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Abstract

Given a set P of points in the plane, a geometric minimum-diameter spanning tree (GMDST)
of P is a spanning tree of P such that the longest path through the tree is minimized. For
several years, the best upper bound on the time to compute a GMDST was cubic with respect
to the number of points in the input set. Recently, Timothy Chan introduced a sub-cubic time
algorithm. In this paper, we present an algorithm that generates a tree whose diameter is no
more than (1+ ε) times that of a GMDST, for any ε > 0. Our algorithm reduces the problem to
several grid-aligned versions of the problem and runs within time O(ε−3 + n) and space O(n).

1 Introduction

Given a set P of points in the plane, define the weight of an edge between two points of P as the
Euclidean (L2) distance between the points. Compute a spanning tree of P such that the longest
path through the tree between any two points is minimized. This tree is known as a geometric
minimum diameter spanning tree (GMDST) of the point set.

GMDSTs are relevant to interconnect optimization in VLSI physical design [4, 5]. However, in
this application the total length of the spanning tree is also important.

Ho et al. [8] describe an algorithm that uses O(n3) time to generate a GMDST of n points in the
plane. In a generalized version of the problem, the input is a graph that consists of n vertices and
m weighted edges. We must compute a minimum diameter spanning tree (MDST) of the graph.
The graph version of the problem is relevant to the design of communication networks. Camerini,
Galbiati and Maffioli [2] and Hassin and Tamir [7] show that the problem of generating a MDST
of a weighted graph is reducible to the absolute 1-center problem on a graph. This problem is
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computable within O(mn + n2 log n) time [10]. Note that the time bound degenerates to O(n3)
when the input graph is the complete graph induced by n points in the plane.

For several years, no improvement was made to the cubic time bound on computing a GMDST.
While our paper was being refereed, Timothy Chan [3] improved this bound. He describes an

algorithm that computes a GMDST of n points in the plane within Õ(n
17

6 ) time, where the Õ-
notation hides terms of the form o(nα), for any fixed α > 0. Chan’s approach can be applied to
point sets in any d-dimensional space. As the dimension increases, the time bound of the algorithm
quickly approaches cubic.

The (almost) cubic time bound on GMDST-generation may be too large for some applications.
We are interested in finding an efficent approximation algorithm that generates a spanning tree
whose diameter is no more than (1 + ε) times the length of a GMDST, for any ε > 0. The
efficiency of such an algorithm is measured in terms of n and ε. One of our goals is to reduce
the interdependancy of ε and n as much as possible. In this paper, we describe an algorithm that
performs the required task in O(n + 1

ε3
) time and O(n) space.

Remark. While our paper was being refereed, Gudmundsson et al. [6] also considered the prob-
lem of approximating a geometric minimum-diameter spanning tree. Using such heavy machinery
as well-separated pair decomposition (WSPD) – first introduced by Callahan and Kosaraju [1] –
they were able to obtain an O( n

ε3 + n log n
ε ) time algorithm that uses O( n

ε2 + n log n) space. The

authors also describe a grid-based approximation algorithm that takes O∗(ε−17/3 + n) time and
O∗(ε−2 +n) space, where the O∗-notation hides terms of the form O(logO(1) ε−1). Combining these
two approaches, the authors devise an approximation algorithm that runs in O∗(ε−5 + n) time and
O(ε−4+n) space. Note that our grid-based algorithm has better performance in both characteristics
than any of these algorithms.

In the next section we present several known properties of GMDSTs. In sections 3 and 4,
we solve restricted versions of the problem where the points are grid-aligned and the GMDST is
restricted to also be aligned with the grid. Section 5 presents our approximation algorithm where
we show how to reduce the problem to several of the restricted versions we solved in section 4. We
conclude with section 6.

2 Preliminaries

A geometric graph is a graph that is composed of a set of points, and a set of edges. Each edge
can be represented by a line segment between two points. The weight of an edge is the Euclidean,
straight-line distance between its endpoints. The diameter of a graph is the sum of the edge-weights
of the longest path through the graph.

Given a point set P , a k-star, 1 ≤ k ≤ n for P is a spanning tree of the complete Euclidean
graph on P which has k internal nodes. Ho et al. [8] show that every point set admits a GMDST
that is either a 1-star or a 2-star, by a nice geometric application of the triangle inequality.

