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Abstract

We present a model to determine the optimal point for maintaining a soft-
ware application. We also address the question: given that a maintenance
project has been initiated, should maintenance effort continue till the project
is completed? Most previous literature has implicitly assumed that it is opti-
mal to complete a maintenance project once it has been initiated. We analyze
two policies: a work-based policy and a time-based policy. In the work-based
policy, a fixed amount of work needs to be completed, and the time taken to
accomplish the work is random. In the time-based policy, a fixed amount of
time is allocated to maintenance, but a random amount of work is completed.
We examine similarities and differences between the above two policies and
provide insights into the management of software maintenance projects. A key
insight of this study is that under a variety of situations, partial maintenance
is sub-optimal.
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1 Introduction

The importance of the software engineering industry has grown with the widespread

deployment of information technology in major industry sectors. Software quality

issues have begun to exert a profound influence on the daily operations of organiza-

tions. To maintain quality, software applications need to be maintained on a regular

basis. Thus, software maintenance is a resource-intensive activity and constitutes a

large portion of the total costs spent on the entire product life (Lientz and Swanson

1981, Arthur 1988, Nosek and Palvia 1999). Software maintenance refers to activities

associated with modifying a software system or component after delivery to correct

faults, improve performance or other attributes, or adapt to a changed environment

(Schneidewind 1987). Two major reasons accounts for huge software maintenance

cost: a volatile user environment and deteriorating software maintainability (Chan,

Chung and Teck 1996).

Empirical studies show a close relationship between software maintenance and

the activities undertaken during software development. A field study by Dekleva

(1992) examines the influence of the selected system development methodology on

the maintenance effort. The work of Banker et al. (1998) also indicates that software

maintenance is greatly influenced by design and development practices, and software

complexity is a key intermediate factor. Both economies and diseconomies of scale

in software maintenance were observed by Banker et al. (1997) in their study on the

relationship between project size and software maintenance effort.

Most software maintenance occurs as a response to user requests for changes or

enhancements to the system. According to Swanson (1976), maintenance requests

can be classified into three types: adaptive, perfective and corrective. In most cases,

the first two categories account for more than 75% of the total maintenance effort

on a system (Lientz and Swanson 1980). Software maintenance decisions are usu-

ally based on the structure of maintenance cost. Barua and Mukhopadhyay (1989)
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investigate the case of continuous maintenance with the possibility of replacing the

system once during its useful life. However, the cost of delaying maintenance is not

considered. Chan et al. (1996) develop a normative model of software maintenance

and replacement. Tan and Mookerjee (2003) also study the trade-off between software

maintenance and replacement, together with the impact of software reuse. Kulkarni

and Sethi (2003) model software maintenance using a variation of M/G/1 queues and

obtain an optimal resource allocation policy.

In this paper, we consider software maintenance projects under a stable IS envi-

ronment. That is, the software is operating in the organization, users are familiar

with the system and the maintenance team has enough experience with the system.

Thus, the focus here is on adaptive and perfective maintenance, rather than correc-

tive activities. The total costs of maintenance includes the costs incurred by the

maintenance team and the costs incurred by the users who wait for maintenance to

be completed.

We present a dynamic programming formulation of the software maintenance

problem. Requests for maintenance are assumed to arrive in accordance with a Pois-

son process. The costs incurred by the maintenance team constitute a fixed and a

linear cost that depends on the amount of maintenance work done. Delaying mainte-

nance results in a per unit time user waiting cost. Two major questions are addressed:

(1) when to start maintenance? (2) how long should the maintenance activity go on,

or how much work should be completed in one round of maintenance? To answer the

first question, we start with a simplified model under the assumption of instantaneous

maintenance. We show that there is an optimal system state, or a threshold level, at

which maintenance should be initiated. This result can be further extended to the

case when the maintenance duration is not negligible. Furthermore, we propose two

policies to answer the second question. In the work-based policy, the target system

state after maintenance is fixed, and the maintenance duration is random; in the

time-based policy, a planned maintenance duration is specified, and the system state
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after maintenance is random. The work-based policy aims at controlling the quality

of the system, whereas the time-based policy provides greater administrative control

of the maintenance project. We provide comparison of the two policies and show that

the are basically equivalent under the optimal threshold.

In the next section, we develop the basic model in which maintenance is completed

instantaneously and prove the optimality of a threshold policy. We extend the model

in Section 3 with the inclusion of non-zero maintenance time. Two classes of policies

are discussed and optimal cost functions are derived. Additional numerical results of

the models are presented in Section 4. We conclude the paper in Section 5.

2 Basic Model

Following previous empirical research, we model change requests from software users

according to a Poisson process with a constant rate λ (Chan et al. 1996). A waiting

cost of b per unit time occurs for each outstanding request. The state of system, i.e.,

the number of pending requests that have accumulated, is monitored, and depend-

ing on this number, a decision is taken whether or not to initiate maintenance. If

maintenance is performed, the cost of maintenance consists of a fixed cost K and a

correction cost c per request. We start with a simple model where we assume that

maintenance can be instantaneously performed. When the rate of request correction

is much faster than the request arrival rate, the time required to perform maintenance

can be ignored. A more general model with nonzero maintenance time is discussed

in the next section.

The goal of the model is to optimize the long-run total discounted cost (waiting

cost plus maintenance cost). A constant discount rate of r, 0 < r < 1, is assumed.

