Chapter 14 (and 15.4): Entropy and Free Energy

Key topics: **Spontaneous processes Entropy S Gibbs free energy G**

Begin with a review of some key ideas from Chapter 10

Why do we "run" chemical reactions?

- \circ we want the products of the reaction
- \circ we want the energy from the reaction

Thermodynamics

- study of the interconversion of different forms of energy
- separate the universe into system and surroundings

The *system* is the part of the universe that is of interest, including the substances involved in a chemical reaction.

The surroundings are everything else.

Exothermic reaction: Energy transferred from the system to the surroundings. $2H_2(g) + O_2(g) \rightarrow 2H_2O(I) + energy$

Endothermic reaction: Energy transferred from the surroundings to the system. energy + $2HgO(s) \rightarrow 2Hg(l) + O_2(g)$

First law of thermodynamics: conservation of energy

Energy cannot be created or destroyed: $\Delta U_{universe} = 0$ $\Delta U_{universe} = \Delta U_{sys} + \Delta U_{surr} \implies \Delta U_{sys} = -\Delta U_{surr}$

Any process that causes energy to be exchanged between the system and the surroundings can be classified as either heat or work.

$$\Delta U = q + w$$

q is heat

- \circ *q* > 0, system absorbs heat
- \circ *q* < 0, system releases heat

w is work

- \circ *w* > 0, work is done on the system
- $\circ w < 0$, work is done by the system

Enthalpy, H = U + PV

- thermodynamic state function
- cannot be measured directly
- \circ at constant pressure, $\Delta H = q$

Enthalpy of reaction

- $\circ \Delta H = \Delta H_{\rm rxn} = \Delta H_{\rm products} \Delta H_{\rm reactants}$
- $\circ \Delta H > 0$, endothermic reaction
- $\circ \Delta H < 0$, exothermic reaction

Standard enthalpies of formation, ΔH°_{f}

- heat change that results when 1 mole of a compound is formed from its constituent elements in their standard states
- \circ standard state is the most stable state found at 1 atm
- $\circ \Delta H^{\circ}_{f}$ for elements in their most stable state are zero
- $\circ \Delta H^{\circ}_{f}$ for many substances are found in Appendix 2

Standard enthalpy of reaction, ΔH°_{rxn}

For the generic chemical reaction $aA + bB \rightarrow cC + dD$

 $\Delta H^{\circ}_{\rm rxn} = \left[c\Delta H^{\circ}_{\rm f}(C) + d\Delta H^{\circ}_{\rm f}(D)\right] - \left[a\Delta H^{\circ}_{\rm f}(A) + b\Delta H^{\circ}_{\rm f}(B)\right]$

Spontaneous Processes

Spontaneous process:

does occur under a specific set of conditions

Non-spontaneous process: does *not* occur under a specific set of conditions

TABLE 14.1	Familiar Spontaneou	s and Nonspontaneous Processes
Spontaneous		Nonspontaneous
Ice melting at room temperature		Water freezing at room temperature
Sodium metal reacting violently with water to produce sodium hydroxide and hydrogen gas [K Section 8.5]		Sodium hydroxide reacting with hydrogen gas to produce sodium metal and water
A ball rolling downhill		A ball rolling uphill
The rusting of iron at room temperature		The conversion of rust back to iron metal at room temperature
Water freezing at -10°C		Ice melting at -10°C

(note: a spontaneous process might occur quickly or slowly)

In Chem 1311, we used enthalpy (ΔH) to predict spontaneity. $\circ \Delta H < 0$ (exothermic): spontaneous $\circ \Delta H > 0$ (endothermic): not spontaneous

But ΔH is not always a good guide.