For a given spanning tree of a point set P , T (P ), let |T (P )| denote the diameter of T (P ). For
a path p1p2 . . . pk through a tree, let |p1p2 . . . pk| denote the length of the path.

It is tempting to conjecture that one may form a minimum diameter 2-star with internal vertices
p1 and p2 by simply joining every other point to the closer of p1 or p2. Figure 1 shows that this
is not sufficient, but illustrates a condition of Jones [9] for how the remaining points in P can be
connected to the given interior vertices of a 2-star.
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Figure 1: A 2-star GMDST for which connecting each point to the closer internal vertex would
produce a spanning tree of greater diameter. This tree satisfies the stability condition, since neither
circle contains all points.

Lemma 2.1 [9] Suppose that points p1, p2 ∈ P form a horizontal line p1p2 from left to right. There
exists a vertical line L such that connecting points left of L to p1 and right of L to p2 produces a
minimum diameter spanning tree among all spanning trees with interior vertices p1 and p2.

Ho et al. [8] also establish a stability condition for 2-stars, which can also be illustrated in
Figure 1. Let Pi ⊂ P \ {p1, p2} denote the points joined to interior vertex pi.

Lemma 2.2 [8] The diameter of a 2-star is determined by a three-edge path if, for i ∈ {1, 2}, some
point not joined to pi is farther than all points joined to pi. That is,

max
q∈Pi

|piq| < max
q′∈P3−i

|piq
′|.

We define a (1 + ε)-approximation of an optimal GMDST as a spanning tree whose diameter is
no more than (1 + ε) times the diameter of a GMDST. We call an algorithm that produces such a
tree, a (1 + ε)-approximation algorithm.

A uniform grid is a grid composed of an infinite number of horizontal and vertical lines in the
plane, such that adjacent lines are placed at uniform intervals. The grid breaks up the plane into
square regions that we call grid-squares. The center of a grid-square is the point in the middle of
the square that lies equidistant from all four corners of the grid-square. Define a grid-aligned point
set as a set of points in the plane, such that points lie only at the centers of grid-squares, with
respect to some underlying grid.

To eliminate special cases concerning point sets containing fewer than four points, we shall
assume throughout this paper that the input set P is such that |P | ≥ 4.

Note that our approximation algorithm relies upon a real-RAM model of computation, in which
the sum of two real numbers can be computed exactly within constant time.

3 A Simpler Problem

Instead of a general point set, we first consider a grid-aligned point set P contained in an m row
and m column bounding box. We also restrict the spanning tree to be either a 1-star or a 2-star
such that both interior vertices lie in a single row of the grid. We call this special version of the
GMDST a restricted geometric minimum diameter spanning tree (RGMDST).
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Suppose further that we have been given, for each row j of the m rows, two candidate points
pj1, pj2 ∈ P such that (a) if the RGMDST is a 1-star, then the interior vertex is pja for some
1 ≤ j ≤ m and a ∈ {1, 2}, and (b) if the RGMDST of P is a 2-star then the interior vertices are
pj1 and pj2 for some 1 ≤ j ≤ m. We now show how we can efficiently exactly solve the RGMDST
problem when we are given the candidate interior vertices. To do this we first find the optimal
1-star, then find the optimal 2-star and take the minimum of the two.

Lemma 3.1 Let P be a grid-aligned set of n points contained in an m × m bounding box. Given
two candidate interior vertices pj1pj2 ∈ P in each row j, 1 ≤ j ≤ m, such that the optimal
interior vertex is among the candidates, then the minimum diameter 1-star of P can be found in
O(m log m + n) time and O(m + n) space.

Proof: The optimal interior vertex candidate will minimize the sum of the distance to its furthest
neighbor and its second furthest neighbor. The potential furthest and second furthest neighbors
are the top and bottom two points of P in each column. Ho et al. [8] show how the second order
furthest-neighbor Voronoi diagram of these 4m points can be computed in O(m log m) time. Using
point location in this diagram, each of the 2m candidate monopoles can be evaluated in O(log m)
time. 2

We now turn to 2-stars.

Lemma 3.2 Let P be a grid-aligned set of n points contained in an m row and m column bounding
box. Given candidate interior vertices pj1pj2 ∈ P in each row j, 1 ≤ j ≤ m, such that the optimal
horizontally restricted 2-star has interior vertices among the candidate pairs, then the optimal 2-star
RGMDST of P can be found in O(m2 + n) time and O(m + n) space.

