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Manufacturers often offer retailers buyback contracts to reduce retailers’ inventory costs by repurchasing

unsold inventory at a pre-specified returns price. We examine the signaling role of buyback contracts when

the retailer is less informed about either the manufacturer’s reliability of honoring the buyback commitment

(e.g., for a small/less-established manufacturer) or its product’s market potential (e.g., for a national brand

manufacturer). We find that these two situations yield contrasting buyback designs: the manufacturer must

distort the wholesale and returns prices downward to signal higher reliability but upward to signal higher

market potential. Nevertheless, the signaling mechanism in both cases hinges on suitably distorting the

manufacturer’s returns cost (i.e., the cost of repurchasing retailer’s unsold inventory) by influencing the

retailer’s regular stock (i.e., the portion of inventory carried to meet average demand) and safety stock (i.e.,

the extra inventory carried to meet potential high demand). Notably, while prior research has highlighted

the signaling role of the wholesale price, we show how and why, in a channel with inventory, the returns price

plays a relatively more important role. In particular, efficient signaling entails that the returns price is used

to distort the manufacturer’s returns cost, whereas the wholesale price is used only to mitigate the resulting

distortion in the retailer’s order quantity. In fact, the returns price emerges as a more efficient signaling

instrument and reverses the direction of wholesale price distortion from what is necessary if wholesale price

alone is used to signal. We also examine the implications when the two dimensions of manufacturer’s private

information are correlated.

Key words : buyback contracts, inventory, returns, demand potential, prices, signaling

1. Introduction

In many product categories, market demand is often stochastic and an upstream manufacturer has

to design suitable mechanisms to ensure that the downstream retailer carries sufficient inventory

of her product to meet potential demand. One such mechanism is the buyback contract, wherein

the manufacturer offers to repurchase any unsold inventory at the end of the selling season at

a pre-specified returns price. Careful design of the buyback contract can increase product sales

and can thus be crucial for the manufacturer’s success and profitability. Accordingly, researchers

have studied how the manufacturer can optimally structure the terms of the buyback arrangement,
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under the assumption that the retailer is equally knowledgeable about demand conditions as the

manufacturer and can trust the buyback commitment to be honored (e.g., Marvel and Peck 1995,

Padmanabhan and Png 1997, Wang 2004, Gurnani et al. 2010, Tran et al. 2018). Yet, in practice,

the retailer may be less informed about market conditions (e.g., compared to large manufacturers

who invest considerable resources in proprietary market research), or unsure about the manufac-

turer’s intrinsic reliability of honoring the buyback commitment (e.g., in the case of small or foreign

manufacturers, or due to adverse economic environment). Therefore, the implications of designing

buyback contracts under these practical situations need to be understood. Indeed, prior literature

has highlighted the role of wholesale price contracts in signaling a manufacturer’s demand infor-

mation to the retailer (e.g., Chu 1992, Desai 2000, Gal-Or et al. 2008, Jiang et al. 2016). However,

in situations where the retailer must carry inventory because of stochastic demand, it is more

natural for the manufacturer to offer a buyback contract. Whether and how the buyback contract

can be structured to credibly signal demand conditions or the intrinsic reliability of the buyback

commitment, and how such a strategy compares to using the wholesale price alone to signal (as

examined in prior research), remain as open questions. In this paper, we aim to shed light on these

questions. Our results offer an understanding of the informational role of buyback arrangements,

over and above its oft-studied transactional role.

In the context of buyback contracts, a retailer faces two types of inventory-related risks. The

first type of risk, which we refer to as demand risk, occurs because of the stochastic nature of

demand at the time of ordering the product (ahead of the selling season), which can result in

the retailer having unsold inventory at the end of the selling season. The buyback arrangement

aims to lower the retailer’s demand risk by sharing in the retailer’s costs of carrying any excess

inventory. The buyback arrangement itself, however, leads to a second type of risk, which we

refer to as the returns risk and occurs because of the buyback commitment not being met at

the time of returning the inventory (at the end of the selling season). The returns risk, which

is typically inherent to the specific manufacturer, arises because of contingencies or exceptional

events that could not be fully anticipated at the time that the buyback contract was offered. For

example, as evidenced from multiple lawsuits (e.g., Biddle 2003, Drywall Supply Central, Inc. v.

Trex Company 2007, American Suzuki Motor Corporation 2013), a manufacturer may not meet

the commitment because of unexpectedly facing bankruptcy or financial distress due to economic

downturn or mismanagement; or, in certain cases, because of contractual caveats or legal loopholes

that exonerate the manufacturer from fulfilling her buyback commitment.

One type of risk may be more prominent than the other in a particular situation, depending on

factors such as the manufacturer’s characteristics, nature of the product, and economic conditions.

For example, returns risk is likely to be more prominent in the case of small and less-established
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manufacturers, or foreign manufacturers, or during an economic downturn. Small manufacturers

are often liquidity constrained and thus may not be able to repurchase unsold inventory from the

retailer. Similarly, less-established foreign manufacturers may lack the operational wherewithal to

reliably handle returns; in addition, their proprietary familiarity with their home-country legal

systems may also affect the likelihood of fulfilling their contractual obligations.1 Consequently,

retailers are justifiably wary of buyback arrangements offered by such manufacturers, as exemplified

by the following comment from a former Vice President of the convenience store chain 7-Eleven:2

Many retailers have been burned on these buyback guarantees that there is a sense of distrust

when it comes to secondary or smaller manufacturers... The retailers are not sure whether the

manufacturer will be able to take the product back if the product does not sell.

While some small or less-established manufacturers may pose lower returns risk than others, for

example, because of better financial and operational health, a retailer typically lacks the resources

and expertise to investigate the intrinsic risks of individual manufacturers. Consequently, the

retailer is less knowledgeable about the returns risk than the manufacturer, and thus skeptical

of the manufacturer’s buyback commitment. In such situations, can a more reliable manufacturer

address the retailer’s lack of trust by suitably designing the buyback arrangement? If so, how does

the buyback arrangement of a more reliable manufacturer differ from that of a less reliable man-

ufacturer? What is the impact on the manufacturer, the retailer and channel performance? These

are some of the questions that we wish to answer in this paper.

In contrast to small or less-established manufacturers, large and well-established manufacturers,

who regularly introduce new products, face a different challenge; namely, to convince a retailer

about the market potential for their products. In this case, the manufacturer’s returns risk, if any,

is likely to be minimal and well known to the retailer given past interactions or the manufac-

turer’s reputation in the marketplace. However, the retailer is likely to be less informed than the

manufacturer about the market potential, and hence the extent of demand risk, especially for the

case of new products. Indeed, even for large manufacturers, not all products are guaranteed to be

equally successful (e.g., Schneider and Hall 2011, York 2013). Moreover, a large manufacturer (e.g.,

P&G, Kraft) often invests considerable resources in proprietary market research and, therefore, has

superior information about her product’s market potential than the retailer (e.g., ACNielsen 2006,

Guo and Iyer 2010). Intuitively, all else being equal, a product with higher demand potential poses

lower demand risk for the retailer and warrants carrying higher inventory. However, a retailer that

1 As pointed out by practitioners (e.g., Rosenfeld 2015), it is an insurmountable challenge for American companies
to anticipate all contingencies and include them in upfront contracts when dealing with foreign suppliers.

2 The comment was made by Paul Pierce, who was VP of Fresh Sales at 7-Eleven, in a private interview by the
authors.
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is uninformed about the product’s market potential requires convincing that the product’s market

potential is truly high. In such situations, how should a manufacturer, whose product has higher

demand potential, structure her buyback arrangement to credibly signal the demand potential?

How are the implications similar to or different than those in the case where the manufacturer

signals lower returns risk? We address these questions as well.

At this juncture, we should note that while the importance and relevance of studying the strate-

gies of large and established manufacturers may be self-evident, some remarks for the case of small

and less-established players may be in order. Small and less-established manufacturers are often

an important source of innovation, product variety and competition in the market place. Even

though they may not account for a substantial portion of the market at a particular point in time,

they may eventually grow to have substantial impact on the entire category; examples include

Greek Yogurt maker Chobani (Fast Company Staff 2017), 5-hour Energy producer Living Essen-

tials (Klara 2016), and White Wave, the brand owner of Silk soy and almond milk (Adamy 2005).

In this context, a well-designed buyback contract can in fact help small and less-established man-

ufacturers penetrate the market by encouraging the retailer to carry more inventory. At the same

time, a challenge for such manufacturers is that a retailer may not trust their buyback commit-

ment. Thus, understanding how a small or less-established manufacturer can leverage the buyback

arrangement to her advantage is both important and relevant.

In this paper, we conduct a model-based examination of the signaling role of the buyback contract

in two distinct scenarios, namely, where the retailer is uninformed either about the manufacturer’s

returns risk or the demand risk.3 To our knowledge, our paper is the first to examine the infor-

mational role of the buyback arrangement over and above its oft-studied transactional role. In

particular, we introduce the analysis of manufacturer returns risk to the literature, and study how

to optimally design the buyback contract to signal returns risk. By studying a channel that faces

stochastic demand and hence carries inventory, we uncover a novel signaling mechanism across the

two types of manufacturer’s private information.

In the presence of stochastic demand and inventory considerations, we find that what distin-

guishes the manufacturer based on her returns risk or demand risk is the probability of incurring

the returns cost under the buyback contract (i.e., the manufacturer’s cost of repurchasing the

retailer’s unsold inventory). We show that, as a result, efficient signaling relies on distorting the

manufacturer’s returns cost by suitably influencing both the retailer’s regular stock (portion of

inventory that is carried to meet the average demand) and safety stock (excess inventory carried

to meet potential high demand). Interestingly, this signaling mechanism entails that the returns

3 Later, in Section 6, we study the case when both risks are the manufacturer’s private information.
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price is used to distort the returns cost, whereas the wholesale price is used only to offset the

resulting distortion in the retailer’s order quantity. In fact, the returns price emerges as a more

efficient signaling instrument and reverses the direction of wholesale price distortion from what is

necessary if the wholesale price alone is used to distort the returns cost. Thus, while prior research

has highlighted the signaling role of the wholesale price, we find that, in a channel with inventory,

it is the returns clause of a buyback contract that plays a more important role.

As a result, the two types of manufacturer private information (i.e., returns risk and demand

risk) lead to contrasting designs of the buyback contract. Specifically, signaling higher reliability

(which corresponds to higher probability of incurring the returns cost) entails that the returns

cost is distorted downward, whereas signaling higher market potential (which corresponds to lower

probability of incurring the returns cost) entails that the returns cost is distorted upward. We find

that a manufacturer must distort both the wholesale price and returns price downward to signal

higher reliability but upward to signal higher market potential. We also examine the implications

when these two dimensions of private information are correlated and show that our main insights

extend to this setting in a natural manner under certain conditions.

The plan for the rest of the paper is as follows. We discuss the relevant literature in the next

section and set up the model in Section 3. We dedicate Section 4 to the case of signaling manufac-

turer’s returns risk and Section 5 to the case of signaling demand potential. Section 6 extends the

analysis to the case of signaling both types of private information. Section 7 concludes the paper.

All the proofs are relegated to the appendices and electronic companion.