• water evaporates

 $(\Delta H > 0 \text{ but spontaneous})$ \circ water does not freeze at room temperature $(\Delta H < 0 \text{ but not spontaneous})$ \circ ammonium nitrate dissolves in water [cold packs] $(\Delta H > 0 \text{ but spontaneous})$ Something else must matter...

what else is changing?

 water evaporates: *the system's energy is more spread out (in space)* water does not freeze at room temperature: *the system's energy would become less spread out because the solid (ice) has less freedom of <i>movement than the liquid (water)* ammonium nitrate dissolves in water: *the system's energy is more spread out because the ionic compound (solid) breaks into soluble ions*

Entropy (S): a measure of how spread out or dispersed the system's energy is

More spread out or dispersed = increased entropy ($\Delta S > 0$)

Nature tends to move towards states corresponding to an increase in entropy.

Quantitative definition of entropy (Boltzmann) $S = k \ln W$

• $k = \text{Boltzmann constant} (k = R / N_A = 1.38 \times 10^{-23} \text{ J K}^{-1})$

 \circ *W* = number of energetically equivalent microstates

Macrostate: thermodynamic state of the system (*P*, *T*, *V*, *n*, *U*) *Microstates*:

- specific arrangement of particles
- many microstates correspond to one macrostate
- we need to "count" the number of microstates W that correspond to the macrostate (to get the entropy)

Consider the arrangement of 4 gas particles into 2 bulbs.

- all 4 in left side:
- all 4 in right side:
- 0-0
- one on left side:

The distribution with the largest number of (energetically equivalent) microstates is the most probable. It also has the most dispersed energy state (highest entropy). Entropy is a state function just like enthalpy

 $\Delta S = S_{\text{final}} - S_{\text{initial}}$

and processes that increase the number of microstates correspond to more probable states and are favorable ($\Delta S > 0$)

increase in entropy is favorable (spontaneous)

Standard Entropy (S°): the absolute entropy of a substance at 1 atm (and typically at 25°C)

TABLE 14.2	Standard Entropy Values (.	S°) for Some Substance	es at 25°C
Substance	S° (J/K ⋅ mol)	Substance	S° (J/K ⋅ mol)
$H_2O(l)$	69.9	C(diamond)	2.4
$H_2O(g)$	188.7	C(graphite)	5.69
Na(s)	51.05	$O_2(g)$	205.0
Na(l)	57.56	$O_3(g)$	237.6
Na(g)	153.7	$F_2(g)$	203.34
$\operatorname{He}(g)$	126.1	Au(s)	47.7
Ne(g)	146.2	Hg(l)	77.4
Note that the u	nits are J K ⁻¹ mol ⁻¹ (vs. k	J mol ⁻¹ for enthalpie	es)

Standard entropies are always positive (even for elements in their standard states, unlike ΔH°_{f})

Important trends:

- 1. S° for the gas phase is greater than the liquid or solid phase of the same substance $H_2O(g)$ has greater S° than $H_2O(I)$
- 2. More complex structures have greater S° (with a similar molar mass, same phase) because more types of motion are possible

 $O_3(g)$ greater than $F_2(g)$ $C_2H_6(g)$ greater than $CH_4(g)$

3. Allotropes: the more ordered forms have lower S° Diamond has lower S° than graphite

4. Monatomic species: the heavier atom has greater S° helium has lower S° than neon

(due to quantization of translational energy; higher mass corresponds to more closely spaced energy levels)

Entropy changes in a system

 \circ S°_{liquid} > S°_{solid}

 \circ S°_{aqueous} > S°_{pure solid}

Hydrated ions organize the water around them which leads to a decrease in solvent entropy. When the charges are small (± 1) the solute entropy dominates ($S^{\circ}_{system} > 0$), but when the charges are large $(e.g., Al^{3+}, Fe^{3+})$ the solvent (water) entropy can dominate,