The problem is to choose the state of the system at which maintenance should be

performed.
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Let V (B), B > 0, be the smallest possible cost (in steady state) of state B. Let

V c(B) denote the cost of carrying out maintenance, and V n(B) be the cost of not

maintaining the system at state B. Let T be the random variable denoting the inter-

request time. Then the dynamic programming (DP) equations for the problem can

be written as

V c(B) = K + cB + V (0), (1)

V n(B) = Ee−rT V (B + 1) + E

∫ T

0

e−rtbBdt = qV (B + 1) + q
bB

λ
, (2)

V (B) = min{V c(B), V n(B)}, (3)

where q = λ/(λ + r) and p = 1 − q.

Next we propose a threshold policy:maintain the system when it reaches a fixed

state F . The state of the system follows a stochastic process with an infinite sequence

of cycles of length F . Let V (B|F ), 0 6 B 6 F , denote the associated cost function

under the threshold policy. If B = F , then maintenance is initiated. We have

V (F |F ) = K + cF + V (0|F ), (4)

If B < F , then from (2) we have

V (B|F ) = qV (B + 1|F ) + q
bB

λ
. (5)

Applying (2) recursively gives

V (B|F ) = q2V (B + 2|F ) + q2 b(B + 1)

λ
+ q

bB

λ

= ...

= qF−BV (F |F ) +
b

r

1

p
[q + pB − (q + pF )qF−B], for 0 6 B < F. (6)

Setting B = 0 in (6) gives V (0|F ). Substituting this expression in (4) and solving

for V (F |F ), we get

V (F |F ) =
1

1 − qF

[

K +

(

c −
b

r

)

F

]

+
b

r
F +

b

r

q

p
, for 0 6 B < F . (7)
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Putting (7) in (6) yields

V (B|F ) =
qF−B

1 − qF

[

K +

(

c −
b

r

)

F

]

+
b

r

1

p
(q + pB) (8)

Equation (8) is the cost function under the threshold policy F . It is easily seen

that if V (B|F ) is minimized at F = F ∗ for some B, then it is also minimized at

F = F ∗ for all B 6 F ∗. This means that the optimal threshold F ∗ (if it exists)

is independent of the state B. In Theorem 1, we establish the optimality of the

threshold policy and characterize the optimal policy under different situations. We

refer the reader to the proof of this theorem in Appendix A

Theorem 1 Let F ∗ minimize (8). The cost function V (B) = V (B|F ∗), 0 6 B 6 F ∗,

satisfies the dynamic programming equations (1), (2) and (3). Furthermore,

1. When c > b/r, the optimal cost function is strictly increasing and convex in the

threshold, and the optimal policy is never to fix;

2. When c < b/r and K < p(b/r−c), the optimal cost function is strictly decreasing

and concave in the threshold, and the optimal policy is always to fix;

3. Otherwise, there exists a finite threshold policy F ∗ with F ∗ > 1 such that the

optimal cost function increases when 1 6 F < F ∗ and decreases when F > F ∗.

Moreover, there exists a unique switching point F 0 such that the cost is convex

for 1 6 F 6 F 0 and concave otherwise.

The above results are quite intuitive. Note that b/r stands for the discounted

value of the total cost for leaving one request in the system forever, and c is the cost

to fix a request now. If it is more expensive to fix a request than to leave it in the

system forever, then one would never bother to maintain the system. Hence, when

c > b/r the optimal policy is never to fix (see Fig.1.a). On the other hand, when the

cost of fixing one request is less than the cost of postponing this request forever then
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we would choose to fix the request at some time. Suppose one request is submitted

now, and we choose one of the following: to respond to this request now or to respond

it when the next request arrives. Because of discounting, a dollar at the time the next

request arrives is worth λ/(λ+ r) dollars now. Thus, we would spend c− λ
λ+r

c (= pc)

dollars more if we were to respond to this request now than at the next arrival. On

the other hand, responding to this request now would reduce user waiting cost to the

extent of 1
λ+r

b(= pb/r) dollars during the inter-arrival period. Hence, the net saving

of responding to the request now is p(b/r − c). If K < p(b/r − c) (i.e., the net saving

exceeds the fixed cost), we would prefer to maintain the system whenever a request

is submitted (see Fig.1.b). In other situations, where the net saving per request is

positive, but not enough to cover the fixed cost, there is a best trade-off point F ∗ (see

Fig.1.c).
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Figure 1: The Optimal Threshold Policy.

Remark 1 Under the threshold policy, we are only interested in the state set {B|B 6

F}. Any state above F is transient. In other words, in steady state, F is the highest

number of requests that can accumulate in the system.
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3 Extended Model

In this section, we extend our discussion to consider nonzero time required for main-

tenance and study the behavior of two classes of policies in Sections 3.1 and 3.2. In

addition to the fixed cost K, we also pay a correction cost of C per unit time spent

in maintenance. We also assume that the time needed to fix each request follows an

exponential distribution with a constant rate µ.

3.1 Work-Based Policy

3.1.1 The Model

In this section, we investigate a work-based policy. If maintenance is initiated when

the system state is B, a fraction δ of the outstanding requests will be fixed in this

round of maintenance. Note that δB should be an integer. So the policy is equivalent

to one which specifies the amount of work m = δB in this round of maintenance. In

other words, B − m is the target maintenance level. The maintenance cost function

in (1) becomes 1

V c(B) = min
06m6B

{

K + Ee−rT V (B − m) + E

[
∫ T

0

e−rθ(C + bB)dθ

]}

. (9)

In this case, the maintenance time T follows Erlang distribution with parameter

(m,µ). The density of T is

fµ
m(T ) =

µe−µT (µT )m−1

(m − 1)!
.