2. Literature Review

Research on buyback contracts have mostly studied the transactional role of buyback contracts in

facilitating trade in distribution channels. One research stream is based on manufacturers using

returns to provide incentive for retailers who face unpredictability in consumer preferences and

have to make inventory ordering decisions long before the resolution of demand uncertainty (Marvel

and Peck 1995, Padmanabhan and Png 1997, Wang 2004, Gurnani et al. 2010, Tran et al. 2018).4

In particular, Gurnani et al. (2010) generalize prior work comparing no returns versus full returns

policies to explicitly allow for partial returns, and form the building block of our model. The

analysis in their study, however, does not include any returns risk or private information about

demand potential, which is the focus of our paper. Another research stream has studied the use of

return policies to achieve channel coordination (Jeuland and Shugan 1983, Pasternack 1985, Cachon

4 Wang (2004) showed that Padmanabhan and Png’s (1997) conclusions in the retail competition model no longer
hold for the case of deterministic demand once the equilibrium is solved by correctly accounting for the retailers’
inventory constraints.
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2003, Krishnan et al. 2004). The focus of our paper, however, is on studying the informational

role of returns policies in communicating upstream proprietary information such as manufacturer

risk and demand potential. Relatedly, Arya and Mittendorf (2004) examine the situation where

the retailer has private information on market conditions and the manufacturer uses a variety of

return policies to elicit that information. We focus instead on the case where the manufacturer has

superior demand information.

Researchers have examined the role of channel contracts as signals of the manufacturer’s demand

information to influence the retailer’s decision to carry the manufacturer’s product. The common

premise therein is the absence of stochastic demand and inventory considerations. Hence, buyback

arrangements were not considered. For instance, Chu (1992) finds that the manufacturer with higher

demand signals by setting a higher wholesale price and higher advertising. Desai (2000) compares

wholesale price, slotting allowance and advertising as signaling instruments (see also the earlier

work by Lariviere and Padmanabhan (1997)). He finds that the wholesale price is a more efficient

signaling instrument than a slotting allowance. A slotting allowance is used only to compensate the

retailer if the stocking costs are high and advertising effectiveness is low. Advertising is also used to

signal if the high demand manufacturer also has higher advertising effectiveness (which is unknown

to the retailer). In contrast to the upward distortion of the wholesale price in these two papers,

we show that in the presence of stochastic demand and buyback considerations, a high-demand

potential manufacturer downward distorts its wholesale price, if used alone to signal. Instead, it is

the returns price signal that features an upward distortion and plays a more important role than

the wholesale price in conveying the manufacturer’s demand information. Moreover, the joint use

of both price signals reverses the direction of distortion in the wholesale price compared to when

it is used alone. Most significantly, we show that, when the retailer must carry inventory to tackle

demand risk, the buyback component plays an important role in signaling the manufacturer’s

private information through a characteristically different mechanism.

With the focus on the manufacturer’s information sharing incentives in a distribution channel,

researchers (e.g., Gal-Or et al. 2008, Jiang et al. 2016, Dukes et al. 2017) have also examined the

wholesale price signal of the manufacturer’s demand information (also in the absence of stochastic

demand and inventory conditions). This body of literature considers that truthful information

sharing can be sustained by the manufacturer’s reputational concerns or initial capital investment,

and hence information sharing can serve as an alternative to demand signaling. We instead focus

on situations where such commitment is impractical or insufficient to sustain truthful information

sharing. Moreover, we study the roles of both wholesale and returns prices in signaling demand

and returns risk by explicitly accounting for stochastic demand and inventory considerations.
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Research on signaling product quality to consumers through prices has also, by and large, found

that higher prices are a signal of higher quality (e.g., Bagwell and Riordan 1991, Judd and Riordan

1994, Daughety and Reinganum 1995, Wang and Özkan-Seely 2018), with a few exceptions (e.g.,

Milgrom and Roberts 1986). In a B2C setting, Moorthy and Srinivasan (1995) show that a full

money-back guarantee to consumers can serve as a high-quality signal even if price alone cannot

signal. However, price can be a more efficient signal if consumers are heterogeneous in their product

valuation, and a higher price can still signal higher quality even with a full money-back guarantee.

A full money-back guarantee is analogous to a buyback contract where the returns price is set equal

to the wholesale price. In contrast, we study buyback contracts in a B2B setting with inventory

concerns. By allowing for a flexible returns price, we find that the returns price is always a more

efficient signal than the wholesale price and that the use of the returns price to signal reverses the

direction of distortion in the wholesale price.

In addition to price, researchers have also examined the role of other marketing levers to influence

consumers’ quality inference. For example, Miklós-Thal and Zhang (2013) show that demarketing

selling effort can improve product quality image ex post, as consumers attribute good sales to

high quality and lower sales to lack of marketing effort. When a manufacturer markets multiple

products, Miklós-Thal (2012) shows that umbrella branding can be used to credibly signal positive

correlation between the qualities of the products. Guo and Jiang (2016) study the effect of fairness

concerns on a firm’s signaling strategy when consumers experience some psychological disutility

while buying products at unfair prices.

To conclude our literature review, we note that the past literature has neither examined the

use of buyback contracts as signaling mechanism, nor explicitly considered manufacturers’ returns

risk. By demonstrating the contrasting effects between signaling product demand condition versus

manufacturer reliability, our work sheds some light on the informational role of buyback contracts

in channel management practice.

3. Model

We start with an overview of our model. Consider a manufacturer (hereafter referred to as “she”),

who supplies a product to the end market through a retailer (hereafter referred to as “he”). The

demand for the product is stochastic, and is not realized prior to the selling season. The retailer,

however, must order the product ahead of the selling season. The manufacturer offers the retailer

a buyback contract, specifying a wholesale price w≥ 0 at which the retailer can order the product

prior to the selling season, and a returns price r ≥ 0 at which the manufacturer promises to

repurchase any unsold inventory at the end of the selling season. We set the manufacturer’s marginal
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production cost to zero.5 As a novel feature in our model, there is an intrinsic risk that the

manufacturer may fail to honor the buyback commitment at the end of the selling season, either

because she is not able to (e.g., bankruptcy, financial distress) or because she has the opportunity

not to without attracting legal sanctions (e.g., contractual caveats, legal loopholes). We model the

following decisions. The manufacturer chooses the buyback contract terms to offer. The retailer

decides how much of the product to order, and the retail price to sell them. As discussed in the

Introduction section, our main interest is to examine the design of the buyback contract in two

distinct information scenarios: one, where the manufacturer is better informed (than the retailer)

about her intrinsic reliability of honoring the returns, and the other, where the manufacturer is

better informed about her product demand potential.

We now describe the product demand. The product demand is given by di = αi − βpi, where

αi is the baseline demand, β > 0 is the price sensitivity, and pi ∈ [0, αi/β] is the retail price. The

baseline demand αi is stochastic and can be high (αh) with probability λ ∈ (0,1), or low (αl with

αl < αh) with complimentary probability λc := 1− λ. A product with higher λ is more likely to

have higher demand. We, therefore, refer to λ as the demand potential. For notational convenience,

we introduce ∆α := αh−αl.

We capture the manufacturer’s intrinsic reliability of honoring the buyback commitment as

follows. There is an exogenous probability θ ∈ [0,1] that the manufacturer repurchases the retailer’s

unsold inventory, if any. We refer to θ as the manufacturer’s returns risk. In particular, θ = 1

corresponds to a manufacturer who always honors the repurchase clause (as is considered in prior

work), whereas θ= 0 corresponds to a manufacturer who never honors the contract, i.e., the returns

clause is irrelevant. The situation in practice is likely to be in between these two extremes.

As mentioned before, we focus on two distinct information scenarios that we describe below:

Asymmetric Information About Returns Risk. In this scenario, the retailer is only uncer-

tain about the manufacturer’s returns risk (θ), and the demand potential (λ) is common knowledge.

The manufacturer is either of a less risky type (with higher probability θ= θ̄ of accepting returns)

or of a riskier type (with lower probability θ= θ < θ̄ of accepting returns); we denote ∆θ := θ− θ.

The manufacturer knows her returns risk, while the retailer does not. The retailer only knows the

probability that the manufacturer is less risky, denoted as µ ∈ (0,1). We analyze this scenario in

Section 4.

Asymmetric Information About Demand Potential. In this scenario, the retailer is only

uninformed about the manufacturer’s demand potential (λ), and the returns risk (θ) is common

knowledge. The manufacturer’s demand potential is either high with λ= λ̄ or low with λ= λ< λ̄;

5 The qualitative nature of our results is not affected when the marginal production cost becomes positive (see details
in Appendix E).
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we denote ∆λ := λ−λ. The manufacturer knows her demand potential, while the retailer does not.

The retailer only knows the probability that the demand potential is high, denoted as γ ∈ (0,1).

We analyze this scenario in Section 5.

We extend our analysis to the combination of both types of private information in Section 6.

Following the buyback contracting literature (e.g., Padmanabhan and Png 1997, Gurnani et al.

2010, Tran et al. 2018), the sequence of events in both scenarios is as follows (see Figure 1). Prior

to the selling season, the baseline demand is uncertain to both the manufacturer and the retailer.

The manufacturer offers the retailer a buyback contract (w,r). Based on the contract, the retailer

updates his belief about the manufacturer’s type, and then decides the order quantity, denoted as

s≥ 0. During the selling season, the baseline demand αi (i∈ {h, l}) realizes; accordingly, the retailer

sets the retail price pi and sells min{di, s}. At the end of the selling season, the retailer returns

any unsold inventory to the manufacturer at the returns price r, provided that the manufacturer

honors the buyback commitment.6 Otherwise, the retailer retains the unsold inventory, which is

assumed to have no salvage value.

time

Manufacturer
offers buyback
contract (w,r)

Retailer updates
belief about θ

or λ and decides
the ordering
quantity s

Baseline demand
realizes as αi
and retailer

sets retail price
pi accordingly

Retailer returns
unsold inventory,
if any, which is
accepted with
probability θ

Figure 1 Sequence of events.

In both information scenarios, the manufacturer’s buyback contract terms offered at the start

of the game can “signal” her private information. We use Perfect Bayesian Equilibrium (PBE)

as our solution concept to analyze the strategic interaction in the channel. Both firms are profit-

maximizing and risk neutral. We note that the model analyzed by Gurnani et al. (2010) essentially

corresponds to the symmetric information benchmark in our setup, which will be restated in Lemma

2 of Section 4.1 and Lemma 3 of Section 5.1.7 Before proceeding, it will be useful to consider the

retailer’s ordering strategy in response to the manufacturer’s buyback contract, which is common

to both scenarios.

6 In practice, buyback contracts typically allow the retailer to make returns only after sufficient time has passed in
the selling season, for example, to ensure that that the retailer has made sufficient efforts to sell the product before
attempting to return unsold units. Consequently, the retailer does not know whether the manufacturer will accept
returns till the end of the selling season. The sequence of events in our model captures this situation parsimoniously.
We thank an anonymous reviewer for this suggestion.

7 The results in Lemma 2 can be obtained by replacing the returns price in their results with the expected returns
price θr. Similarly, the results in Lemma 3 can be obtained by applying their results to each demand type.
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3.1. Retailer’s Ordering Strategy

Upon being offered a buyback contract (w,r), the retailer updates his belief that the manufacturer

is less risky with probability µ̂ := µ̂(w,r) = P
[
θ= θ̄

∣∣w,r], and has a high demand potential with

probability γ̂ := γ̂(w,r) = P
[
λ= λ̄

∣∣w,r]. Therefore, the manufacturer’s returns risk and likelihood

of high baseline demand (αh) perceived by the retailer are θ̂ := θ̂(w,r) =: µ̂θ̄+ (1− µ̂)θ ∈
[
θ, θ̄
]

and

λ̂ = λ̂(w,r) := γ̂λ̄+ (1− γ̂)λ ∈
[
λ, λ̄
]
, respectively. Based on his inference, the retailer makes the

ordering decision, which is documented in the following lemma. For the rest of the paper, we adopt

the convention that x+ := max{x,0} for any real number x.