leading to $S^{\circ}_{system} < 0$

TABLE 14.3	Entropy Changes for $(\Delta S_{\text{soln}}^{\circ})$ of Some Ion	r the Dissolution ic Solids at 25°C
Dissolution equation		$\Delta S^{\circ}_{ m soln}$ (J/K \cdot mol)
$NH_4NO_3(s) \longrightarrow$	$\mathrm{NH}_{4}^{+}(aq) + \mathrm{NO}_{3}^{-}(aq)$	108.1
$AlCl_3(s) \longrightarrow$	$\mathrm{Al}^{3+}(aq) + 3\mathrm{Cl}^{-}(aq)$	-253.2
$\operatorname{FeCl}_3(s) \longrightarrow$	$\mathrm{Fe}^{3+}(aq) + 3\mathrm{Cl}^{-}(aq)$	-266.1

e.g., Make a qualitative prediction of the sign of ΔH°_{soln} for $AICI_3(s)$

$$\circ S^{\circ}_{\text{higher temp}} > S^{\circ}_{\text{lower temp}}$$

e.g., Determine the sign of ΔS for the following (qualitatively)

- 1. Liquid nitrogen evaporates.
- 2. Aqueous solutions of potassium iodide and lead nitrate are mixed together.
- 3. Water is heated from room temperature to 60°C.

Entropy Changes in the Universe

and

The Second and Third Laws of Thermodynamics

The universe is composed of two parts:

- the system
- the surroundings (everything else)

Both parts undergo changes in *S* during physical and chemical processes

Second Law of Thermodynamics: the entropy of the universe increases in a spontaneous process and remains unchanged in an equilibrium process.

Spontaneous: $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$ ΔS_{system} can be negative as long as $\Delta S_{surroundings}$ is more positive

Equilibrium process: $\Delta S_{universe} = 0$ e.g., water freezing at 0°C; chemical reaction where Q = K.

Entropy changes in the system:

Entropy can be calculated from a table of standard values just as enthalpy changes were calculated.

For the general reaction $aA + bB \rightarrow cC + dD$ $\Delta S^{\circ}_{rxn} = [cS^{\circ}(C) + dS^{\circ}(D)] - [aS^{\circ}(A) + bS^{\circ}(B)]$

Entropy changes in the surroundings:

We know how to calculate $\Delta S^{\circ}_{system} = \Delta S^{\circ}_{rxn}$ What about $\Delta S_{surroundings}$?

Consider liquid water freezing below 0°C

spontaneous, $\Delta S_{universe} > 0$ liquid \rightarrow solid, $\Delta S_{system} < 0$ Therefore $|\Delta S_{surr}| > |\Delta S_{sys}|$

How does water freezing increase S_{surr}?

- water freezing is exothermic
- energy is being dispersed into the surroundings

 $\begin{array}{l} \Delta S_{\rm surr} > 0 \mbox{ for exothermic processes} \\ \Delta S_{\rm surr} < 0 \mbox{ for endothermic processes} \\ \hline {\rm Therefore} \\ \Delta S_{\rm surroundings}^{\circ} \propto -\Delta H_{\rm system} \quad (\propto -q) \end{array}$

But water freezing above 0°C is not spontaneous.

The magnitude of ΔS_{surr} depends on the temperature

 $\circ T < 0^{\circ}C, |\Delta S_{surr}| > |\Delta S_{sys}|$

$$\circ T > 0^{\circ}C, |\Delta S_{surr}| < |\Delta S_{sys}|$$

- $_{\odot}\,$ but ΔS_{sys} is virtually independent of T
- \circ thus $|\Delta S_{surr}|$ depends on T
- $\circ~\Delta S_{\text{surr}}$ is inversely proportional to ${\it T}$

Combining these two relations gives

$$\Delta S_{\rm surr}^{\circ} = -\frac{\Delta H_{\rm sys}}{T}$$

e.g., Predict if the synthesis of ammonia at 25°C is spontaneous or not.