Define s = µ/(µ + r), then

Ee−rT = sm,

1In equation (9), we have assumed that new requests do not arrive during maintenance. As
discussed in the Appendix C, the problem becomes quite complex if this assumption is relaxed. The
implications of this assumption are also discussed there.
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E

∫ T

0

e−rθdθ =
1

r
(1 − sm).

Hence (9) can be simplified to

V c(B) = min
06m6B

{

K + smV (B − m) +
C + bB

r
(1 − sm)

}

. (10)

3.1.2 Cost Functions under a Threshold Type Policy

We consider a work-based threshold policy of the form (F,m). That is, we main-

tain the system when the system request level reaches F and fix m requests. Let

W (B|F,m) be the optimal cost function under this policy. Then

W (F |F,m) = K + smW (F − m|F,m) +
C + bF

r
(1 − sm). (11)

Similar to the procedure in Section 2, we set V (B|F ) = W (B|F,m) in (6), then

substitute the expression W (F − m|F,m) in (11) and solve for V (F |F,m). We get

W (F |F,m) =
1

1 − smqm

[

K +
C

r
(1 − sm) +

b

r
F +

b

r

1

p
sm[q − pm − (q + pF )qm]

]

.

Putting the above in (6) we obtain the cost function for 0 6 B 6 F as

W (B|F,m) =
qF−B

1 − smqm

[

K +
C

r
(1 − sm) +

b

r
F +

b

r

1

p
sm[q − pm − (q + pF )qm]

]

+
b

r

1

p
[q + pB − (q + pF )qF−B]. (12)

3.1.3 Suboptimality of Fractional Maintenance

Taking the first order difference of W (B|F,m) with respect to F in (12), we have

∆F W (B|F,m) =
qF−B

[

−p
(

K + C
r
(1 − sm)

)

+ b
r
[q + (pm − q)sm]

]

1 − smqm
. (13)

We make two observations from (13). First, for fixed finite m, if F = Fm minimizes

W (B|F,m) for some B, then it minimizes W (B|F,m) for any B 6 Fm. Second, the
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sign of (13) does not depend on the value of F . The second observation leads to the

following result.

Proposition 1 For any fixed finite m, W (B|F,m) is minimized at Fm = m or

Fm = ∞.

Proposition 1 suggests that fractional maintenance is never optimal. Fig. 2 gives

an intuitive explanation of this result, where we show the sample paths of two policies

(F,m) and (m,m). The shape of the two sample paths is the same, which means that

the maintenance team incures the same costs (the fixed cost and the correction cost)

within a cycle under both policies. However, the system state level under the policy

(F,m) is always F − m higher than that under the policy (m,m). Thus, the user

waiting cost is higher under fractional maintenance policy.

Fractional Maintenance

Exhaustive Maintenance

F − mF − m

0

F

m

Figure 2: Fractional maintenance vs. exhaustive maintenance

The above argument assumes that the correction cost is linear in the maintenance

time and the time to correct a request is stationary. One might argue that when

the software system is very complex, it is possible that the effort to correct a request
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increases with the number of requests. If we repeat the above sample path argument,

we can easily see that by maintain partially, we not only pay a higher user waiting

cost, but also a higher correction cost. Thus, the result in Proposition 1 applies to

more general situation than the one studied here.

3.1.4 Optimality of the Threshold Type Policy

Using Proposition 1, the cost function in (12) reduces to

W (B|F, F ) =
qF−B

1 − sF qF

[

K +
C

r
(1 − sF ) +

b

r
F +

b

r

1

p
sF [q − pF − (q + pF )qF ]

]

+
b

r

1

p
[q + pB − (q + pF )qF−B]. (14)

Notice that if we treat F as a continuous variable, then W (B|F, F ) is clearly

continuous in F . Hence, there exists an optimum F ∗ over the set of extended real

numbers. We next establish the optimality of the threshold policy. The detailed proof

is relegated to Appendix B.

Theorem 2 Let F ∗ minimize (14). Then V (B) = W (B|F ∗, F ∗) satisfies the dy-

namic programming equations (2), (9) and (3).

3.1.5 Computational Issues

The cost function under the optimal work-based threshold policy exhibits a nice prop-

erty that helps reduce computation complexity. This property is stated in Proposi-

tion 2 below.

Proposition 2 F = ∞ minimizes W (B|F,m) for any value of m, if and only if

either

1. m̄ = b(qt+ps)−ptC

bpt
6 0, or
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2. pK + C
r
p(1 − sm̄) > b

r
[q + (pm̄ − q)sm̄].

Remark 2 We can deduce a more intuitive condition from the above proposition.

Notice that a sufficient condition for Proposition 2 to be true is m̄ 6 0 (or (µ +

λ)(b/r) < C). In one unit of time, either µ requests get fixed, or λ new requests

arrive (on average). Then, for each unit of time we spend in maintenance, we save

(µ + λ)(b/r) in user waiting cost. At the same time, we pay a correction cost of C.

Thus, if the correction cost is larger than the saving per unit time, we should never

bother to maintain the system. This explanation is similar to the one provided for the

first case in Theorem 1.