Note that, since θ̂ is the probability of return perceived by the retailer, θ̂r is essentially his

perceived expected unit returns price. Thus, w − θ̂r is the retailer’s perceived cost of ordering

an additional unit of unsold inventory. Therefore, we find that if w − θ̂r < 0, then the retailer

would order infinite amount of inventory and result in negative profit for the manufacturer, who

thus would never offer such contracts. Consequently, it suffices only to consider contracts with

w− θ̂r≥ 0. Following the analysis as in Gurnani et al. (2010), we characterize below the retailer’s

ordering strategy in this case.8

Lemma 1. If w− θ̂r≥ 0, the retailer’s optimal order quantity is given by

sR
(
w,r, θ̂, λ̂

)
=

1

2

(
λ̂αh + λ̂cαl−βw

)
+
λ̂c

2

[
∆α− (β/λ̂)(w− θ̂r)

]+

. (3.1)

No unsold inventory is left at the retailer if the baseline demand is high (αh), whereas inventory

of an amount 1
2

[
∆α− (β/λ̂)

(
w− θ̂r

)]+

is unsold if the baseline demand is low (αl).

The retailer’s order quantity in (3.1) can be thought to consist of two parts: a “regular stock”

1
2
(λ̂αh + λ̂cαl − βw) that is ordered based on the average baseline demand λ̂αh + λ̂cαl; and a

“safety stock” λ̂c

2

[
∆α− (β/λ̂)(w− θ̂r)

]+

that is carried in anticipation of high baseline demand

realization.9 Note that in the absence of stochastic demand (e.g., λ̂∈ {0,1} or ∆α= 0), the retailer

will not hold safety stock. The retailer orders positive safety stock if and only if his net expected

unit cost of unsold inventory is not too high; i.e., w− θ̂r≤ λ̂∆α/β. If the baseline demand turns out

to be high, then both the regular and safety stocks will be cleared and the retailer is left without any

unsold inventory. In contrast, if the baseline demand turns out to be low, which the retailer believes

to occur with probability λ̂c, then unsold inventory of an amount 1
2

[
∆α− (β/λ̂)

(
w− θ̂r

)]+

will

result. As such, the safety stock is proportional to the unsold inventory and can be regarded as the

8 The results in Lemma 1 differ from the analysis in Gurnani et al. (2010) by explicitly incorporating the retailer’s
beliefs about the manufacturer’s type.

9 This notion of regular and safety stocks is commonly used in the inventory management literature (e.g., Zipkin
2000).
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“expected” unsold inventory. As we will see later, the retailer’s regular stock and safety stock are

instrumental for understanding the informational role of the buyback contract. We also note that

the retailer’s order quantity sR
(
w,r, θ̂, λ̂

)
marks the volume of trade in the distribution channel,

and hence can serve as a measurement of the trade efficiency when comparing different signals, in

addition to the profit measurement.

4. Asymmetric Information About Returns Risk

In this section, we study the design of the buyback contract under asymmetric information about

the manufacturer’s returns risk, i.e., when the retailer is uninformed about the manufacturer’s

likelihood of honoring the returns commitment θ ∈
{
θ̄, θ
}

, but is informed about the demand

potential λ of the manufacturer’s product.

According to Lemma 1, the retailer orders sR
(
w,r, θ̂, λ

)
upfront, and returns unsold inventory

of amount 1
2

[
∆α− (β/λ)

(
w− θ̂r

)]+

only if baseline demand is low, which occurs with probability

λc. Therefore, given the retailer’s belief θ̂ ∈
[
θ, θ̄
]

about the manufacturer’s risk type, the expected

profit of a manufacturer of type θ is

Π
(
w,r

∣∣∣ θ̂, θ) :=wsR
(
w,r, θ̂, λ

)
− 1

2
λcθr

[
∆α− (β/λ)

(
w− θ̂r

)]+

, (4.1)

where α := λαh +λcαl denotes the mean baseline demand.

As a benchmark, we first establish the manufacturer’s optimal buyback contract and the resulting

outcomes under symmetric information, i.e., when the manufacturer’s returns risk is known to the

retailer. We next show how the less risky manufacturer can optimally leverage the buyback contract

to credibly signal her lower returns risk when the retailer is uninformed about the manufacturer’s

returns risk. Finally, we elucidate the signaling mechanism further by comparing the equilibrium

outcomes with those in the cases where either the wholesale or returns price alone is used in

isolation to signal the manufacturer’s returns risk.

4.1. Symmetric Information Benchmark

Under symmetric information, the manufacturer’s returns risk θ is known to the retailer; hence,

θ̂= θ. Thus, the manufacturer of type θ solves the following profit maximization problem:

π◦ (θ) := max
w≥θr≥0

Π(w,r | θ, θ) , (4.2)

whose solution is denoted as (w◦(θ), r◦(θ)). The following lemma characterizes the symmetric infor-

mation outcomes.

Lemma 2. In the symmetric information benchmark, the manufacturer with returns risk θ offers

a wholesale price w◦(θ) ≡ w◦ := α/(2β), independent of θ, and a returns price r◦(θ) = αl/(2βθ),

earning an expected profit of π◦ =
[
λcλ (∆α)

2
+α2

]
/(8β). The retailer orders s◦ := αh/4, and is

left with unsold inventory q◦ := ∆α/4 only if the baseline demand is low.
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We observe from Lemma 2 that when the manufacturer’s returns risk is known to the retailer, the

less risky manufacturer offers the same wholesale price (w◦) as the riskier manufacturer does, and

a lower returns price than the riskier manufacturer does, i.e., r◦ := r◦(θ)< r◦ := r◦(θ). Essentially,

since the retailer is risk neutral, his ordering and returns decisions depend on the manufacturer’s

risk type θ only through the expected returns price θr. Therefore, it suffices for the manufacturer,

who is also risk neutral, to optimize her contract effectively in terms of the wholesale price w and

the expected returns price θr. Consequently, both manufacturer types offer the same wholesale

price w◦ and expected returns price θr◦(θ) in the optimum (which necessitates a lower returns

price for the less risky manufacturer r◦ = r◦(θ)< r◦ = r◦(θ) because θ̄ > θ), resulting in the same

retailer’s order quantity s◦, unsold inventory q◦ and the same manufacturer’s expected profit π◦

for both manufacturer types.

4.2. Design of Buyback Contract to Signal Returns Risk

We now turn to the case where the manufacturer is privately informed about her returns risk. In

this case, the manufacturer’s contract terms (i.e., the wholesale and returns prices) can convey

information about her risk type and subsequently the retailer can update his belief (θ̂) about the

manufacturer’s type before making ordering and returns decisions.

We first note that if the two manufacturer types offered their respective symmetric information

contracts, it is the riskier manufacturer who has the incentive to mimic the less risky manufac-

turer. Under the symmetric information contracts, the less risky and riskier manufacturers offer

(w◦, r◦) and (w◦, r◦), respectively, with r◦ < r◦. Consequently, the retailer would believe that the

manufacturer is less risky (resp. riskier) if the returns price is lower (resp. higher). However, the

risker manufacturer would then have an incentive to mimic the less risky manufacturer’s lower

returns price r◦, because doing so will induce the retailer to order the same quantity (s◦) and leave

the same unsold inventory (q◦) as under her own symmetric information contract but with a lower

expected returns price θr◦ < θr◦. By the same argument, the less risky manufacturer would have

no incentive to mimic the riskier manufacturer’s higher returns price r◦.

Therefore, it is the less risky manufacturer who has to bear the signaling burden of distinguishing

herself from the riskier type. To understand how the buyback contract should be structured to

signal lower returns risk, we solve for the most efficient separating equilibrium (e.g., Lariviere

and Padmanabhan 1997, Kalra et al. 2003, Guda and Subramanian 2019), namely the separating

equilibrium that maximizes the less risky manufacturer’s profit. We also show in Lemma B.2 in

Appendix B that the most efficient separating equilibrium is the unique PBE that survives Cho and

Kreps’s (1987) intuitive criterion. In this equilibrium, the riskier manufacturer offers her symmetric

information contract (w◦, r◦), while the less risky manufacturer’s contract, denoted as (w?, r?),
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deviates from that under symmetric information. The retailer updates his belief to θ̂= θ̄ upon being

offered the contract (w?, r?) and to θ̂= θ otherwise. To determine her most profitable separation,

the less risky manufacturer solves the following problem:

π? := max
w≥θr≥0

Π
(
w,r

∣∣ θ, θ)
subject to Π

(
w,r

∣∣ θ, θ)≤ π◦ and Π
(
w,r

∣∣ θ, θ)≥Π
(
w◦, r◦

∣∣ θ, θ) . (4.3)

The two constraints in (4.3) ensure that mimicry is not profitable for the riskier and the less

risky manufacturer, respectively. (Recall that π◦, given by Lemma 2, is the riskier’s manufacturer’s

profit of offering the symmetric information contract.) As is common in signaling games, only

the first constraint (i.e., the non-mimicry condition for the riskier type) will be binding at the

optimum. To establish the existence of such a separating equilibrium, we also need to show that

the less risky manufacturer does not have an incentive to deviate to any other off-equilibrium

buyback contract (following which the retailer updates his belief to θ̂= θ). The following proposition

establishes that the most efficient separating equilibrium always exists, and characterizes the less

risky manufacturer’s buyback contract (w?, r?) and retailer’s quantity decisions in this equilibrium.

Proposition 1. The most efficient separating equilibrium of the returns risk signaling game

exists. In this equilibrium,

i) the riskier manufacturer offers her symmetric information contract (w◦, r◦);

ii) the less risky manufacturer offers contract (w?, r?) with both wholesale and returns prices

lower than their respective symmetric information counterparts, i.e., w? <w◦ and r? < r◦ < r◦.

iii) Under contract (w?, r?), the retailer’s order quantity s? and unsold inventory q̄? in case of

low baseline demand are both lower than their symmetric information counterparts, respectively,

i.e., s? < s◦ and q̄? < q◦; no unsold inventory results from high baseline demand realization.

Proposition 1 shows that the optimal buyback contract to credibly signal low returns risk involves

distorting both the wholesale and returns prices downward relative to those in the symmetric infor-

mation contract. As can be seen from (4.1), given the retailer’s belief θ̂, the manufacturer’s expected

profit from selling to the retailer depends on her actual risk type θ only through the second term,

which is her expected returns cost θλc · rc, where rc := r · 1
2

[
∆α− (β/λ)

(
w− θ̂r

)]+

is the returns

cost (i.e., the cost of repurchasing the retailer’s unsold inventory 1
2

[
∆α− (β/λ)

(
w− θ̂r

)]+

) and

θλc is the probability that the manufacturer incurs this cost (i.e., returns occur and are honored).

Thus, because θ < θ̄, lowering the returns cost generates lower expected cost savings for the risker

manufacturer than for the less risky manufacturer. Consequently, to deter the riskier manufac-

turer’s mimicry, the less risky manufacturer offers a buyback contract that distorts the returns cost

downward from its symmetric information level. Proposition 1 shows that this distortion in returns
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cost is achieved most efficiently by distorting both the wholesale and returns prices downward.

Determining the exact magnitude of these distortions requires solving a two-dimensional optimiza-

tion problem, whose first-order conditions reduce to a system of bivariate quadratic equations that

do not admit closed form solution in general. Nonetheless, Proposition 1 completely characterizes

the qualitative nature of the equilibrium distortions.