Given information: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ $S^{\circ}[N_2(g)] = 191.5 \text{ J K}^{-1} \text{mol}^{-1}$ $S^{\circ}[H_2(g)] = 131.0 \text{ J K}^{-1} \text{mol}^{-1}$ $S^{\circ}[NH_3(g)] = 193.0 \text{ J K}^{-1} \text{mol}^{-1}$

 $\Delta H^{\circ}_{\rm rxn} = -92.6 \ {\rm kJ/mol}$

Solution: $\Delta S_{sys} = \Delta S_{rxn} = 2(193.0) - (191.5) - 3(131.0) = -198.5 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta S_{surr} = -(-92.6 \text{ kJ mol}^{-1}) / 298 \text{ K} = 311 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr} = 112 \text{ J K}^{-1} \text{ mol}^{-1}$ spontaneous

e.g., Calculate $\Delta S_{\text{universe}}$ and determine the spontaneity of the reaction $H_2O_2(I) \rightarrow H_2O_2(g)$ at 163°C.

 $\begin{array}{ll} \mbox{Given information (from Appendix 2):} \\ S^{\circ}[{\rm H}_{2}{\rm O}_{2}(l)] = 109.6\,{\rm J\,K^{-1}mol^{-1}} \\ S^{\circ}[{\rm H}_{2}{\rm O}_{2}(g)] = 232.9\,{\rm J\,K^{-1}mol^{-1}} \\ \end{array} \qquad \begin{array}{ll} \Delta H_{\rm f}^{\circ}[{\rm H}_{2}{\rm O}_{2}(l)] = -187.6\,{\rm kJ\,mol^{-1}} \\ \Delta H_{\rm f}^{\circ}[{\rm H}_{2}{\rm O}_{2}(g)] = -136.1\,{\rm kJ\,mol^{-1}} \end{array}$

Solution: $\Delta H_{rxn} = -136.1 - (-187.6) = 51.5 \text{ kJ mol}^{-1}$ $\Delta S_{surr} = -(51.5 \text{ kJ mol}^{-1}) / 436 \text{ K} = -118 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta S_{sys} = \Delta S_{rxn} = 232.9 - 109.6 = 123.3 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr} = 5.3 \text{ J K}^{-1} \text{ mol}^{-1}$ spontaneous e.g., The reaction $NH_3(g) + HCI(g) \rightarrow NH_4CI(s)$ is spontaneous at room temperature. Determine the temperature at which it is no longer spontaneous.

 $\begin{array}{ll} \mbox{Given information (from Appendix 2):} \\ S^{\circ}[\rm NH_{3}(g)] = 193.0 \, J \, \rm K^{-1} mol^{-1} & \Delta H_{\rm f}^{\circ}[\rm NH_{3}(g)] = -46.3 \, \rm kJ \, mol^{-1} \\ S^{\circ}[\rm HCl(g)] = 187.0 \, J \, \rm K^{-1} mol^{-1} & \Delta H_{\rm f}^{\circ}[\rm HCl(g)] = -92.3 \, \rm kJ \, mol^{-1} \\ S^{\circ}[\rm NH_{4}Cl(s)] = 94.56 \, J \, \rm K^{-1} mol^{-1} & \Delta H_{\rm f}^{\circ}[\rm NH_{4}Cl(s)] = -315.39 \, \rm kJ \, mol^{-1} \end{array}$

Solution:

 $\begin{array}{l} \Delta H_{\rm rxn} = -315.4 - (-46.3 - 92.3) = -176.8 \ \text{kJ mol}^{-1} \\ \Delta S_{\rm sys} = \Delta S_{\rm rxn} = 94.56 - (193.0 + 187.0) = -285.44 \ \text{J K}^{-1} \ \text{mol}^{-1} \\ \Delta S_{\rm universe} = \Delta S_{\rm sys} + \Delta S_{\rm surr} = -0.28544 \ + (176.8 \ / \ \text{T}) > 0 \\ \text{This inequality holds as long as T < 176.8 \ / \ 0.28544 \ = 619 \ \text{K}} \end{array}$

e.g., Determine the boiling point of Br₂.