Remark 3 Another outcome of Proposition 2 is that there is a pair (m1,m2) such

that F = ∞ minimizes W (B|F,m) whenever F < m1 or F > m2. Thus, it is always

easy to find the optimum threshold provided it exists.

3.2 Time-Based Policy

3.2.1 Cost Functions

Consider the following time-based policy. When the Bth request arrives, we decide

whether or not to maintain the system. If we decide to maintain the system, we

also specify the maintenance time τ . Three possible situations may arise during

maintenance:

1. With probability Dµ
m,τ = e−µτ (µτ)m/m!, 0 < m < B, m requests are fixed

during time τ , and the system is released to the user.

2. With probability Dµ
0,τ , no request is fixed during time τ . Then we undergo

another maintenance of duration τ (this is reasonable, because the system state

is still at B and we have already incurred the setup cost).
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3. If all B requests are fixed at some time ψ before τ , then the system is released

to the users at time ψ.

Thus, the actual maintenance time T = (n − 1)τ + min{τ, ψ} is a stopping time,

where (n − 1) is the number of times that case 2 happens in one maintenance cycle.

Note that n follows a geometric distribution with success probability (1−Dµ
0,τ ). It is

easily seen that ψ follows an Erlang distribution, i.e., the density of ψ is given by

fµ
B(ψ) =

µe−µψ(µψ)B−1

(B − 1)!
.

Note that the following relation holds

B−1
∑

m=0

Dµ
m,τ +

∫ τ

0

fµ
B(ψ)dψ = 1.

This shows that the three cases described above cover all the possibilities. The ex-

pected maintenance time can be obtained as follows.

ET =
∑

n>1

[

∫

∞

τ

nτfµ
B(ψ)dψ +

∫ τ

0

[(n − 1)τ + ψ]fµ
B(ψ)dψ

]

(1 − Dµ
0,τ )(D

µ
0,τ )

n−1

=
τ

1 − Dµ
0,τ

+

∫ τ

0

(ψ − τ)fµ
B(ψ)dψ. (15)

To set up the dynamic programming formulation, we define the optimal cost func-

tion and the optimal continuation cost function identical to (3) and (2), respectively.

The optimal maintenance cost is denoted by V c(B, I), where I is an indicator vari-

able. When I = 0, maintenance starts immediately after a new request arrives. When

I = 1, case 2 happens and no additional setup cost is incurred. That is,

V c(B, 1) = min
τ>0

{

B−1
∑

m=1

[

e−rτV (B − m) + (C + bB)

∫ τ

0

e−rθdθ
]

Dµ
m,τ + e−rτV c(B, 1)Dµ

0,τ

+

∫ τ

0

[

e−rψV (0) + (C + bB)

∫ ψ

0

e−rθdθ
]

fµ
B(ψ)dψ

}

, (16)

V c(B, 0) = V c(B, 1) + K (17)
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The only difference between (16) and (17) is that a setup cost K is applied to (17) but

not (16). Inside the minimum of (16), the first, second and third term correspond

to the cases 1, 2 and 3 discussed before. We substitute (16) in (17) and solve for

V c(B, 0) as follows.

V c(B) = V c(B, 0)

= min
τ>0

{

K +
1

1 − Dµ+r
0,τ

[

B−1
∑

m=1

Dµ
m,τ

(

e−rτV (B − m) + (C + bB)

∫ τ

0

e−rθdθ

)

+

∫ τ

0

fµ
B(ψ)

(

e−ψτV (0) + (C + bB)

∫ ψ

0

e−rθdθ

)

dψ
]}

. (18)

This gives V c(B), the actual optimal maintenance cost function at state B.

3.2.2 Threshold Policy

We now consider a class of policies in form of (F, τ). That is, we maintain the system

for a duration τ if the request level in the system is at or above the threshold F . Let

W (B|F, τ) be the optimal cost function under this policy.

Use similar approach as before, we take B = F in (18), put V (F − m|F ) =

W (F − m|F, τ) in (6), and solve for W (F |F, τ).

W (F |F, τ) =
(1 − Dµ+r

0,τ )K + AF,τ + C+bF
r

(1 − Dµ
0,τ − GF,τ )

1 − Dµ+r
0,τ − HF,τ

, (19)

where,

HF,τ =
F−1
∑

m=1

smqmDµ+r
m,τ + sF qF

∞
∑

m=F

Dµ+r
m,τ , (20)

GF,τ =
F−1
∑

m=1

smDµ+r
m,τ + sF

∞
∑

m=F

Dµ+r
m,τ , (21)

AF,τ =
b

r

1

p

[

qGF,τ + p

F−1
∑

m=1

sm(F − m)Dµ+r
m,τ − (q + pF )HF,τ

]

(22)

s = µ/(µ + r), and t = 1 − s. (23)
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The above together with (6) gives

W (B|F, τ) =
qF−B

1 − Dµ+r
0,τ − HF,τ

[

(1 − Dµ+r
0,τ )K + AF,τ +

C + bF

r
(1 − Dµ

0,τ − GF,τ )

]

+
b

r

1

p
[q + pB − (q + pF )qF−B]. (24)

Next, we establish in Theorem 3 the optimality of the time-based threshold policy.

The proof Theorem 3 is similar to that of Theorem 2 and is omitted.

Theorem 3 Let (F ∗, τ ∗) minimize (24). The cost function V (B) = W (B|F ∗, τ ∗)

satisfies the dynamic programming equations (2), (18) and (3).