To understand further how the most efficient separation distorts the contract terms, it is useful

to express the less risky manufacturer’s problem (4.3) in terms of the retailer’s induced quantity

decision, i.e., his regular and safety stocks.10 According to (3.1), a less risky manufacturer’s contract

(w,r) induces the retailer to order:

regular stock sr(w) :=
1

2
(α−βw) , and (4.4)

safety stock s̄s(w,r) :=
λc

2

[
∆α− (β/λ)

(
w− θ̄r

)]
. (4.5)

We also note that the symmetric information regular stock and safety stock are given by

s◦r := sr(w
◦) =

α

4
and s◦s := s̄s(w

◦, r◦) =
λc∆α

4
, respectively.

Now, using (4.1), (4.4) and (4.5), we can express the less risky manufacturer’s profit in terms of

the deviations in the retailer’s quantity decisions from their symmetric information levels as:

Π
(
w,r

∣∣ θ, θ)=π◦− 2

βλc

{
λc [s◦r − sr(w)]

2
+λ [s◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

, (4.6)

where π◦ is the symmetric information profit level and the second term is essentially the less risky

manufacturer’s signaling cost, because it captures the profit reduction from π◦.

Similarly, the riskier manufacturer’s gain from mimicry (i.e., the difference between the two sides

of the first constraint in (4.3)) can be rewritten as

Π
(
w,r

∣∣ θ, θ)−π◦ =
{

Π
(
w,r

∣∣ θ, θ)−Π
(
w,r

∣∣ θ, θ)}+
{

Π
(
w,r

∣∣ θ, θ)−π◦}
=λc∆θ · 2

β(λc)2θ̄

[
λcαl

2
−λcsr(w) +λs̄s(w,r)

]
s̄s(w,r)︸ ︷︷ ︸

returns cost

− 2

βλc

{
λc [s◦r − sr(w)]

2
+λ [s◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

, (4.7)

where we express the returns cost in terms of the retailer’s quantity decisions in (4.4) and (4.5).

10 We thank the associate editor for suggesting this approach.
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From (4.7), we note that for a given level of the less risky manufacturer’s signaling cost, the

riskier manufacturer’s gain from mimicry can be minimized by minimizing the returns cost. This

goal can be achieved by increasing the regular stock sr(w) and decreasing the safety stock s̄s(w,r).

We note from (4.6) that the combinations of regular stock and safety stock that lead to a given

level of the less risky manufacturer’s signaling cost form an ellipse with the symmetric information

stock levels (s◦r, s
◦
s) as the center, as illustrated in Figure 2. Consequently, the regular stock needs

to be distorted upward relative to the symmetric information level, i.e., sr(w
?) > s◦r, while the

safety stock needs to be distorted downward, i.e., s̄s(w
?, r?)< s◦s; see Figure 2.

0
0 sr

s̄s

Feasible Region

s◦r

•
(s◦r, s

◦
s)

s◦s

sr(w
?)

F
(sr (w?) , s̄s (w?, r?))

s̄s (w?, r?)

riskier type’s gain from mimicry (4.7)= 0 Optimal level of signaling cost

Iso-levels of signaling costDirections in which signaling cost increases

Figure 2 The retailer’s regular and safety stocks under the less risky manufacturer’s most efficient separating

contract (w?, r̄?) (αh = 10, αl = 4, λ= 0.5, β = 1, θ̄= 1 and θ= 0.3).

These distortions in quantities in turn uniquely determine how the wholesale and return prices are

distorted. As can be seen from (4.4) and (4.5), the regular stock sr(w) is decreasing in the wholesale

price and independent of the returns price, while the safety stock s̄s(w,r) is also decreasing in

the wholesale price but increasing in the returns price. Hence, to increase the regular stock, the

wholesale price needs to be distorted downward; and to lower the safety stock, the returns price

needs to be distorted downward (given that the wholesale price has been distorted downward).

Note that the decrease in the wholesale price counteracts the desired distortion in the safety stock.

Thus, changing the wholesale price creates opposing effects on the regular and safety stocks relative

to how they need to be distorted for efficient separation, whereas the returns price only affects the
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safety stock and hence does not create such opposing effects. In fact, the decrease in safety stock

dominates the increase in regular stock, resulting in a net downward distortion of the retailer’s

order quantity (i.e., sr(w
?) + s̄s(w

?, r?) = s? < s◦). Essentially, the returns price is used to lower

the safety stock, while the wholesale price is used to mitigate the resulting downward distortion in

the retailer’s overall order quantity (by increasing the regular stock). These observations suggest

that the returns price is a relatively more efficient signaling instrument than the wholesale price,

a point we will elaborate in the next subsection.

4.3. Importance of Returns Price to Signal Returns Risk

Prior literature has largely focused on the informational role of the wholesale price. Our analysis

shows how the buyback arrangement, and in particular the returns price, can play an important

role in signaling manufacturer’s returns risk. In fact, as discussed at the end of Section 4.2, the

returns price may even be the relatively more efficient signaling instrument than the wholesale

price. To isolate and further elucidate the individual role of the wholesale price and the returns

price, we now examine two (partial) signaling benchmarks, in which either only the wholesale price

or only the returns price can be distorted from their respective symmetric information levels to

signal the manufacturer’s returns risk. We determine the efficient separating equilibrium in each

of the two benchmarks and compare them with the most efficient separation.11

Signaling returns risk only through wholesale price. In this benchmark, we fix the less

risky manufacturer’s returns price at her symmetric information level r̄◦ and only allow her to set

her wholesale price to signal her lower returns risk in the most profitable manner. Thus, the less

risky manufacturer’s most efficient wholesale price, denoted as w‡, is determined as the solution to

π‡ := max
w≥θr̄◦

Π
(
w, r̄◦

∣∣ θ, θ)
subject to Π

(
w, r̄◦

∣∣ θ, θ)≤ π◦ and Π
(
w, r̄◦

∣∣ θ, θ)≥Π
(
w◦, r◦

∣∣ θ, θ) . (4.8)

The retailer’s order quantity under contract
(
w‡, r̄◦

)
is denoted as s̄‡. Proposition B.1 in Appendix

B characterizes the equilibrium outcome in this case.

Signaling returns risk only through returns price. In this benchmark, we fix the less risky

manufacturer’s wholesale price at the symmetric information level w◦, which is incidentally the

same as that offered by the riskier manufacturer, and only allow her to set her returns price to

signal her lower returns risk in the most profitable manner. Thus, the less risky manufacturer’s

most efficient returns price, denoted as r̄†, is determined as the solution to

π† := max
w◦≥θ̄r≥0

Π
(
w◦, r

∣∣ θ, θ)
subject to Π

(
w◦, r

∣∣ θ, θ)≤ π◦ and Π
(
w◦, r

∣∣ θ, θ)≥Π
(
w◦, r◦

∣∣ θ, θ) . (4.9)

11 We note that any separating equilibrium within these two benchmarks is also a separating equilibrium of the
original signaling game supported by suitable off-equilibrium beliefs. Thus they are well-defined equilibria of the
original game, albeit (by construction) not the most efficient ones.
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The retailer’s order quantity under contract (w◦, r̄†) is denoted as s̄†. Proposition B.2 in Appendix

B characterizes the equilibrium outcome in this case.

Comparison of equilibria outcomes. The following proposition summarizes our findings.

Proposition 2. For the returns risk signaling game, the equilibria outcomes under symmetric

information, the most efficient separation, and the partial signaling benchmarks are ranked as

follows:

w? <w◦ <w‡, r? < r† < r◦ < r◦, s̄‡ < s̄† < s? < s◦, and π‡ <π† <π? <π◦. (4.10)

Proposition 2 demonstrates the returns price as a more efficient signal of the returns risk than

the wholesale price in three dimensions. First, signaling through the returns price alone generates

higher profit (and hence closer to the profit under the most efficient separation) for the less risky

manufacturer than signaling through the wholesale price alone does, i.e., π‡ < π† < π?. Second,

signaling through the returns price alone also yields smaller distortion to the retailer’s order

quantity (and hence closer to the order quantity under the most efficient separation), i.e., s̄‡ < s̄† <

s?. Finally, signaling through the returns price alone is always achievable (shown by Proposition

B.2), whereas signaling through the wholesale price alone is not always feasible. As identified by

Proposition B.1, the parameter range for which separation through the wholesale price alone is

feasible corresponds to situations when the information asymmetry about the returns risk is not

too severe (i.e., ∆θ/θ̄≤ (1 +
√
λc)∆α/αl).

Furthermore, Proposition 2 shows that ignoring the informational role of the returns compo-

nent in the buyback contract reverses the direction of distortion in the wholesale price, leading

to qualitatively different insights regarding the design of buyback contracts when signaling only

through the wholesale price. More specifically, when the wholesale price is used alone, it is distorted

upward (i.e., w‡ > w◦), which is opposite to what we found when it is used in conjunction with

the returns price in the most efficient separation. We note that in the most efficient separation as

well as the partial signaling benchmarks, the distortions of equilibrium prices are driven by the

less risky manufacturer’s desire to reduce her returns cost. When signaling through the wholesale

price alone (and fixing the returns price), the less risky manufacturer can only distort the safety

stock (and hence the returns quantity) downward, which in turn necessitates an upward distortion

of the wholesale price. When signaling through the returns price alone (and fixing the wholesale

price), the less risky manufacturer distorts the returns price downward (i.e., r? < r† < r◦) as in the

most efficient separation (albeit with a smaller extent), because this reduces her returns cost by

lowering both the returns price itself as well as the safety stock (and hence the returns quantity).
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(a) Manufacturer’s expected profit.
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(b) Retailer’s order quantity.

Figure 3 Equilibria performances for less risky manufacturer (αh = 10, αl = 3, λ= 0.5, β = 1, and θ̄= 1).

The superior efficiency of the returns price signal can also be illustrated by a numerical example

depicted in Figure 3. As seen from Figure 3(a), the less risky manufacturer can in fact signal

only using the returns price and appropriate most of her profit that she would earn in the most

efficient separating equilibrium using both price intruments, whereas the profit from using only the

wholesale price signal is considerably lower. From the order quantity perspective (see Figure 3(b)),

the retailer’s order quantity induced by the returns price signal, rather than by the wholesale price

signal, is also closer to that of the most efficient equilibrium. In both figures, the gaps between each

pair of equilibria profits or quantities shrink, as the severity of information asymmetry diminishes

(i.e., as θ increases to θ̄= 1).

Our results, taken together, shed light on the optimal design of the buyback contract in practice

when the retailer is uninformed about the manufacturer’s returns risk. Buyback arrangements have

been shown to be an effective means for a manufacturer to encourage a retailer to carry sufficient

inventory of her product. However, a challenge for a small or less-established manufacturer is

that a retailer may not adequately trust the manufacturer’s buyback commitment. By explicitly

incorporating the manufacturer’s returns risk in the analysis of buyback arrangements, we are able

to address this issue. Indeed, we find that if the retailer is unsure of the manufacturer’s returns risk,

then the riskier manufacturer has an incentive to masquerade as the less risky manufacturer. We

further find that to credibly communicate her lower returns risk, the less risky manufacturer should

offer a more competitive wholesale price and a lower returns price. Doing so gains the retailer’s

trust at the expense of some trade-efficiency (by distorting the order quantity downwards). The

retailer, on the other hand, should exercise caution against being lured by a manufacturer who
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offers an attractive returns price to offset a high upfront wholesale price. Adding to the price

signaling literature that has mostly recognized high prices as a signal of superior quality or demand

(see Section 2), our results show that lower wholesale and returns prices can signal lower returns

risk. In particular, we find the returns price to be a more efficient signal than the wholesale price.