Proof: Assume that pj1 is left of pj2 for all grid-rows j. By lemma 2.1 we know that a minimum
diameter 2-star with interior vertices pj1 and pj2 can be found by joining the points left of some
vertical line to pj1 and the remaining points to pj2. Since we do not know in advance which vertical
line is appropriate, we use a sweepline to examine all possibilities.

To evaluate a particular position of the sweepline we need to know the furthest neighbor of
pj1 left of the sweepline and the furthest neighbor of pj2 right of the sweepline. The potential
furthest neighbors are the top and bottom points in each column. These extreme points can be
precomputed in O(m + n) time and space.

Let us now fix our attention to a particular row j. The sweep begins with the vertical sweepline
left of the grid-aligned bounding box B. We note that there is no furthest point from pj1 left of the
sweepline. We then move the sweep line to the right one grid-column at a time. After each move we
compute the furthest neighbor of pj1 that is left of the sweepline. This furthest neighbor will either
be the highest or lowest point of P\{pj1, pj2} in the column just left of the sweepline, or it will be
the previous furthest neighbor from before the move. We record for each column k the distance
from the furthest left neighbor, l1(k), which is the distance from the element of P\{pj1, pj2} left
of or in column k that is furthest from pj1. If there is no such furthest left neighbor l1(k) is zero.
Each l1(k) is computed in constant time. We can likewise sweep a vertical line from the right and
compute r1(k), the distance from the element of P\{pj1, pj2} right of or in column k that is furthest
from pj1. Finally, we also compute l2(k) and r2(k), as the corresponding distances to pivot pj2.
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Figure 2: The diameter of a 1-star is non-decreasing about the optimum.

After this is done we can compute the diameter of the 2-star with interior vertices pj1 and pj2

as
Dj = min

k
{l1(k) + d(pj1, pj2) + r2(k + 1)} (1)

where the minimum is taken over all columns for which the stability conditions l1(k) < r1(k + 1)
and r2(k+1) < l2(k) both hold. If one of the two conditions does not hold then the computation of
equation 1 underestimates the actual diameter determined by the two furthest points from one of
the two interior vertices. Since there are m columns, altogether O(m) time and space is expended
in computing and storing the li(k) and ri(k) values for the row j. Testing stability conditions and
computing the result, Dj, then requires a further O(m) time using equation 1.

We repeat this process for each of the m rows. Altogether O(m2) time and O(m) space is
expended in computing all the Dj . The diameter of the optimal 2-star with interior vertices pj1

and pj2, for all grid-rows, can then be computed in a further O(m) time. 2

4 Solving the RGMDST problem

In this section we show how to compute candidate interior vertices so that the RGMDST problem
of a grid-aligned point set P can be reduced to the simpler problem of section 3.

4.1 Analysis

Imagine a 1-star of a planar point set. Without changing the structure of the graph, move the
interior vertex to the left and to the right along a horizontal line. How does moving the interior
vertex in this manner affect the diameter of the 1-star? As we show in the following lemma, there
is an optimum region where the diameter of the tree is minimum. As we move away from this
region, the diameter of the tree is non-decreasing, i.e. there are no points of “local optimum” along
the line.

Lemma 4.1 Given a point set P , and three collinear points p1, p2, p3, such that p2 lies between
p1 and p3, the diameter of the 1-star of P in which p2 is the interior vertex cannot be larger than
both the diameter of the 1-star with interior vertex p1, and the diameter of the 1-star with interior
vertex p3.
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Figure 3: Improving a 2-star spanning tree.

Proof: Let points q1, q2 ∈ P be the furthest two points from p2 in P . The longest path through
the tree in which p2 is the interior vertex is q1p2q2. The longest path through the 1-star in which
p1 is the interior vertex must be at least as large as the path q1p1q2. Likewise the longest path
through the 1-star in which p3 is the interior vertex must be at least as large as the path q1p3q2.

Suppose, for the moment, that q1 and q2 at opposite sides of the line through p1, p2 and p3,
as is shown in Figure 2. The shortest path with endpoints q1 and q2 is the straight line segment
between q1 and q2. The more a path deviates from the straight line, the longer it is. Clearly, q1p2q2

deviates less than at least one of q1p1q2, or q1p3q2. Hence, the diameter of the 1-star with interior
vertex p2 cannot be larger than both the diameter of the 1-star with interior vertex p1, and the
diameter of the 1-star with interior vertex p3.