3.3 Optimal Maintenance Policy under Time Constraint

In reality, maintenance activities may be constrained by resource limitations or re-

quirements imposed by end users. As a result, maintenance should be completed

within a given time window. In what follows, we propose a model to study the

optimal policy under a time constraint.

Suppose that we are following the work-based policy.2 An upper bound L is

imposed as the maintenance time. Then, the maintenance cost when the maintenance

starts at state B and m requests are planned to be fixed is given by

V c
L(B) = min

06m6B

{

K +

∫ L

0

[

e−rτV (B − m) + (C + bB)

∫ τ

0

e−rθdθ

]

fµ
m(τ)dτ

+
m−1
∑

i=0

[

e−rLV (B − i) + (C + bB)

∫ L

0

e−rθdθ

]

Dµ
i,L

}

. (25)

The second term on the left-hand side of (25) corresponds to the case when all m

requests are fixed before time L. This event happens with probability
∫ L

0
fµ

m(τ)dτ

2Note that if we impose the time constraint to the time-based policy, the problem reduces to one
with only one decision variable F .
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(where fµ
m is the density of the time to fix m requests), and the cost incurred is the

same as that under the work-based policy. The second term on the left-hand side of

(25) corresponds to the case when i requests, with i < m, are fixed before L. In this

case, the cost incurred is the cost to fix i requests, and the corresponding probability

is Dµ
L

3.

Using the approach developed in Section 3.1 or 3.2, the cost function under the

work-based threshold policy (F,m) is given by

VL(B|F,m) = qF−B
K + Zm,L + C

r
(1 − Gm,L)

1 − Hm,L

+
b

r

1

p
[q + pB − qF−B+1] (26)

where

Zm,L =
b

r

1

p

[

qGm,L − p

(

m−1
∑

i=0

siiDµ+r
i,L + smm

∞
∑

i=m

Dµ+r
i,L

)

− qHm,L

]

,

and HB,L, Gm,L are defined in (20), (21), respectively.

Taking the first order difference with respect to F in (26) gives

∆F VL(B|F,m) = qF−Bp

(

q −
K + Zm,L + C

r
(1 − Gm,L)

1 − Hm,L

)

(27)

Clearly, the sign of (27) does not depend on the choice of F . Hence, similar to the

result in Proposition 1, F = m holds in this situation as well. That is, it is optimal

to fix all the requests accumulated in the system. One can also use the approach

in Theorem 2 to establish the optimality of the work-based threshold policy under a

time constraint.

4 Numerical Analysis

In this section, we compare the policies discussed in previous sections to provide

additional insights.

3It is necessary to assume that L is large enough such that the probability that no request is
fixed during L is negligible. Otherwise, the time constraint is easily violated since the request level
may not decrease after maintenance even if the threshold is set at 1. As a result, the optimal policy
would call for no maintenance.
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As an illustrative example, we consider an organization using a software system,

where the system administrator receives in average 2(= λ) change requests each

day. If the request is not responded to, users incur $25(= b) every day for lost in

productivity in operations. The cost to organize the maintenance team and set up

the maintenance environment is $80(= K). The maintenance team can fix an average

of 6(= µ) requests each day. The cost for request correction is $20(= C) per day.

Finally, the discount rate is 0.9(= r). Table 1 shows the above parameter settings as

well as the range of values used for each of these parameters.

Table 1: Parameter setting

Parameter Basic Setting Range F ∗ = ∞ when Figure
K 80 0 ∼ 105 – Fig. 3(a)
C 10 0 ∼ 45 c > 45 Fig. 3(b)
b 25 20 ∼ 120 b < 20 –
λ 2 1 ∼ 10 λ > 33 Fig. 4(a)
µ 6 5 ∼ 40 µ < 5 Fig. 4(b)
r 0.9 0.1 ∼ 1 r > 1.01 Fig. 5

4.1 Results

Maintenance costs

Increasing the fixed cost K favors postponing maintenance activities. As shown in

Fig. 3(a), the maintenance threshold, the expected maintenance time and total cost

increase with K. A similar pattern exists for the correction cost C (see Fig. 3(b)).

The total cost function is convex in K, i.e., it is more sensitive to changes of K for a

lower value of K. Also, the total cost function is almost linear in C.

It can be seen from the cost expressions (9) and (18) that user waiting cost b

behaves in a opposite manner to the effects of K and C. The optimal threshold

decreases and becomes less sensitive to b as b increases.
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Figure 3: Change maintenance costs.

Request arrival rate and maintenance rate

As shown in Fig. 4(a), the optimal total cost increases when requests arrive more

frequently. At the same time, the optimal threshold decreases. When the request

arrival rate λ → 0, leaving a request in the system results in a high waiting cost. In

this case, always responding to the incoming request is optimal. On the other hand,

when λ becomes large, the requests accumulate in the system very fast. We can

now respond to a large batch of requests to reduce fixed costs. Hence the threshold

increases with the request arrival rate. We also observe that the optimal total cost

decreases when the maintenance team is more efficient at responding to requests.

However, the optimal threshold is not as sensitive to the maintenance rate as the

request arrival rate.
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Figure 4: Change request incoming rate or maintenance rate.

Discount rate

A higher discount rate r means a lower future value. Fig. 5 shows that the optimal

policies tend to postpone maintenance when it is cheaper to pay in the future. As a

result, the total cost decreases with the discount rate.