 $\begin{array}{l} \text{Given information (from Appendix 2):} \\ S^{\circ}[\text{Br}_{2}(l)] = 152.3 \,\text{J}\,\text{K}^{-1}\text{mol}^{-1} & \Delta H_{\text{f}}^{\circ}[\text{Br}_{2}(l)] = 0 \,\text{kJ}\,\text{mol}^{-1} \\ S^{\circ}[\text{Br}_{2}(g)] = 245.13 \,\text{J}\,\text{K}^{-1}\text{mol}^{-1} & \Delta H_{\text{f}}^{\circ}[\text{Br}_{2}(g)] = 30.7 \,\text{kJ}\,\text{mol}^{-1} \end{array}$

Solution: For the equilibrium $Br_2(I) \Longrightarrow Br_2(g)$ $\Delta H_{rxn} = 30.7 \text{ kJ mol}^{-1}$ $\Delta S_{sys} = \Delta S_{rxn} = 245.13 - 152.3 = 92.8 \text{ J K}^{-1} \text{ mol}^{-1}$ $\Delta S_{universe} = \Delta S_{sys} + \Delta S_{surr} = 0 \Rightarrow T = 331 \text{ K} = 58^{\circ}\text{C}$

Third law of thermodynamics

The entropy of a perfect crystalline substance at T = 0 K is zero.

$$S = k \ln W = k \ln 1 = 0$$

The importance of this law is that is allows us to calculate absolute entropy values (S $^{\circ}$)

Gibbs Free Energy

Recall that the 2nd Law of Thermodynamics says that a process is spontaneous if $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} > 0$

It would be convenient if we could predict spontaneity based *only* on what happens to the system.

We can do this using $\Delta S_{surr} = -\Delta H_{sys} / T$ because then $\Delta S_{universe} = \Delta S_{sys} - \Delta H_{sys} / T > 0$, or $T\Delta S_{sys} - \Delta H_{sys} > 0$, or $\Delta H_{sys} - T\Delta S_{sys} < 0$

Based on this inequality, we define the Gibbs Free Energy as G = H - TS

At constant temperature and pressure ($\Delta H = q$), we have (where all terms are for the system):

 $\Delta G = \Delta H - T \Delta S$

 $\Delta G < 0 \Rightarrow$ spontaneous in the forwards direction $\Delta G > 0 \Rightarrow$ NOT spontaneous in the forwards direction $\Delta G = 0 \Rightarrow$ the system is at equilibrium

Case 1: $\Delta H < 0$ and $\Delta S > 0$ $\Delta G = \Delta H - T\Delta S$ = (-) - T(+) < 0 always e.g., $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$ Case 2: $\Delta H > 0$ and $\Delta S < 0$

$$\Delta G = \Delta H - T \Delta S$$

= (+) - T(-)
> 0 always

e.g., $3O_2(g) \rightarrow 2O_3(g)$

Case 3: $\Delta H > 0$ and $\Delta S > 0$

 $\Delta G = \Delta H - T \Delta S$ = (+) - T(+) < 0 at high T

e.g., ice melting; water evaporating

Case 4: $\Delta H < 0$ and $\Delta S < 0$

 $\Delta G = \Delta H - T\Delta S$ = (-) - T(-) < 0 at low T

e.g., water freezing; water vapor condensing

∆G TABLE	Δ S +	—
ΔΗ	$\Delta G < 0$ at high T	∆G > 0 always
+		Spontaneous never (at no T)
	∆G < 0 always	∆G < 0 at low T
—	Spontaneous always (at all T)	

Determining T required for spontaneity:

What does "high T" or "low T" mean? For water, we know the answer:

- water freezing: $H_2O(I) \rightarrow H_2O(s)$ spontaneous at low *T* (below 0°C)
- water evaporating: $H_2O(I) \rightarrow H_2O(g)$ spontaneous at high *T* (above 100°C)

In general, we set $\Delta G = 0$ (equilibrium condition):