5. Asymmetric Information About Demand Potential

In this section, we study the design of the buyback contract under asymmetric information about

the manufacturer’s demand potential, i.e., when the retailer is uninformed about the likelihood of

the manufacturer’s high baseline demand λ∈ {λ̄, λ} with ∆λ := λ−λ. For expositional simplicity,

we refer to λ̄ as high-demand type and λ as low-demand type. Their expected baseline demands

are denoted as ᾱ := λ̄αh + λ̄cαl and α := λαh + λcαl, respectively. To focus on the asymmetric

information about demand potential, we assume that the manufacturer is free of returns risk (i.e.,

θ≡ 1).12

Similar to (4.1), we can formulate the manufacturer’s profit function according to the retailer’s

ordering strategy in Lemma 1. Given the retailer’s belief λ̂ ∈
[
λ, λ̄
]

about the manufacturer’s

demand potential, the manufacturer of type λ∈
{
λ̄, λ
}

, who offers a buyback contract (w,r), earns

an expected profit of

Π
(
w,r

∣∣∣ λ̂, λ) :=wsR
(
w,r,1, λ̂

)
− 1

2
λcr
[
∆α− (β/λ̂) (w− r)

]+

. (5.1)

Similar to Section 4, we first establish the symmetric information benchmark, in which the

manufacturer’s demand potential is known to the retailer. We then characterize the equilibrium

contract and outcomes when the retailer is uninformed about the manufacturer’s demand potential.

Finally, we further elucidate the signaling mechanism by comparing the equilibrium outcomes with

those in the cases where each individual price alone, wholesale or returns, is used to signal the

manufacturer’s demand potential.

5.1. Symmetric Information Benchmark

Under symmetric information, the manufacturer’s demand potential λ is known to the retailer

(i.e., λ̂= λ). The following lemma characterizes the manufacturer’s optimal contract offer in this

benchmark case.

Lemma 3. In the symmetric information benchmark, the low-demand and high-demand manu-

facturer types offer the same returns price r◦ = αl/(2β), and offer wholesale prices

w◦ :=
α

2β
<w◦ :=

ᾱ

2β
, respectively, (5.2)

12 This is without loss of generality because, due to the risk neutrality of the manufacturer and the retailer, θ simply
appears as a scaling factor for the returns price r in all subsequent analysis. We further note that large and well-
established manufacturers who typically have the resources and means to acquire proprietary demand information,
also tend to have enough financial assets or reputation at stake that they will honor the buyback returns for sure.



20 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

earning expected profits of

π◦ :=
λcλ(∆α)2 +α2

8β
< π◦ :=

λ̄cλ̄(∆α)2 + ᾱ2

8β
, respectively. (5.3)

In response, the retailer orders s◦ := αh/4, his unsold inventory in case of low baseline demand is

q◦ := ∆α/4, and no unsold inventory results from high baseline demand realization.

When the manufacturer’s demand potential is known to the retailer, the manufacturer essentially

optimizes the prices w and w − r charged to the retailer for the regular stock and safety stock,

respectively. We find that high-demand manufacturer charges a higher wholesale price than the

low-demand manufacturer does (i.e., w◦ > w◦), while both types of manufacturer offer the same

returns price r◦. The retailer’s order quantity s◦ and the unsold inventory in the case of low

baseline demand q◦ are the same for both manufacturer types. Consequently, the high-demand

manufacturer generates higher revenue because of the higher wholesale price (i.e., w◦s◦ > w◦s◦)

but incurs lower expected returns cost (i.e., λ̄cr◦q◦ < λcr◦q◦), thus earning higher expected profit

than the low-demand manufacturer (i.e., π◦ >π◦).

5.2. Design of Buyback Contract to Signal Demand Potential

We next turn to the focal case where the manufacturer’s demand potential is her private information

and hence her buyback contract may signal this information. We find that it is the high-demand

manufacturer that must bear the signaling burden in this case; in particular, under the symmetric

information contracts, the higher wholesale price enjoyed by the high-demand manufacturer creates

an incentive for the low-demand manufacturer to mimic, as the induced order quantity and size

of unsold inventory from the retailer would then remain unchanged (see Lemma 3). We again

solve for the most efficient separating equilibrium, in which the low-demand manufacturer offers

her symmetric information contract (w◦, r◦) and the high-demand manufacturer deviates from her

symmetric information contract (w◦, r◦). We also show in Lemma C.1 in Appendix C that the

most efficient separating equilibrium is the unique PBE that survives the intuitive criterion. Let

(w??, r??) denote the high-demand manufacturer’s contract. Then the retailer updates his belief to

λ̂= λ̄ upon being offered the contract (w??, r??) and to λ̂= λ otherwise. Therefore, the high-demand

manufacturer’s contract (w??, r??) is determined as the solution to

π?? := max
w≥r≥0

Π
(
w,r

∣∣ λ,λ)
subject to Π

(
w,r

∣∣ λ,λ)≤ π◦ and Π
(
w,r

∣∣ λ,λ)≥Π
(
w◦, r◦

∣∣ λ,λ) , (5.4)

where the non-mimicry constraints act to deter either demand type of manufacturer from pre-

tending to be of the other type. We establish the feasibility of the most efficient separation and

characterize it in the next proposition.
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Proposition 3. The most efficient separating equilibrium of the demand potential signaling

game exists. In this equilibrium,

i) the low-demand manufacturer offers her symmetric information contract (w◦, r◦);

ii) the high-demand manufacturer offers contract (w??, r??) with both wholesale and returns

prices higher than their respective symmetric information counterparts, i.e., w?? > w◦ > w◦ and

r?? > r◦.

iii) Under contract (w??, r??), the retailer’s order quantity s?? and unsold inventory q̄?? in case

of low baseline demand are both higher than their symmetric information counterparts, i.e., s̄?? > s◦

and q̄?? > q◦; no unsold inventory results from high baseline demand realization.

In contrast to the returns risk case (see Proposition 1), Proposition 3 shows that the optimal

buyback contract to credibly signal high demand potential distorts both the wholesale and returns

prices upward above their symmetric information levels. Similar to the way how the returns risk

type enters the manufacturer’s profit function, the manufacturer’s demand type λ affects her profit

only through her expected returns cost λc · rc, where λc is the likelihood of low baseline demand

realization (which results in the returns) and rc := r · 1
2

[
∆α− (β/λ̂) (w− r)

]+

is again her returns

cost (i.e., the cost of repurchasing the retailer’s unsold inventory given that it occurs); see (5.1).

However, different from the returns risk case, because λ̄c < λc, lowering the returns cost now

generates lower benefit for the high-demand manufacturer than for the low-demand manufacturer.

Consequently, a contract that induces a higher returns cost is now less attractive for the low-

demand manufacturer to mimic, calling for the high-demand manufacturer to distort her returns

cost upward from her symmetric information level. Proposition 3 finds that the most efficient way

of doing so is to distort both the wholesale and returns prices upward.

Similar to the returns risk case, we can uncover the mechanism behind the above-mentioned

distortions by expressing the high-demand manufacturer’s problem (5.4) via the retailer’s quantity

decision. According to (3.1), the retailer’s order under the high-demand manufacturer’s contract

(w,r) consists of

regular stock s̄r(w) :=
1

2
(ᾱ−βw) , and

safety stock s̄s(w,r) :=
λ̄c

2

[
∆α− (β/λ̄) (w− r)

]
,

with the symmetric information regular stock and safety stock given by

s̄◦r := s̄r(w
◦) =

ᾱ

4
and s̄◦s := s̄s(w

◦, r◦) =
λ̄c∆α

4
, respectively.
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According to (5.1), the high-demand manufacturer’s profit from offering contract (w,r) can be

expressed as

Π
(
w,r

∣∣ λ,λ)=π◦− 2

βλ̄c

{
λ̄c [s̄◦r − s̄r(w)]

2
+ λ̄ [s̄◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

, (5.5)

where the second term above again is the high-demand manufacturer’s signaling cost.

Now, the low-demand manufacturer’s gain from mimicry (i.e., the difference between the two

sides of the first constraint in (5.4)) can be similarly expressed as

Π
(
w,r

∣∣ λ,λ)−π◦ =π◦−π◦− 2

βλ̄c

{
λ̄c [s̄◦r − s̄r(w)]

2
+ λ̄ [s̄◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

−∆λ · 2

β(λ̄c)2

[
λ̄cαl

2
− λ̄cs̄r(w) + λ̄s̄s(w,r)

]
s̄s(w,r)︸ ︷︷ ︸

returns cost under contract (w,r)

. (5.6)

Now, for a given level of the high-demand manufacturer’s signaling cost, reducing the low-demand

manufacturer’s gain from mimicry (so as to lower the signaling cost in turn) calls for raising the

returns cost (i.e., decreasing the last term in (5.6)). Thus, the efficient deterrence of mimicry is

achieved by distorting the regular stock downward (i.e., s̄r(w
??)< s̄◦r) and the safety stock upward

(i.e., s̄s(w
??, r??)> s̄◦s). This is opposite to the returns risk case and consequently results in upward

distortions of both the wholesale and returns prices when signaling the high demand potential.

Nonetheless, akin to the returns risk case, the distortion in the wholesale prices exerts counteracting

forces against the desired directions of distortion in the regular and safety stocks, whereas the

returns price is able to focus on distorting the safety stock without affecting the regular stock.

Again, the wholesale price is used to mitigate the distortion in the retailer’s overall order quantity

inflicted by the returns price. Therefore, the returns price should be a more efficient signal than

the wholesale price, as will be verified in the next subsection.

5.3. Importance of Returns Price to Signal Demand Potential

Parallel to our analysis in the returns risk case, we demonstrate the higher efficiency of the returns

price signal relative to the wholesale price signal by examining the following two partial signaling

benchmarks and comparing their equilibrium outcomes with those in the most efficient separation.

Signaling demand potential only through wholesale price. In this benchmark, we fix the

high-demand manufacturer’s returns price at her symmetric information level r◦ and only allow

her to set her wholesale price to signal her high demand potential in the most profitable manner.
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Thus, the high-demand manufacturer’s most efficient wholesale price, denoted as w], is determined

as the solution to

π] := max
w≥r◦

Π
(
w,r◦

∣∣ λ,λ)
subject to Π

(
w,r◦

∣∣ λ,λ)≤ π◦ and Π
(
w,r◦

∣∣ λ,λ)≥Π
(
w◦, r◦

∣∣ λ,λ) . (5.7)

The retailer’s order quantity under contract
(
w], r◦

)
is denoted as s̄]. Proposition C.1 in Appendix

C characterizes the equilibrium outcome in this case.

Signaling demand potential only through returns price. In this benchmark, we fix the

high-demand manufacturer’s wholesale price at the symmetric information level w◦, and only allow

her to set her returns price to signal her high demand potential in the most profitable manner.

Thus, the high-demand manufacturer’s most efficient returns price, denoted as r[, is determined

as the solution to

π[ := max
w◦≥r≥0

Π
(
w◦, r

∣∣ λ,λ)
subject to Π

(
w◦, r

∣∣ λ,λ)≤ π◦ and Π
(
w◦, r

∣∣ λ,λ)≥Π
(
w◦, r◦

∣∣ λ,λ) . (5.8)

The retailer’s order quantity under contract
(
w◦, r[

)
is denoted as s̄[. Proposition C.2 in Appendix

C characterizes the equilibrium outcome in this case.

Comparison of equilibria outcomes. We now compare outcomes in different equilibria.