The difference between the total cost of work-based policy and that of the state-

based policy is very small (less than 0.1%) in most of the parameter range. The

difference is significant only in the extreme cases. For example, when the setup cost

K is very small and the optimal threshold is set to be the boundary value of 1, the

work-based policy reveals an advantage. Intuitively, the work-based policy is discrete,

while the time-based policy is continuous. Thus, the time-based policy should always

behave better than the work-based policy. Moreover, our results show, the difference

of the two policy is only significant in the extreme cases, i.e. when the setup cost K

or correction cost C is very low, or the waiting cost b is very high.
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Figure 5: Change discount rate r.

Another interesting result is that, in the time-based policy, the expected actual

maintenance duration ET in (15) is very close to the expected time to fix all F

requests. As a result, the time-based policy also tends to clear all the existing main-

tenance requests once maintenance is initiated. This is consistent with our discussion

concerning the work-based policy where it was found that fractional maintenance is

not optimal. In addition, we observe that the planned maintenance time τ is usually

greater than the expected time to fix F requests. On average, the actual maintenance

project ends earlier than planned.

4.2 Impact of Time Constraint

Next we discuss the impact of the time constraint on the optimal threshold policy

and the optimal total cost. We compute the optimal policy for the model described

in Section 3.3. As shown in Fig. 6, when the time schedule is extremely stringent,
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it is optimal to never maintain the system. This is because there is a significantly

large probability that the system state does not improve after maintenance. When

the time constraint is relaxed, the total optimal cost decreases. Eventually, when the

time constant becomes sufficiently loose, we can perform the maintenance following

the optimal work-based threshold policy. As a result, the threshold value converges

to the value of the case when no time constraint is imposed.

5

7

9

11

0.55 0.60 0.65 0.70L

Threshold

115

117

119

121

123

125

Total Cost

Threshold

Total Cost

Figure 6: Impact of Time Constraint.

4.3 Approximation Methods

From our previous discussion, the models considering maintenance time are very

complex. It would be helpful if we can use instantaneous maintenance model and get

a quick approximation of the policy parameters. In this section, we examine how to

use the results of instantaneous maintenance model for this purpose.

4.3.1 Using Instantaneous Model

One way to get a quick solution to the maintenance problem is to directly use the

parameters of the instantaneous model. This gives a good approximation when the

maintenance is costly but not time consuming. That is, the fixed cost K and the

correction cost C are low relative to the waiting cost b, and the request arrival rate
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λ is low relative to the maintenance rate µ. In such situations, the maintenance time

becomes negligible. We remark that such a method can be used because we have

shown that fractional maintenance is suboptimal.

4.3.2 Using Instantaneous Threshold Values

Another way to calculate the optimal solutions is to get the optimal threshold from the

instantaneous model and estimate the parameters in the work-based and time-based

model.

To get the approximate threshold value, we set c = C/µ and find the optimum

value of F in (6). We can then use this F value to compute the total cost for the

work-based policy in (14).

To compute the time-based policy, we also need to estimate the planned main-

tenance time τ . From our previous discussion, the optimal policy is to maintain

the system completely, and the expected maintenance time ET is close to the ex-

pected time to correct all the F requests, i.e., ET = F/µ. Hence, we can compute τ

numerically from (15). Then, we can evaluate the policy in (24).

In general, such a method yields better approximations to the work-based policy

than to the time-based policy. This is because an additional time parameter has to

be estimated in the time-based model. For illustration purposes, we further discuss

the approximation behavior of the time-based policy. We evaluate the approximation

accuracy by computing the percentage deviation of the approximated total cost with

respect to the optimal total cost.

Overall, the approximation accuracy is not sensitive to the fixed cost K, correction

cost C, maintenance rate µ and interest rate r. In our experiments, the approximation

is generally very good (with differences less than 1%). The only exceptions are the

case when the waiting cost is extremely high (b > 65) as compared to K and C, and
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Table 2: Total cost in response to the parameter values.
Total Cost Basic Setting K = 40 C = 6 b = 40 µ = 3 λ = 1 r = 0.5

(F ∗, τ∗) 59.2761 48.2924 58.8978 83.0042 59.2763 59.3840 92.0484
(F ∗ + 1, τ∗) 60.3763 51.0690 59.8817 92.3869 60.3764 59.2759 90.2708
(F ∗ − 1, τ∗) 59.3844 49.9857 59.0990 83.3917 59.3849 59.8471 95.8719
(F ∗, 2τ∗) 59.2753 48.2917 58.8974 83.0033 59.2753 59.3825 92.0481
(F ∗, τ∗/2) 59.6448 48.5099 59.2061 83.3551 59.6853 59.8714 92.3054

the case when the request arrival rate λ is high. (see Fig. 7).
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Figure 7: Approximation using instantaneous maintenance model.

We also find that the approximation accuracy is more sensitive to the choice of the

threshold F than to the planned maintenance time τ . Table 2 gives some examples.
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5 Concluding Remarks

The major result of this paper is that we establish the optimality of the threshold

policy in stable software maintenance projects. As we point out, in the presence

of maintenance time, the work-based policy and the time-based policy are basically

equivalent. Thus, an organization can choose either of the two polices according to the

situation or preference. In practice, some companies do partial maintenance because

of various reasons (e.g., budget constraints, time constraints, work-force constraints,

etc.). We show, however, this is never optimal in terms of the total costs incurred.

There are a number of interesting extensions to the problem addressed here. In the

models discussed in this study, incoming requests are blocked during maintenance.