 $0 = \Delta H - T\Delta S \implies T = (\Delta H) / (\Delta S) T$ in Kelvin

Note: for phase changes this relation also allows us to compute the entropy change $\Delta S = (\Delta H) / (T)$

 o H₂O(s) ⇒ H₂O(l) ∆H = ∆H_{fusion}; T = melting point
 o H₂O(l) ⇒ H₂O(g) ∆H = ∆H_{vap}; T = boiling point

e.g., The reaction $4Fe(s) + 3O_2(g) + 6H_2O(I) \Longrightarrow 4Fe(OH)_3(s)$ is spontaneous below 1950°C. Estimate ΔS° for $Fe(OH)_3(s)$.

Given information (from Appendix 2): $S^{\circ}[Fe(s)] = 27.2 \text{ J K}^{-1} \text{mol}^{-1}$ $\Delta H_{f}^{\circ}[Fe(s)] = 0 \text{ kJ mol}^{-1}$ $S^{\circ}[O_{2}(g)] = 205.0 \text{ J K}^{-1} \text{mol}^{-1}$ $\Delta H_{f}^{\circ}[O_{2}(g)] = 0 \text{ kJ mol}^{-1}$ $S^{\circ}[H_{2}O(l)] = 69.9 \text{ J K}^{-1} \text{mol}^{-1}$ $\Delta H_{f}^{\circ}[H_{2}O(l)] = -285.8 \text{ kJ mol}^{-1}$ $S^{\circ}[Fe(OH)_{3}(s)] = x \text{ J K}^{-1} \text{mol}^{-1}$ $\Delta H_{f}^{\circ}[Fe(OH)_{3}(s)] = -824.25 \text{ kJ mol}^{-1}$

Solution:

From $\Delta G = \Delta H - T\Delta S$, at T = 1950°C we have $\Delta S = (\Delta H) / (T)$. We must convert to Kelvin and solve for the missing data. $\Delta S = 4x - 4(27.2) - 3(205.0) - 6(69.9) = 4x - 1143.2$ $\Delta H = 4(-824.25) - 6(-285.8) = -1582.2$

 $\frac{4x - 1143.2}{1000} = \frac{-1582.2}{1950 + 273} \quad \Rightarrow \quad x = 107.9 \,\mathrm{J}\,\mathrm{K}^{-1}\mathrm{mol}^{-1}$

Standard free energy changes, ΔG°

The standard free energy change of reaction ΔG°_{rxn} is the ΔG value under standard state conditions, which are

o Gases	1 atm pressure
o Liquids	pure liquid
 Solids 	pure solid
o Elements	most stable allotrope at 1 atm, 25°C
 Solutions 	1 molar concentration

 ΔG° can be calculated from a table of standard values (ΔG°_{f}) just like enthalpy and entropy values

 $a\mathbf{A} + b\mathbf{B} \to c\mathbf{C} + d\mathbf{D}$ $\Delta G^{\circ}_{\mathrm{rxn}} = [c\Delta G^{\circ}_{\mathrm{f}}(C) + d\Delta G^{\circ}_{\mathrm{f}}(D)] - [a\Delta G^{\circ}_{\mathrm{f}}(A) + b\Delta G^{\circ}_{\mathrm{f}}(B)]$

Here ΔG°_{f} is the standard free energy of formation of a compound, namely the free energy change that occurs when 1 mole of the compound is synthesized from its consistuent elements, each in their standard state.

Therefore, $\Delta G^{\circ}_{f} = 0$ for elements in their standard states.