Proposition 4. For the demand potential signaling game, the equilibria outcomes under sym-

metric information, the most efficient separation, and the partial signaling benchmarks are ranked

as follows:

w?? >w◦ >w◦ >w], r?? > r[ > r◦, s̄] > s̄[ > s̄?? > s◦, and π] <π[ <π?? <π◦. (5.9)

Proposition 4 demonstrates the returns price as a more efficient signal of the demand potential

than the wholesale price: relative to signaling through the wholesale price alone, signaling through

the returns price alone generates higher profit (and hence closer to the profit under most efficient

separation) and smaller distortion to the retailer’s order quantity (and hence closer to the order

quantity under the most efficient separation), i.e., π] <π[ <π?? and s̄] > s̄[ > s̄??. Furthermore, we

find that the returns price alone can always signal the high demand potential (as shown by Propo-

sition C.2), whereas the wholesale price alone can do so for certain parameter range (specifically,

for ∆λ/λ
[
1 + λ̄/(4λ)

]
> 4αh∆α/α2

l ; see Proposition C.1). Finally, by enabling both the wholesale

and returns price signals, the most efficient separation reverses the direction of distortion in the

wholesale price from when the wholesale price alone is used to signal (i.e., w?? > w◦ > w]) and

enlarges the magnitude of distortion in the returns price when it acts alone (i.e., r?? > r[ > r◦),

albeit with the directions opposite to that in those in the returns risk case. Again, these distortions
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(b) Retailer’s order quantity.

Figure 4 Equilibria performances for high-demand manufacturer (αh = 10, αl = 4, β = 1, λ̄= 0.8).

are driven by the high-demand manufacturer’s desire to distort the retailer’s induced regular and

safety stocks in the directions that lead to a higher overall returns cost as required by mimicry

deterrence.

Now, we illustrate in Figure 4 the superior efficiency of the returns price in conveying the

manufacturer’s demand information through a numerical example. Most notably, the use of returns

price alone allows the manufacturer to capture most of the gains from the most efficient separation

using both price instruments in terms of the manufacturer’s profit (Figure 4(a)) as well as the

retailer’s order quantity (Figure 4(b)). As the information asymmetry diminishes (i.e., λ approaches

to λ̄), the profitability gap and trade inefficiency go down.

Our findings from Proposition 3 can be particularly relevant for large and established manufac-

turers who face the challenge of convincing retailers about the demand potential for their products.

Prior research has examined how a manufacturer can structure the contract terms to credibly

convey this information under deterministic demand (see Section 2). In the presence of stochastic

demand and inventory considerations, however, the manufacturer may leverage a buyback arrange-

ment to convey her demand information. Specifically, a high-demand manufacturer should offer a

more generous returns price and a higher wholesale price than she would if her demand potential

were known to the retailer. The retailer, on the other hand, should not be tempted by a lower

wholesale price, and should instead pay more attention to the returns price. Thus, signaling higher

demand potential requires the manufacturer to design her buyback contract in the direction oppo-

site to that when signaling lower returns risk. Nonetheless, a consistent finding is that the returns

price constitutes a more efficient signal than the wholesale price.
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6. Asymmetric Information About both Returns Risk and Demand
Potential

Our analysis in the previous sections shed light on the optimal design and information role of

buyback contracts in situations where one type of manufacturer’s inventory-related risk, either

her returns risk or her demand risk, is the predominant source of unobservable information for

the retailer. We find that the optimal buyback contracts to signal low returns risk and to sig-

nal high demand potential both involve distorting the manufacturer’s corresponding returns cost,

albeit in opposing directions. A natural question to ask then is how the buyback contract should

be structured to signal the manufacturer’s private information in the case where the less risky

manufacturer also has high demand potential, and the retailer is uninformed about both types of

inventory-related risks.13 For example, this may represent situations where a manufacturer hav-

ing higher demand potential is also likely to be in better financial health, and hence poses lower

returns risk, compared to other manufacturers who struggle with their sales and are thus plagued

by liquidity problems.

To answer this question, we examine the most efficient separating contract when the manufac-

turer can be one of two types: a low-risk high-demand type with probability θ̄ of repurchasing the

retailer’s unsold inventory and probability λ̄ of high baseline demand realization, or a high-risk

low-demand type with probability θ of repurchasing the retailer’s unsold inventory and probability

λ of high baseline demand realization. That is, the manufacturer’s private information consists of

two dimensions that are perfectly correlated. The sequence of events is the same as specified in

Section 3.

We start by examining the symmetric information benchmark, where the retailer is informed

about the manufacturer’s type. In this case, the low-risk high-demand manufacturer offers contract

w◦ =
ᾱ

2β
and r◦ =

αl
2βθ̄

, earning profit π◦ =
λ̄cλ̄(∆α)2 + ᾱ2

8β
, (6.1)

while the high-risk low-demand manufacturer offers contract

w◦ =
α

2β
and r◦ =

αl
2βθ

, earning profit π◦ =
λcλ(∆α)2 +α2

8β
. (6.2)

Under symmetric information, the low-risk high-demand manufacturer enjoys a higher wholesale

price (i.e., w◦ >w◦) and a higher expected profit (i.e., π◦ >π◦) while offering a lower returns price

(i.e., r◦ < r◦) than the high-risk low-demand manufacturer. Consequently, under asymmetric infor-

mation, the high-risk low-demand manufacturer (namely, the bad type) would have an incentive

to mimic the low-risk high-demand manufacturer (namely, the good type). Hence, the good type

needs to distort her buyback contract from that under symmetric information so as to separate

herself from the bad type. We now characterize the most-efficient separating equilibrium.

13 We thank the department editor, the associate editor, and an anonymous reviewer for suggesting this investigation.
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Proposition 5. In the most efficient separating equilibrium of the returns risk and demand

potential signaling game, if it exists, the high-risk low-demand manufacturer (θ,λ) offers her sym-

metric information contract (w◦, r◦), while the equilibrium contract offered by the low-risk high-

demand manufacturer
(
θ̄, λ̄
)
, denoted as (w???, r???), demonstrates the following characteristics:

1. If θλc < θ̄λ̄c, then (w???, r???) either i) satisfies w??? <w◦ and 0≤ r??? < r◦ or ii) induces the

retailer to carry no safety stock (and hence make no returns).

2. If θλc > θ̄λ̄c, then w??? >w◦ and r??? > r◦.

3. If θλc = θ̄λ̄c, then there exist at least one contract such that w??? <w◦ and r??? < r◦ as well

as one such that w??? >w◦ and r??? > r◦.

As before we find that efficient separation requires that the manufacturer distort the returns

cost. For a manufacturer of type (θ,λ), the net probability of incurring the returns cost is given

by θλc, which is the joint probability of a low baseline demand realization (which results in unsold

inventory) and the manufacturer’s acceptance of the retailer’s returns. Proposition 5 shows that

the direction of distortion depends on whether the net probability of incurring the returns cost is

higher or lower for the good type than low type, leading to the following three cases.

• When θλc < θ̄λ̄c, the effect of the returns risk dominates that of the demand potential; hence,

the good type should design her optimal buyback contract to distort the returns cost downward

relative to the symmetric information benchmark, as in the returns risk case. As a result, the safety

stock is distorted downward. If the equilibrium safety stock is positive, then both the wholesale and

returns prices are distorted downward (i.e., w??? < w◦ and r??? < r◦), the same as in the returns

risk case. In particular, this case reduces to the returns risk case if λ= λ̄ (see section 4). However,

it is possible for the equilibrium safety stock to be distorted to zero, in which case the direction of

distortion in the equilibrium prices is not uniquely determined.14

• Instead, when θλc > θ̄λ̄c, the effect of the demand potential dominates that of the returns

risk; hence, the good type should design her optimal buyback contract to distort the returns cost

upward. Subsequently, both the wholesale and returns prices are distorted upward (i.e., w??? >w◦

and r??? > r◦), the same as in the demand potential case. Indeed, this case reduces to the demand

potential case if θ= θ̄= 1 (see section 5).

• Lastly, when θλc = θ̄λ̄c, the effects of the returns risk and the demand potential balance

each other. Then, we find that the direction of distortion in the wholesale and returns prices is

not uniquely determined. In particular, the wholesale and returns prices can both be distorted

downward (i.e., w??? <w◦ and r??? < r◦) as in the returns risk case, or both be distorted upward

(i.e., w??? >w◦ and r??? > r◦) as in the demand potential case.

14 This situation may emerge only for sufficiently large ∆λ (i.e., ∆λ≥ λ̄cmin
{
α2
l , λ̄ (∆α)2}/ [∆α(αl +αh)]) as shown

by Lemma D.5.
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Thus, Proposition 5 generalizes our previous findings and allows us to identify a unified signaling

mechanism across the different settings. This mechanism can be again uncovered by expressing the

bad type’s gain from mimicry in terms of the retailer’s quantity decisions:

bad type’s gain from mimicry =π◦−π◦− 2

βλ̄c

{
λ̄c [s̄◦r − s̄r(w)]

2
+ λ̄ [s̄◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
good type’s signaling cost

−
(
θλc− θ̄λ̄c

)
· 2

βθ̄(λ̄c)2

[
λ̄cαl

2
− λ̄cs̄r(w) + λ̄s̄s(w,r)

]
s̄s(w,r)︸ ︷︷ ︸

returns cost under contract (w,r)

,

where s̄r(w) := 1
2

(ᾱ−βw) and s̄s(w,r) := λ̄c

2

[
∆α− (β/λ̄)

(
w− θ̄r

)]
are the retailer’s regular and

safety stocks, respectively, with s̄◦r and s̄◦s being their symmetric information levels. As before, for

a given level of signaling cost, efficient separation aims to reduce the bad type’s gain from mimicry

by distorting the returns cost in the last term above. The direction of distortion, however, critically

depends on the sign of the difference in the net probability of incurring the returns cost, θλc− θ̄λ̄c,

between the bad and good types, as characterized by Proposition 5.

We find that the most efficient separating equilibrium may not always exist because, under two-

dimensional private information, mimicking the good type entails the benefit of being perceived

to be of both low returns risk and high demand potential, resulting in higher gain from mimicry

for the bad type than that under a single-dimensional case. Establishing the exact condition for

the existence of the most-efficient separating equilibrium is analytically intractable. The following

corollary provides sufficient conditions under which we are able to establish the existence of the

most efficient separating equilibrium analytically.

Corollary 1. The most efficient separating equilibrium of the returns risk and demand poten-

tial signaling game always exists under any one of the following conditions:

1. ∆θ/θ̄≥ 1− λ̄c(
1+
√
λ
)2 or ∆θ/θ̄ >∆λ/λc ≥ λ̄cmin{α2

l , λ̄(∆α)2}
λc∆α(αl+αh)

, which both imply θλc < θ̄λ̄c.

2. ∆θ/θ̄≤min

{
(λcλ̄−λ̄c∆λ)∆α

2λcᾱ
, 1− λ̄c(

1−
√
λ
)2

}
, which implies θλc > θ̄λ̄c.

3. θλc = θ̄λ̄c.

Numerical analysis shows that the separating equilibrium can exist even beyond the above suffi-

cient conditions. In cases where the separating equilibrium does not exist, the manufacturer types

may pool on the buyback contract (i.e., offer the same contract), eliminating the informational role

of the buyback contract.
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7. Conclusion

Retailers often face the challenge of managing their inventory to match supply with uncertain

demand. Past research has extensively examined the use of buyback arrangements by manufacturers

to share inventory risk with their retailers, under the assumption that the buyback commitment

will be honored and that both manufacturers and retailers are equally informed about the product’s

demand potential. In practice, however, not all manufacturers may be able to honor their buyback

commitment, thus making retailers wary of buyback offers. Or, retailers may be less informed about

market conditions than the manufacturers, and thus be unconvinced about a product’s demand

potential, leading to lower order quantities. We seek to shed light on the use and design of buyback

arrangements in such situations.