One could consider the case that requests continue to arrive during maintenance.

However, this give rises to mathematical difficulties. As the reader can see from

Appendix C, the cost function becomes complicated and further analysis is extremely

difficult.

Another interesting view of this problem is considering different classes of requests.

In this case, service priority and service discipline will have to be specified and some

results in queuing theory may be applicable to this problem.

One could also consider time-dependent arrival rate and maintenance rate. As

maintenance is done, the system runs more smoothly, and the request arrival rate

decreases. At the same time, the maintenance team becomes more familiar with the

software system, and therefore more efficient.

Appendix
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A Proof of Theorem 1

We establish theorem 1 though a series of lemmas. To examine the shape of V (0|F ) as

a function of F ,we consider the first order difference and the second order difference

of V (0|F ).

∆F V (0|F ) = V (0|F + 1) − V (0|F )

=
qF

(1 − qF+1)(1 − qF )

[

−pK + (1 − p(F + 1) − qF+1)

(

c −
b

r

)]

(28)

∆2
F V (0|F ) = ∆F V (0|F + 1) − ∆F V (0|F )

=
qF

[

p2(1 + qF+1)K + [p2(1 + qF+1)(F + 1) − p(1 + q)(1 − qF+1)]
(

c − b
r

)]

(1 − qF+2)(1 − qF+1)(1 − qF )

(29)

We notice the properties of the following functions.

Let S1(x) = 1 − px − qx, S1(1) = 0.

Then ∆xS
1(x) = −p(1 − qx) 6 0.

Thus S1(x) 6 0, for x > 1.

Let S2(x) = p2(1 + qx)x − p(1 + q)(1 − qx), S2(1) = 0.

Then ∆xS
2(x) = p2[1 − qx − pqxx], ∆xS

2(x)|x=1 = p4
> 0,

and ∆2
xS

2(x) = p4qx(x + 1).

Thus S2(x) > 0, for x > 1.

Lemma 1 V (0|F ) is minimized at F = ∞ if and only if c − b
r

> 0, in this case

V (0|F ) is strictly decreasing convex in F .

Proof. Clearly, when c − b
r

> 0, (28) is strictly negative, i.e. V (0|F ) is strictly

decreasing in F . Thus, F = ∞ is the only minimizer. Conversely, if c − b
r

< 0, then

(28) is always positive for large enough F . In this case F = ∞ cannot minimize
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V (0|F ). In addition, when c − b
r

> 0, (29) is clearly positive, which indicates that

the cost function is strictly convex. (cf. the example in Fig.1.a).

¤

Now we can restrict our attention to the case when c − b
r

< 0. Let

S3(x) = −pK +

(

c −
b

r

)

(1 − qx+1 − p(x + 1)),

then ∆xS
3(x) = −

(

c −
b

r

)

(1 − qx+1)p > 0.

Lemma 2 When c − b
r

< 0 and K 6 p(b/r − c), V (0|F ) is minimized when F = 1.

Proof. Note that S3(x) is strictly increasing in x. Hence, if S3(1) = −pK − (c −

b/r)p2 > 0, or the fixed cost K satisfies K 6 −p(c− b/r), we will get ∆F V (0|F ) > 0,

for any 0 < F < ∞. In this case, V (0|F ) is minimized when F = 1.(cf. the example

in Fig.1.b)

¤

Lemma 3 When c − b
r

< 0 and K > −p(c − b/r), there exists a unique minimizer

F ∗, with 1 < F ∗ < ∞, of V (0|F ). Furthermore, there exists an F 0 such that V (0|F )

is convex for 1 6 F 6 F 0 and concave for F > F 0.

Proof. To show the unique existence, we note that S3(1) < 0, limx→∞ S3(x) > 0

and S3(x) is increasing in x. Hence, there exist a unique F ∗ such that V (0|F ) is

increasing for 0 < F 6 F ∗ and decreasing for F > F ∗.

Now let

S4(x) = p2(1 + qx+1)K + [p2(1 + qx+1)(x + 1) − p(1 + q)(1 − qx+1)]

(

c −
b

r

)

,

∆xS
4(x) = −p3qx+1

[

K + p

(

c −
b

r

)]

+ p2[1 + (p2 − p(x + 1) − 1)qx+1]

(

c −
b

r

)

.
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Clearly, when K > −p(c − b/r) the first term in ∆xS
4(x) is negative. We let

S5(x) = 1 + (p2 − p(x + 1) − 1)qx+1, S5(0) = p2(1 + q) > 0,

∆xS
5(x) = p2qx+1(q + x + 1) > 0.

Since c − b
r

< 0 the second term in ∆xS
4(x) is strictly decreasing in x and thus

negative. So we have ∆xS
4(x) < 0, that is, S4(x) is strictly decreasing in x. In

addition, S4(0) = p2(1 + q)K > 0 and limx→∞ S4(x) → −∞. So there is a unique

point where S4(x) = 0. Put all these results in (29), we conclude that there exists an

F 0 such that the second order condition of V (0|F ) in (29) is positive for 1 6 F 6 F 0

and negative for F > F 0 (cf. the example in Fig.1.c).

¤

Finally, we establish the optimality of the threshold policy by showing that V (B) =

V (B|F ∗) satisfies the dynamic programming equation (3).For 0 6 B 6 F We substi-

tute V (B) = V (B|F ) in (1) and (2) and get

V c(B) = K + cB + qF V (F |F ) +
b

r

1

p
[q − (q + pF )qF ],

V n(B) = V (B|F ) = qF−BV (F |F ) +
b

r

1

p
[q + pB − (q + pF )qF−B].