A similar argument can be made for the situation in which q1 and q2 lie on the same side of
the line through p1, p2 and p3. Finally, it is not difficult to show that the lemma holds in the
degenerate case in which one or both of q1, q2 lie collinear with p1, p2 and p3. We leave the proof
up to the reader. 2

For a given grid-row r and a point set P , we define a grid-aligned Steiner monopole of r and
P to be a grid-aligned point s that lies in r, such that the diameter of the 1-star of P ∪ {s} with
interior vertex s is minimum among all such 1-stars with interior, grid-aligned Steiner vertices in
r. Note that s is not necessarily an element of P . Also, we do not exclude the possibility of the
existence of multiple grid-aligned Steiner monopoles in r. However, by Lemma 4.1, these will form
a continuous set of grid-aligned points in r.

The following lemma describes a useful relationship between the optimal grid-aligned Steiner
monopoles in a given grid-row, and the optimal pair of interior vertices of a 2-star that is restricted
to lie in that grid-row.

Lemma 4.2 Let P be a grid-aligned point set, and let r be a grid-row containing points of P . Let
∆r(P ) be a minimum diameter spanning tree of P which is restricted to be either a 1-star with
interior vertex in row r, or a 2-star with both interior vertices in row r. If there exists no 1-star
∆r(P ) then there exists a 2-star ∆r(P ) of P in which (1) no point of P lies on the horizontal line
segment between the two interior vertices of ∆r(P ), p1 and p2, and (2) every grid-aligned Steiner
monopole s in grid-row r lies between p1 and p2.

Proof: Assume that there exists no 1-star ∆r(P ). Then ∆r(P ) is 2-star with interior vertices p1

and p2, where p1 is to the left of p2.
Suppose that there exists a point p ∈ P on the horizontal line segment between p1 and p2. Let

Pi be the points of P\{p1, p2, p} connected to pi in ∆r(P ), i = 1, 2. If the furthest point from p in
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Figure 4: The Steiner monopole s on line l cannot lie to the right of the optimal interior vertices
p1 and p2.

P lies in P1, then generate a new 2-star with interior vertices p1 and p. In Figure 3, the furthest
point from p is labeled q. In the new tree, add an edge between p1 to p, add edges between p1 and
every other point (besides itself and p) in P1, and add edges between p and every other point in P2

(these edges are shown dashed in Figure 3).
Since the furthest point from p lies in P1, the longest path through the new tree will either run

(1) from a point in P1, to p1, and to another point in P1, or else (2) from a point in P1, to p1, to
p, and finally to some point in P2. In either case, it is easy to see that by the triangle inequality,
the diameter of the new tree cannot be larger than the diameter of ∆r(P ).

Therefore, if ∆r(P ) must be a 2-star there exists a ∆r(P ) such that no point of P lies on the
horizontal line segment between the interior vertices.

We must now show that, if there exists only a 2-star ∆r(P ), then all grid-aligned Steiner
monopoles in grid-row r lie between the interior vertices. Assume to the contrary that a Steiner
monopole s of grid-row r lies to the right of p2. The case that it lies left of p1 is symmetric.

Let q1 and q2 ∈ P be the two furthest points from p2. For the moment, let us suppose that q1

and q2 lie on opposite sides of the horizontal line through the interior vertices. This situation is
depicted in Figure 4.

The line through q1 and q2 must intersect the horizontal line through interior vertices p1 and
p2 to the right of p2. If this were not the case, then notice that the 1-star with interior vertex at p2

would have a diameter smaller than that of the monopolar tree with interior vertex s. The diameter
of the 1-star with interior vertex p2 is |q1p2q2|. A 2-star with interior vertices p1 and p2 must have
at least this diameter, contradicting our initial assumption that ∆r(P ) cannot be a 1-star.

The case that q1 and q2 reside on the same side of the horizontal line through the dipoles is
similar. If a 2-star ∆r(P ) exists in which a Steiner monopole in the same grid-row as the interior
vertices does not lie between the interior vertices, then there exists a 1-star ∆r(P ). 2

4.2 Computing candidate interior vertices

We now show how to compute, for each grid-row in the bounding box of P , a grid-aligned Steiner
monopole of that row. From this information, we can compute a set of candidate interior vertices.
These are the two points of each row, that are nearest the grid-aligned Steiner monopole, such that
one lies left of the Steiner monopole, and the other lies to the right, by Lemma 4.2.