Overall, our findings highlight the strategic and informational role of buyback contracts, over and

above their oft-studied transactional role in the literature. In the presence of stochastic demand

and inventory considerations, efficient signaling of manufacturer’s returns risk or demand potential

necessitates distorting its returns cost (i.e., the cost of repurchasing the retailer’s unsold inventory)

away from the symmetric-information level. The direction of distortion depends on whether the

separating type has a higher or lower net probability of incurring the returns cost (i.e., probability

that returns occur and is honored by the manufacturer) than the mimicking manufacturer type.

The signaling distortion in returns cost uniquely determines how the retailer’s induced regular stock

and safety stock are distorted and, in turn, how the underlying contractual prices are adjusted. In

fact, changing the wholesale price creates opposing effects on the regular and safety stocks relative

to how they need to be distorted for efficient separation, whereas the returns price only affects the

safety stock without creating such opposing effects. As a result, we find the returns price to be a

relatively more efficient signaling instrument than the wholesale price. In particular, the returns

price reverses the direction of distortion in the wholesale price from what is necessary for the

wholesale price alone to distort the returns cost, and the wholesale price is used to mitigate the

signaling distortion in the retailer’s overall order quantity.

This novel signaling mechanism results in contrasting design of the buyback contracts between

signaling the manufacturer’s returns risk and signaling her demand potential. Efficient signaling of

low returns risk entails downward distortion of both the wholesale and returns prices below their

symmetric-information counterparts, whereas efficient signaling of high demand potential entails

upward distortion of both prices. If the manufacturer needs to signal both low returns risk and

high demand potential, then the direction of the price distortions depends on the manufacturer’s

net probability of incurring the returns cost. When this net probability is higher for the “good”

manufacturer (who is better on both dimensions), then the direction of distortion is the same as

that in the case of signaling low returns risk alone. Instead, when the net probability is higher for
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the “bad” manufacturer (who is worse on both dimensions), then the direction of distortion is the

same as that in the case of signaling high demand potential alone.

Our research speaks to manufacturers who manage their distribution channels plagued with

asymmetric information about inventory-related risks. In a market with small and less-established

manufacturers, a more competitive wholesale price together with a lower returns price can help

the less risky manufacturers to distinguish themselves and assure the downstream retailers of their

reliability to fulfill their returns commitment. For markets dominated by large and well-established

manufacturers (e.g., national brands), returns risk may not be an issue. Yet, manufacturers typically

have the incentive to acquire proprietary information about the downstream demand potential. In

this situation, a higher wholesale price together with a more generous returns price can signal to

the downstream retailers the confidence of manufacturers with high demand potential.

We regard our work as a first attempt to examine the informational role of buyback arrangements

with a number of directions for future exploration. For instance, we assumed no salvage value for

retailer’s unsold inventory. A positive salvage value should not affect our results if it is lower than

the equilibrium returns price. We further expect that our results will continue to hold qualitatively

if the salvage value is not too high. However, if the salvage value is sufficiently high, it lowers

the retailer’s reliance on the manufacturer’s returns price and it becomes more onerous for the

manufacturer to signal through the returns price. We defer the analysis for this case as future

research. Another interesting avenue is to examine the role of manufacturer’s trade credit.15 Trade

credit refers to short-term financing offered by a supplier to a downstream buyer to facilitate

the purchase of supplies without immediate payment. While offering trade credit can potentially

mitigate the retailer’s returns risk, it poses significant costs for the manufacturer (e.g., Woodruff

2009). In particular, small and less-established manufacturers who typically pose returns risk for

the retailer may not be able to offer trade credit. Moreover, trade credit may also be used by

manufacturers to screen buyers with private default risk (e.g., Smith 1987). This context is different

from ours as manufacturers in our setting have private information. It would be interesting for

future research to study the interaction and tradeoff between offering trade credit and signaling

returns risk through the buyback contract. Finally, we assume that both manufacturer and retailer

are risk neutral in our setting. Future research could examine the implication of relaxing the risk-

neutrality of one or both channel members (e.g., Jiang et al. 2016).
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Wang S, Özkan-Seely G (2018) Signaling product quality through a trial period. Oper. Res. 66(2):301–312.

Woodruff J (2009) The advantages & disadvantages of trade credit. URL https://smallbusiness.chron.

com/advantages-disadvantages-trade-credit-22938.html, accessed on May 30, 2019.

York EB (2013) Kraft acknowledges faults, unveils new path. Chicago

Tribune URL http://articles.chicagotribune.com/2013-02-19/

news/chi-kraft-acknowledges-faults-unveils-new-path-20130219_1_

macaroni-cheese-tassimo-kraft-foods-group, accessed on April 17, 2018.

Zipkin PH (2000) Foundations of Inventory Management (McGraw Hill).

https://smallbusiness.chron.com/advantages-disadvantages-trade-credit-22938.html
https://smallbusiness.chron.com/advantages-disadvantages-trade-credit-22938.html
http://articles.chicagotribune.com/2013-02-19/news/chi-kraft-acknowledges-faults-unveils-new-path-20130219_1_macaroni-cheese-tassimo-kraft-foods-group
http://articles.chicagotribune.com/2013-02-19/news/chi-kraft-acknowledges-faults-unveils-new-path-20130219_1_macaroni-cheese-tassimo-kraft-foods-group
http://articles.chicagotribune.com/2013-02-19/news/chi-kraft-acknowledges-faults-unveils-new-path-20130219_1_macaroni-cheese-tassimo-kraft-foods-group


Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts 1

Electronic Companion for “The Informational Role of Buyback Contracts”

Appendix A: Proofs in Section 3

To derive the retailer’s response, we first examine the retailer’s pricing decision after the uncertain baseline

demand has realized during the selling season. Conditional on the contract (w,r), the retailer’s perceived

return risk θ̂, the realized baseline demand αi ∈ {αl, αh} and the retailer’s stocking quantity s, the retailer

sets his retail price pi by maximizing his posterior profit:16

ΠR
i

(
s
∣∣∣w,r, θ̂) := max

0≤pi≤αi/β
di=αi−βpi

pimin{di, s}+ θ̂r [s−min{di, s}]−ws, (A.1)

whose solution, the retailer’s price decision, is denoted as pRi = pRi

(
s
∣∣∣w,r, θ̂) for i = h, l. We characterize

the retailer’s optimal pricing decision in the following lemma.

Lemma A.1. For i = l, h, (1) if s ≤ 1
2

(
αi−βθ̂r

)
, then the retailer sets the price pRi = (αi − s)/β to

clear the stock; (2) if s≥ 1
2

(
αi−βθ̂r

)
, then the retailer sets the price pRi = (αi + βθ̂r)/(2β) and the unsold

inventory at the end of the selling season is s− 1
2

(
αi−βθ̂r

)
. The retailer’s optimal posterior profit is given

by

ΠR
i

(
s
∣∣∣w,r, θ̂)=


(
αi−s
β
−w

)
s, if s≤ αi−βθ̂r

2
,

(αi−βθ̂r)
2

4β
−
(
w− θ̂r

)
s, if s≥ αi−βθ̂r

2
.

(A.2)

Proof of Lemma A.1. We now rewrite (A.1) as

ΠR
i

(
s
∣∣∣w,r, θ̂)= max

0≤pi≤
αi
β

(
pi− θ̂r

)
min{αi−βpi, s}−

(
w− θ̂r

)
s,

where (
pi− θ̂r

)
min{αi−βpi, s}=


(
pi− θ̂r

)
s, if pi ≤ αi−s

β
,(

pi− θ̂r
)

(αi−βpi) , if pi ≥ αi−s
β
.

(A.3)

We note that
(
pi− θ̂r

)
(αi−βpi) is a quadratic function of pi that achieves its (unconstrained) maximum

at pi = (αi +βθ̂r)/(2β). Therefore,

(1) if αi+βθ̂r
2β

≤ αi−s
β

, i.e., s≤ 1
2

(
αi−βθ̂r

)
, (A.3) achieves its maximum at pRi = (αi− s)/β;

(2) if, instead, αi+βθ̂r
2β

≥ αi−s
β

, i.e., s≥ 1
2

(
αi−βθ̂r

)
, (A.3) achieves its maximum at pRi = (αi +βθ̂r)/(2β).

Substituting the optimal price pRi into (A.3) immediately yields (A.2). �

Given his posterior profit function ΠR
i

(
s
∣∣∣w,r, θ̂), the retailer maximizes the following ex ante expected

profit by choosing the inventory stocking quantity at the beginning of the selling season:

max
s≥0

λ̂ΠR
h

(
s
∣∣∣w,r, θ̂)+ λ̂cΠR

l

(
s
∣∣∣w,r, θ̂) . (A.4)

Proof of Lemma 1. For notational efficiency, we denote in this proof that α̂ := λ̂αh + λ̂cαl. By Lemma

A.1, the objective function in (A.4) reduces to

(
α̂−s
β
−w

)
s, if s≤ αl−βθ̂r

2
,

λ̂ (αh−s)s
β
−
(
w− λ̂cθ̂r

)
s+ λ̂c

(αl−βθ̂r)
2

4β
, if αl−βθ̂r

2
≤ s≤ αh−βθ̂r

2
,

−
(
w− θ̂r

)
s+ λ̂c

(αl−βθ̂r)
2

4β
+ λ̂

(αh−βθ̂r)
2

4β
, if s≥ αh−βθ̂r

2
,

(A.5)

16 By “posterior”, we refer to “after the realization of uncertain baseline demand”.
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where
(
α̂−s
β
−w

)
s is a quadratic function achieving its unconstrained maximum at s1 := α̂−βw

2
; λ̂ (αh−s)s

β
−(

w− λ̂cθ̂r
)
s + λ̂c

(αl−βθ̂r)
2

4β
is also a quadratic function achieving its unconstrained maximum at s2 :=

λ̂cβθ̂r+λ̂αh−βw
2λ̂

; and −
(
w− θ̂r

)
s+ λ̂c

(αl−βθ̂r)
2

4β
+ λ̂

(αh−βθ̂r)
2

4β
is a linear function of s.

• If w− θ̂r < 0, obviously, the retailer would stock infinite inventory and earn infinite expected profit. As

such, the manufacturer would never offer such a contract.

• If 0≤w− θ̂r≤ λ̂∆α
β

, then it is straightforward to verify that

αl−βθ̂r
2

≤ s1 ≤ s2 ≤
αh−βθ̂r

2
. (A.6)

Therefore, sR = s2. By Lemma A.1, (A.6) implies that all inventory is sold out in the case of high baseline

demand αh realization while there is an excess of inventory s2 − αl−βθ̂r
2

= 1
2

[
∆α− β

λ̂

(
w− θ̂r

)]
in the case

of low baseline demand αl realization.

• If w− θ̂r≥ λ̂∆α
β

, then it is straightforward to verify that

s2 ≤ s1 ≤
αl−βθ̂r

2
≤ αh−βθ̂r

2
. (A.7)

Therefore, sR = s1. By Lemma A.1, (A.7) implies that all inventory will be sold out whether the baseline

demand is αh or αl. �

Appendix B: Proofs in Section 4

Lemma B.1. Given θ ∈
{
θ, θ
}

, any contract (w,r) such that w− θr < 0 is weakly dominated by a contract

(w,r′) such that w− θr′ ≥ 0.

Proof of Lemma B.1. If w − θr < 0, because w ≥ 0, there must exists r′ ∈ [0, r] such that w − θr′ ≥ 0.

