance premium (which is a form of wager),

we will study the concept of a fair bet in this application.

Details are given in C7-04-Odds.xls . . .
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Decision Making under Uncertainty. . .

Many of the concepts we have introduced can be used ef-

fectively in analyzing decision problems that involve un-

certainty.

The basic features of such problems are:

— We need to make a choice from a set of possible al-

ternatives. Each alternative may involve a sequence

of actions.

— The consequences of our actions, usually given in the

form of a payoff table, may depend on possible

states of nature, which are governed by a prob-

ability distribution (possibly subjective).

— The true state of nature is not known at the time of

decision.

— Our objective is to maximize the expected payoff

and/or to minimize risk.

— We could acquire additional information regarding the

true state of nature at a cost.

31



Example: Investment Decision

An individual has $1 million dollars and wishes to make

a one-year investment.

Suppose his/her possible actions are:

a1: buy a guaranteed income certificate paying 10%

a2: buy bond with a coupon value of 8%

a3: buy a well-diversified portfolio of stocks

Return on investment in the diversified portfolio depends

on the behavior of the interest rate next year. Suppose

there are three possible states of nature:

s1: interest rate increases

s2: interest rate stays the same

s3: interest rate decreases

Suppose further that the subjective probabilities for

these states are 0.2, 0.5, and 0.3, respectively.

32



Based on historical data, the payoff table is:

States Actions

of Nature a1 a2 a3

s1 100,000 −50,000 150,000

s2 100,000 80,000 90,000

s3 100,000 180,000 40,000

Which action should he/she take? The expected payoffs

for the actions are:

a1: 0.2·100,000+0.5·100,000 + 0.3 · 100,000 = 100,000

a2: 0.2·(−50,000)+0.5·80,000+0.3·180,000 = 84,000

a3: 0.2 · 150,000 + 0.5 · 90,000 + 0.3 · 40,000 = 87,000

Hence, if one wishes to maximize expected payoff,

then action a1 should be taken.
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An equivalent concept is to minimize expected oppor-

tunity loss (EOL). Consider any given state. For

each possible action, the opportunity loss is defined

as the difference between what the payoff could have

been had the best action been taken and the payoff

for that particular action. Thus,

States Actions

of Nature a1 a2 a3

s1 50,000 200,000 0

s2 0 20,000 10,000

s3 80,000 0 140,000

EOL: 34,000 50,000 47,000

Indeed, a1 is again optimal.

For more complicated problems, a decision tree can be

used. A detailed example is given in C23-01-Decision.xls . . .
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