As in the proof of lemma 3.1, the second order furthest point Voronoi Diagram of P can be
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computed in O(m log m) time. Once the second order furthest-neighbor diagram is computed, the
furthest two points from any point p are those two points corresponding with the Voronoi cell that
contains p. For each row of the grid, we can compute the furthest two points from every grid-aligned
point in that row in an additional O(m) time by traversing Voronoi cells, from a cell to an adjacent
cell, along the line that passes through the points in the row. Once we know the furthest two points
from a point p, in constant time we can compute the diameter of the 1-star with interior vertex p.
There are m rows, and so it will take a total of O(m2) time to process all rows in this manner. This
gives us a best possible grid-aligned Steiner monopole and its cost in O(m2) time. The candidate
interior vertices of each row can be computed in an additional O(m) time per row.

We now present the main result of this section.

Theorem 4.1 Given a set P of n points aligned with a grid G and contained within a bounding
box of m × m grid-squares, there is an O(m2)-time algorithm that generates a RGMDST of P .

Proof: Once we determine the best candidate interior vertices in each grid-row, in O(m) time per
row, this reduces the problem to the simpler problem of section 3. Lemmas 3.1 and 3.2 complete
the proof. 2

5 The approximation algorithm

In order to approximate an optimum GMDST of a general point set, we transform the problem to
several instances of the RGMDST problem. Let P be an arbitrary set of points in the plane with
a GMDST ∆(P ).

Suppose that ∆(P ) is a 2-star. We seek to overlay the plane with a grid G, with grid-square
edges of length φ, so that that the two interior vertices of ∆(P ), p1 and p2, lie in a single grid-row.
Intuitively, the angle between the line that passes through the two interior vertices of ∆(P ) and the
orientation of the “horizontal” grid lines of G should be small. Let D denote the distance between
the furthest two points of P . Therefore, |p1p2| ≤ D. Let θ denote the smaller angle between the
line through p1 and p2, and the horizontal grid-lines of G.

Using trigonometry, we find that if

sin θ <
φ

D (2)

then p1 and p2 can reside in a single grid-row of a grid oriented like G. By insisting that

sin θ <
φ/2

D =
φ

2D (3)

we need consider only two such grids, offset from one another by a vertical distance of φ
2 .

Figure 5 shows that if θ is small enough the segment joining the interior vertices. will lie in one
of the two grids whose horizontal grid lines are offset by φ

2
In order to account for all possible orientations of the line through p1 and p2, several orientations

of grids are used.

Lemma 5.1 The number of orientations of grids can be bounded by,

π

arcsin(φ/2D)
= O

(D
φ

)

(4)
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Figure 5: The line through p1 and p2, closely aligned with the horizontal grid-lines of two offset
grids.

5.1 Grid transformation

One of the O(Dφ ) oriented grids will contain the two interior vertices of an optimal 2-star of P in

a single grid-row. For each such grid, we need to generate a grid-aligned point set P ′ from P and
analyze how the gridding changes the GMDST. If any point p ∈ P lies on the boundary of two or
more grid-squares, the point is moved a negligible distance in some direction until it no longer lies
on a boundary. We generate the grid-aligned point set P ′ as follows. For each grid-square in G, if
the grid-square contains a single point of P , then add a single point in the center of the grid-square
to P ′. If two or more points of P reside in the grid-square, then add exactly two points to P ′,
such that both points lie at the center of the grid-square. Notice that set P ′ is aligned with grid
G. Below, we show how a GMDST of P ′ can be converted to a spanning tree of P , such that the
diameter of this spanning tree is close to optimum.

Let ∆(P ′) be a GMDST of P ′. Generate a spanning tree of P , T (P ), as follows. If ∆(P ′) is
a 1-star or a 2-star with both interior vertices in the same grid-square, then make T (P ) a 1-star
such that the interior vertex of T (P ) is any point p ∈ P that lies in the same grid-square as does
the interior vertex of ∆(P ′).