Then

V c(B) − V n(B) =
1 − qB

qB

{ qB

1 − qB

[

K+
(

c −
b

r

)

B
]

qF V (F |F )
}

=
1 − qB

qB

[

V (0|B) − V (0|F )
]

.

Clearly, when F is the minimizer to V (0|B), the above expression is negative. Hence,

we established the optimality of the threshold policy.

B Proofs in Section 3.2

Proof of Proposition 2. Let

g1(m) = p

[

K +
C

r
(1 − sm)

]

−
b

r
[q(1 − sm) + pmsm].
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Notice that g1(0) = K > 0 , limm→∞ g1(m) = p(K + C/r) − qb/r and

∆mg1(m) =
sm

r
[ptc + (ptm − ps − qt)b].

So the solution to ∆mg1(m) = 0 is given by

m̄ =
(qt + ps)b − ptC

ptb
.

Now let

g2(m) = ptc + (ptm − ps − qt)b.

g2(m) is clearly increasing in m. It follows that the first order difference of function

g1(m) is strictly increasing. Hence we conclude the proof.

¤

Proof of Theorem 2. Let F be the minimizer to the cost function (14) for some

B. It is easily seen that F also minimizes W (B|F, F ) for any 0 6 B 6 F . Under

policy (F, F ), we have

V n(B) = qF−BW (F |F, F ) +
b

r

1

p
[q + pB − (q + pF )qF−B],

V c(B) = K +
C

r
(1 − sB) +

b

r
B(1 − sB) + sBV (0)

= K +
C

r
(1 − sB) +

b

r
B(1 − sB) +

b

r

1

p
[q − (q + pF )qF ]sB + sBqF W (F |F, F ).

Then,

qB

1 − sBqB
[V c(B) − V n(B)]

=
qB

1 − sBqB

[

K +
C

r
(1 − sB) +

b

r
B(1 − sB) +

b

r

1

p
sB[q − (q + pB)qB]

]

−qF W (F |F, F ) +
b

r

1

p
[q − (q + pB)qB] −

b

r

1

p
[q − (q + pF )qF ]

= W (0|B,B) − W (0|F, F ).

It follows by the minimality of F that the last expression is positive. Hence, we

conclude the theorem.

¤
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C Allowing Incoming Requests During Maintenance

Next, we give the formulations to the problem where incoming requests are allowed

during maintenance. In either cases, the problem becomes complicated.

C.1 Work-Based Policy

In a work-based policy, we monitor the system state B and decide, whether or not

go to maintenance. If we decide to maintain the system, then we specify an optimal

target level B − m at which maintenance is complete. Let {Bθ, 0 6 θ 6 τ} is the

process of the state during maintenance. Then the cost function of maintenance

becomes

V c(B) = min
06m6B

{

K + CE

∫ τm

0

e−rθdθ + Ee−rτmV (B − m)

+bE
[

∫ τm

0

Bθe
−rθdθ

∣

∣

∣
Bτm

= B − m,B0 = B
]}

. (30)

Given B0 = B, the random time τ is a hitting time, which is defined as

τm = inf{t > 0, Bt = B − m}.

By the memoryless property, τm depends only on m, not on B. The τm can be treated

as m busy periods of an M/M/1 queue. The distribution function of the latter can be

computed in terms of Laplace transform (Kinateder and Lee 2000), by Ballot Theorem

(Takacs 1962), or computed directly by conditioning on the first service time, similar

approach can be found in Ross (2000). However, the calculation is messy.

C.2 Time-Based Policy

Assuming µ > λ (Otherwise the system is not stable and cost function goes to infinity

as time goes to infinity). Suppose we maintain at level B and for a period of duration

τ . Let {Bθ, 0 6 θ 6 τ} be the stochastic process of the system state, with initial state
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B0 = B. After maintenance the system reaches Bτ . The maintenance cost function

becomes

V c(B, 1) = min
τ>0

{

∫ τ

0

[

e−rψPB
0,ψV (0) + Ce−rψ + bE

(

∫ ψ

0

e−rθBθdθ
∣

∣

∣
B0 = B

)]

f(ψ)dψ

+
[

e−rτ
(

B−1
∑

m=1

PB
m,τV (m) +

∞
∑

m=B

PB
m,τV

c(m, 1) + C
)

+bE
(

∫ τ

0

e−rθBθdθ
∣

∣

∣
B0 = B

)]

∫

∞

τ

f(ψ)dψ
}

(31)

V c(B, 0) = K + V c(B, 1) (32)

The distribution of Bτ is given by

PB
m,τ = P (Bτ = m|B0 = B) =



























∑

∞

k=0
(λτ)ke−λτ

k!
(µτ)ke−µτ

k!
, if m = B,

∑

∞

k=0
(λτ)ke−λτ

k!
(µτ)B−m+ke−µτ

(B−m+k)!
, if m < B,

∑

∞

k=0
(λτ)m−B+ke−λτ

(m−B+k)!
(µτ)ke−µτ

k!
, if m > B.

Bθ is a negative-drifted random walk with drift −(µ − λ). Thus, E(Bθ|B0 = B) =

B − (µ − λ)θ To compute the value functions we have to deal with Bessel functions,

and the difference equation looks complicated.
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