 ΔG° values at different temperatures:

In the equation $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

the ΔH° and ΔS° terms are somewhat insensitive to changes in temperature, so to get a rough estimate of ΔG° we can do:

$$\Delta G_T^\circ = \Delta H_{298}^\circ - T\Delta S_{298}^\circ$$

Chemical Equilibrium and Free Energy

Relationship between ΔG and ΔG°

We can get ΔG° from tables (Appendix 2) but we need ΔG to predict spontaneity. For ΔG , there is a relationship with Q vs K

Notice that ln(Q/K) has the same sign as ΔG

In fact, they are proportional to each other

 $\Delta G \propto \ln(Q/K)$ $\Delta G = RT \ln(Q/K)$ $\Delta G = RT \ln(Q) - RT \ln(K)$

Now, if we put everything at standard conditions, then $\triangle G = \triangle G^{\circ}$

 \circ Q = 1 since all concentrations 1 *M*, all pressures 1 atm

Therefore we have the relation

 $\Delta G^{\circ} = -RT \ln K$

K is the equilibrium constant, which we can now calculate if we have the available thermodynamic data.

TABLE	15.3 Relat	ionship Between	<i>K</i> and ΔG° as Predicted by Equation 15.6
К	ln K	ΔG°	Result at equilibrium
> 1	Positive	Negative	Products are favored.
= 1	0	0	Neither products nor reactants are favored.
< 1	Negative	Positive	Reactants are favored.

e.g., Calculate ΔG° for BaF₂(s) \Longrightarrow Ba²⁺(aq) + 2F⁻(aq) given K_{sp} = 1.7 x 10⁻⁶ for BaF₂(s) at 25°C.

Solution: $\Delta G^{\circ} = -RT \ln K = -(8.314 \times 10^{-3} \text{ kJ mol}^{-1}\text{K}^{-1})(298 \text{ K})(-13.285)$ = 32.9 kJ/mol Δ**G**°

- \circ is constant for a specific reaction at a specific T
- \circ contains the same information as the magnitude of K
- if we change *T*, *K* and ΔG° change: $\Delta G^{\circ}_{T} = -RT \ln K_{T}$

<u>Note</u>: this gives us a new way to predict how temperature affects equilibrium (previously, we used Le Chatelier's Principle based on the sign of ΔH)

ΔG

- contains the same information as Q vs K comparison
- equal to the maximum work that can be done (expansion work, electrical work, or chemical work)
- \circ changes as the reaction proceeds (\rightarrow zero at equilibrium)

Since ΔG° is related to the logarithm of *K*, small changes in ΔG° lead to large changes in *K*. We can use this to determine very large or very small *K* values from thermodynamic data.

∆G° (kJ)	K	significance
200	9×10^{-36}	Essentially no forward rxn;
100	3×10^{-18}	reverse rxn goes to completion
50	2 × 10 ⁻⁹	
10	2 × 10 ⁻²	
1	7 × 10 ⁻¹	
0	1	Forward and reverse rxns proceed to same extent
-1	1.5	
-10	5×10^{1}	
-50	6 × 10 ⁸	
-100	3×10^{17}	Forward rxn goes to completion
-200	1 × 10 ³⁵	essentially no reverse rxn

Put everything together:

$$\Delta G = \underbrace{\Delta G^{\circ}}_{\text{fixed}} + \underbrace{RT \ln Q}_{\text{varies}}$$

$$\Delta G = RT \ln(Q) - RT \ln(K)$$
$$\Delta G^{\circ} = -RT \ln K$$

e.g., $H_2(g) + I_2(s) \Longrightarrow 2HI(g) \Delta G^\circ = 2.60 \text{ kJ/mol at } 25^\circ \text{C}$

Calculate ΔG with initial values P_{H2} = 5.25 atm; P_{H1} = 1.75 atm

Solution:

The reaction quotient is $Q = (1.75)^2 / (5.25) = 0.583$ $\Delta G = 2.60 \text{ kJ/mol} + (8.314 \text{ x } 10^{-3} \text{ kJ mol}^{-1} \text{K}^{-1})(298 \text{ K})(-0.539)$ = 1.26 kJ/mol.The reaction with thus run backwards spontaneously.

Free energy diagram (free energy vs reaction coordinate)

reactant or

product side