Otherwise ∆(P ′) is a 2-star with interior vertices p′1 and p′2 in different grid-squares. Choose
two interior vertices p1, p2 ∈ P such that p1 lies in the same grid-square as p′1 and p2 lies in the
same grid-square as p′2. In T (P ), generate an edge between p1 and p2. For every point p ∈ P ,
where p 6= pi for i ∈ {1, 2}, such that p resides in the same grid-square as pi, add edge ppi to T (P ).

For any grid-square that contains at least one point of P ′, if one or both of these points are
linked by an edge to vertex p′1 in ∆(P ′), then for each point p ∈ P that resides in the grid-square
add edge p1p to T (P ). Otherwise, for each point p ∈ P that resides in the grid-square, add edge
p2p to T (P ).

We call the above procedure of converting P to P ′, and then using a GMDST of P ′ to generate
a spanning tree of P , the grid transformation.

Lemma 5.2 Given a set P of points in the plane with GMDST ∆(P ), and some value φ > 0, the
grid transformation generates a spanning tree of P , T (P ), such that

|T (P )| ≤ |∆(P )| + 6
√

2φ (5)

Proof: Each point of P ′ lies at the center of a grid-square, while each point of P may lie anywhere
in the plane. Given points p ∈ P and p′ ∈ P ′ such that both points lie in the same grid-square, the
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distance between the points will not exceed
√

2φ/2, i.e. half of the distance between two furthest
corners of the grid-square.

Let ∆(P ) be a GMDST of P . The longest path from one point of P to another through ∆(P )
will consist of at most three edges. Let G be the underlying grid of P ′. Suppose that we move
each point of P to the center of the grid-square of G in which it is contained. As the points are
moved, each edge of ∆(P ) is stretched by at most length

√
2φ. Since the longest path through

∆(P ) consists of three edges, the diameter of the stretched version of ∆(P ) is no longer than
|∆(P )| + 3

√
2φ.

Let ∆(P ′) be a GMDST of P ′. A spanning tree of P ′ can be constructed from the above stretched
version of ∆(P ) by removing all but at most two of the points (and those edges connected to these
points) from each grid-square of G. Notice that this operation does not increase the diameter of
the spanning tree. Hence,

|∆(P ′)| ≤ |∆(P )| + 3
√

2φ (6)

Given ∆(P ′), the grid transformation describes how to convert this spanning tree to a spanning
tree of P , T (P ). Consider the longest path between two points of P through T (P ). Imagine that
all the points of P are moved into the centers of the grid-squares of G without altering the edges of
T (P ). Since the longest path through T (P ) consists of at most three edges, this path is no longer
than the longest path through the stretched version, plus 3

√
2φ. To convert the stretched version

of T (P ) back to P ′, we must remove some of the points (and attached edges) such that there are
only two points in each grid-square of G. This is done by removing leaves. Since there remain
up to two points in each grid-square, this removal of points does not shorten the diameter of the
stretched tree.

Therefore,
|T (P )| ≤ |∆(P ′)| + 3

√
2φ (7)

Combining Equation 6 with Equation 7, it follows that,

|T (P )| ≤ |∆(P )| + 6
√

2φ (8)

2

5.2 Putting it all together

In this subsection, we combine results of the preceding subsections to form an approximation
algorithm for the problem of GMDST generation. The following is a useful lower bound on the
diameter of a GMDST.

Lemma 5.3 Given a set P of points in the plane such that D is the largest distance between any
two points of P , any GMDST of P must be of size D or larger.

We now present our main result.

Theorem 5.1 Given a set P of n points in the plane, there exists an algorithm such that, for any
0 < ε, the algorithm generates a (1 + ε)-approximate GMDST of P within time O(ε−3 + n) and
space O(n).
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Proof: If ε < 1
n then we use the exact algorithm of Ho et al. [8] which runs in O(n3) ⊆ O(ε−3)

time and O(n) space. Otherwise we proceed using the grid transformation. If n is larger than
the number of nonempty grid squares then it will be too costly to repeatedly place all n points on
each of the oriented grids. Instead we apply an initial grid transformation to reduce the number of
points and then repeatedly apply the grid transformation to these initially gridded points to move
them to the variously oriented grids. Using the grid transformation twice in this way will double
the additive error of lemma 5.2.

Recall that D is the furthest distance between two points in the input set P . For each grid
transformation let φ be the edge-length of the grid-squares. Set φ such that,

φ =
Dε

12
√

2
(9)

Let ∆(P ) be a GMDST of P . By applying the grid transformation twice the problem of
generating a spanning tree that is no larger than |∆(P )| + 12

√
2φ can be transformed to several

instances of the GMDST on a grid-aligned point set. For at least one of these instances a RGMDST
will serve as an approximation. For the correct orientation of grid with our chosen value of φ,

|∆(P )| + 12
√

2φ

|∆(P )| ≤ 1 +
12
√

2

|∆(P )| ·
Dε

12
√

2
≤ (1 + ε) (10)

since, by Lemma 5.3, D ≤ |∆(P )|.
Therefore, our algorithm computes a (1 + ε)-approximate GMDST of P . We now examine the

complexity of this algorithm.
Consider the conversion of P to each grid-aligned set P ′. Before this conversion can occur, we

must compute the size of the grid-squares, φ, using ε and D. We know ε, but must compute D
from P . We can approximate the defined value of D by setting D equal to the maximum of (1) the
largest vertical distance between two points of P , and (2) the largest horizontal distance between
two points of P . We get a value for D such that D ≤ |∆(P )|. Further, this value can be computed
in linear time with respect to the number of points in P .

Since no two points of P lie vertically or horizontally further apart than distance D, set P will
fit entirely within a grid-aligned, D × D bounding box, B. These dimensions can be rewritten in
terms of the number of grid-squares on each side of B as,

D ×D
φ2

=
D ×D

(Dε)2/(12
√

2)2
=

288

ε2
= O(ε−1) × O(ε−1) (11)

Recall that set P ′ is generated by adding up to two points to the center of each grid-square
using the two grid transformations. The first transformation can be accomplished within time
(and space) O(ε−1 + n) by using radix sort and is done only once. The second transformation
can be performed in O(ε−2) time and O(n) space. Once an optimum RGMDST spanning tree of
P ′ is generated the size is recorded. Only for the grid orientation that allows the minimum sized
RGMDST is the tree converted to a spanning tree of P within an additional O(ε−2 + n) time.
Hence, the grid transformation runs in a total of O(ε−2) time per orientation plus O(ε−2 +n) initial
and final costs.

By Lemma 5.1, the number of grid orientations considered for the grid transformation can be
bounded by O(D/φ), where D is the largest distance between any two points in P . Therefore, the
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number of orientations can be bounded by,

O

(D
φ

)

= O

( D
Dε

)

= O(ε−1) (12)

For each of these O(ε−1) orientations we expend O(ε−2) time for the second grid transformation
plus an additional O(ε−2) time to solve the RGMDST problem on the gridded point set. Overall,
our approximation algorithm runs in O(ε−3 + n) time and O(n) space. 2

6 Conclusions

The approximation algorithm that we present in this paper is linear with respect to the size of
the input set. For applications in which an approximate GMDST will suffice, this is a significant
improvement over the existing cubic time algorithms. It remains open as to whether or not the
cubic time bound can be improved upon by an algorithm that is guaranteed to find an optimum
solution.

Using the algorithm in the paper we obtain a spanning tree whose diameter d is no more than
(1 + ε) times the diameter d∗ of GMDST, i.e. d∗ ≤ d ≤ (1 + ε)d∗. We may ask another question:
Given a value δ, find a spanning tree whose diameter d is no more than the optimal diameter d∗+δ.
In other words, d∗ ≤ d ≤ d∗ + δ. To achieve this with our algorithm we need εd∗ ≤ δ and therefore
ε ≤ δ

d∗ However, we don’t know d∗. To determine the needed ε we first run the algorithm with

ε = 1 and obtain d′, such that d∗ ≤ d′ ≤ 2d∗, then choose ε = δ
d′ ≤ δ

d∗ and run the algorithm with

this ε. The running time will be O(ε−3 + n) = O(d′3

δ3 + n) = O(d∗3

δ3 + n). Notice that if all pairwise
distances between points are integers, then by taking δ = 1

2 we obtain an exact output sensitive
solution in O(d∗3 + n) time.

We expect that the approach used in this paper can be used to compute approximate GMDSTs
for point sets in higher dimensions. As we move into d-dimensional space, the uniform grids will
be composed of d-dimensional hypercubes. However, as d increases the exponent on ε−1 in the
complexity bounds will grow fairly quickly, likely making the approach impractical for dimensions
above three or four.
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