Then, we must have

Π
(
w,r′

∣∣∣ θ̂(w,r′), θ)=
λcβ

2λ
(w− θr′)︸ ︷︷ ︸
≥0

[
λ∆α

β
−w+ θ̂(w,r′)r′

]+

+
1

2

[
−βw2 +αw

]
≥1

2

(
−βw2 +αw

)
≥λ

cβ

2λ
(w− θr)︸ ︷︷ ︸

<0

[
λ∆α

β
−w+ θ̂(w,r)r

]+

+
1

2

(
−βw2 +αw

)
= Π

(
w,r

∣∣∣ θ̂(w,r), θ) ,
which demonstrates the result. �

Proof of Lemma 2. After simple algebraic manipulation, it is straightforward to verify that the manu-

facturer’s expected profit in (4.1) can be rewritten as

Π
(
w,r

∣∣∣ θ̂, θ)=H
(
w,w− θr,w− θ̂r

)
, (B.1)

where

H (w,u, û) :=
λcβ

2λ
u

(
λ∆α

β
− û
)+

+
1

2

(
−βw2 +αw

)
. (B.2)

Let (w◦, u◦) be the solution to the following optimization problem:

max
w≥0,0≤u≤w

H (w,u,u) . (B.3)



Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts 3

Then, w◦(θ) =w◦ and r◦(θ) = (w◦−u◦)/θ solves (4.2). Our general strategy to identify the solution (w◦, u◦)

to (B.3) is to first optimize H (w,u,u) over u∈ [0,w], and then optimize the resulting function that contains

only w.

We first note that function u (λ∆α/β−u)
+

is increasing in u ∈ [0, λ∆α/(2β)], decreasing in u ∈

[λ∆α/(2β), λ∆α/β], and remains a constant zero for u≥ λ∆α/β. Therefore, we examine the following two

cases.

1. For any w≤ λ∆α/(2β), the maximizing u in (B.3) must equal w, suggesting

max
0≤u≤w

H (w,u,u) =H (w,w,w) =
1

2λ

[
−βw2 +λαhw

]
,

which is increasing w≤ λ∆α/(2β)<α/(2β). As such, we only need to restrict to w≥ λ∆α/(2β).

2. For any w≥ λ∆α/(2β), we have max
0≤u≤w

H (w,u,u) is achieved at u◦ = λ∆α/(2β), suggesting

max
0≤u≤w

H (w,u,u) =
λc (λ∆α−βc)2

8βλ
+

1

2

[
−βw2 +αw

]
,

which is quadratic in w and achieves its maximum Π◦ (θ) = λcλ(∆α)2+α2

8β
at w◦ = α/(2β). Thus, r◦(θ) =

(w◦−u◦)/θ= αl/(2βθ). �

Since w◦− θr◦(θ) = α
2β
− αl

2β
= λ∆α

2β
≤ λ∆α

β
, which, by (3.1) of Lemma 1, suggests that the retailer orders

s◦ = sR(w◦, r◦(θ), θ, λ) =
λcβθr◦(θ) +λαh−βw◦

2λ
=
αh
4

and that inventory is sold out if the baseline demand is high, but that unsold inventory of an amount

1
2

[
∆α− β

λ
(w◦− θr◦(θ))

]
= ∆α

4
will be requested by the retailer to return. �

Lemma B.2. In the returns risk signaling game, the unique equilibrium that survives the intuitive criterion

is the most efficient separating equilibrium. In this equilibrium, the riskier manufacturer offers her symmetric

information contract (w◦, r◦).

Proof of Lemma B.2. We first note that Π
(
w,r

∣∣∣ θ̂, θ) is increasing in θ̂, as direct calculation reveals that

Πθ̂

(
w,r

∣∣∣ θ̂, θ)=

{
λcβ

2λ
(w− θr)r≥ 0, if β(w− θ̂r)≥ λ∆α, ,

0, if β(w− θ̂r)≤ λ∆α.

By the weakened condition of Cho and Sobel (1990) in Engers (1987), it suffices to show that the marginal

rate of substitution (MRS) of one of signals (i.e., w or r) for the belief θ̂ is monotonic in θ. Direct calculation

reveals that the MRS of r for θ̂ is

−
Πr

(
w,r

∣∣∣ θ̂, θ)
Πθ̂

(
w,r

∣∣∣ θ̂, θ) =
λ∆α−β(w− θ̂r)
βr [w/θ− r]

− θ̂

r
, for β(w− θ̂r)≤ λ∆α,

which is monotonically increasing in θ. (For β(w− θ̂r)≥ λ∆α, Π
(
w,r

∣∣∣ θ̂, θ) is independent of r, θ, and θ̂,

and hence is irrelevant. )

We now show that the riskier manufacturer must offer the symmetric-information contract terms in any

separating equilibrium. By way of contradiction, suppose the manufacturer of type θ offers another contract



4 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

(w,r) 6= (w◦, r◦) in a separating equilibrium and, hence, earns an expected profit of Π (w,r | θ, θ). If man-

ufacturer θ deviates to (w◦, r◦), let θ̂ ≥ θ be the retailer’s perceived manufacturer’s return risk such that

w◦− θ̂r◦ ≥ 0. By the unique optimality of (w◦, r◦) (Lemma 2), we immediately have

Π (w,r | θ, θ)<π◦ = Π (w◦, r◦ | θ, θ)≤Π
(
w◦, r◦

∣∣∣ θ̂, θ) ,
where the last inequality follows from Πθ̂

(
w◦, r◦

∣∣∣ θ̂, θ) is of the sign w◦− θr◦ = λ∆α/(2β)> 0 and Lemma

2). Therefore, the manufacturer θ can be strictly better off by deviating to (w◦, r◦), which proves that (w,r)

cannot be played in that separating equilibrium. �

Road map of remaining proofs. The rest of this section is to identify the separating contracts for the

less risky manufacturer and establish their properties. As standard in the literature, our general strategy

is to first recognize a separating contract as the solution to a constrained optimization problem that maxi-

mizes the less risky manufacturer’s profit (or equivalently minimize her signaling cost) subject to the riskier

manufacturer’s non-mimicry incentive constraint (the less risky manufacturer’s non-mimicry constraint is

always non-binding). Then, we verify that such separating contract can be supported by the most pessimistic

off-equilibrium belief (i.e., any deviation away from the separating contract would lead the retailer to believe

that the manufacturer is of higher returns risk). More specifically, we first transform the less risky man-

ufacturer’s optimization problem in terms of the price decisions to one in terms of the retailer’s induced

quantity decisions through a change of variable that is essentially equivalent to (4.4) and (4.5) but re-centers

them at zero stocks (see Lemma B.3). Propositions B.1 and C.1 establish the partial signaling benchmarks

formulated in (4.8) and (4.9), respectively. In particular, these two problems involves a single decision vari-

able and the optimal solutions can be obtained in closed form, so the supporting off-equilibrium belief can

be directly verified. The most efficient separating contract formulated in (4.3) does not admit closed-form

characterization. Despite this challenge, Lemma B.6 identifies its direction of distortion through Lagrangian,

and Lemma B.7 shows that the less risky manufacturer has no incentive to deviate from the most efficient

separating contract under the pessimistic off-equilibrium belief. All these results culminate in the proofs of

Propositions 1 and 2.

Lemma B.3 (Change of Variable). For any (w,r) feasible to (4.3), let w̃ :=w−w◦ =w− α
2β

and ũ :=

w−w◦− θ (r− r◦) =w− θr− λ∆α
2β

. Then, w=w◦+ w̃, r̄= r̄◦+ (w̃− ũ)/θ̄, and it is without loss of generality

to restrict to

w̃+
αl
2β
≥ ũ≥−λ∆α

2β
, and ũ≤ λ∆α

2β
. (B.4)

Furthermore, the objective function of (4.3) can be written as

Π
(
w,r

∣∣ θ, θ)= π◦− β

2λ

(
λw̃2 +λcũ2

)
, (B.5)

the first constraint in (4.3) is equivalent to

λw̃2 +λcũ2 +
λc∆θ

θ

(
w̃− ũ+

αl
2β

)(
ũ− λ∆α

2β

)
≥ 0, (B.6)

and the second constraint in (4.3) is equivalent to

λw̃2 +λcũ2 ≤ λc∆θαlλ∆α

4β2θ
. (B.7)
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Proof. The first constraint in (B.4) follows from the fact that w≥ θ̄r̄≥ 0 by Lemma B.1. By (B.1), it is

straightforward to verify that

Π
(
w,r

∣∣ θ, θ)=

{
α2

8β
− β

2
w̃2, if ũ≥ λ∆α

2β
,

π◦− β

2λ
(λw̃2 +λcũ2) , if ũ≤ λ∆α

2β
;

Π
(
w,r

∣∣ θ, θ)=

{
α2

8β
− β

2
w̃2, if ũ≥ λ∆α

2β
,

π◦− β

2λ

[
λw̃2 +λcũ2 + λc∆θ

θ

(
w̃− ũ+ αl

2β

)(
ũ− λ∆α

2β

)]
, if ũ≤ λ∆α

2β
.

Also, direct calculation yields

Π
(
w◦, r◦

∣∣ θ, θ)=H
(
w◦,w◦− θr◦,w◦− θr◦

)
=
λcβ

2λ

(
w◦− θr◦

)(λ∆α

β
− (w◦− θr◦)

)
+

1

2

[
−β (w◦)

2
+αw◦

]
=
λcβ

2λ
(w◦− θr◦)

(
λ∆α

β
− (w◦− θr◦)

)
+

1

2

[
−β (w◦)

2
+αw◦

]
− λcβ

2λ
∆θr◦

(
λ∆α

β
− (w◦− θr◦)

)
=π◦− λc∆θαl∆α

8βθ
.

We claim that we can restrict the search for the optimal solution of (4.3) within ũ≤ λ∆α
2β

, under which

the objective function in (4.3) is equivalent to (B.5) while the two constraints in (4.3)reduce to (B.6) and

(B.7), respectively. Indeed, for ũ ≥ λ∆α
2β

, the first constraint in (4.3)automatically holds, while the second

one reduces to w̃2 ≤ λc∆α(θ̄αl−θα)
4β2θ

, reducing (4.3) to

min
w̃+

αl
2β
≥ũ≥λ∆α

2β

w̃2, subject to w̃2 ≤
λc∆α

(
θ̄αl− θα

)
4β2θ

.

As the decision variable ũ is absent from the objective function as well as the other constraint, it can without

loss of generality be taken as ũ= λ∆α
2β

, allowing us to focus on ũ≤ λ∆α
2β

. �

Proposition B.1. The solution to (4.8) is given by

w‡ =
α

2β
+

1

4βθ̄

{√
(λcαl∆θ)

2
+ 4λλcαl∆αθ̄∆θ−λcαl∆θ

}
>w◦. (B.8)

Contract (w‡, r̄◦) can be sustained as a separating equilibrium of the returns risk signaling game if and only

if ∆θ/θ̄≤ (1 +
√
λc)∆α/αl. In this equilibrium, the retailer’s order quantity and unsold inventory in case of

low baseline demand are given by

s̄‡ =
αh
4

+
1

8λθ̄

{
λcαl∆θ−

√
(λcαl∆θ)2 + 4λλcαl∆αθ̄∆θ

}
< s◦, and (B.9)

q̄‡ =
∆α

4
+

1

8λθ̄

{
λcαl∆θ−

√
(λcαl∆θ)2 + 4λλcαl∆αθ̄∆θ

}
< q◦, respectively; (B.10)

no unsold inventory results from high baseline demand realization.

Proof. We solve (4.8) by first ignoring the second constraint Π
(
w, r̄◦

∣∣ θ, θ) ≥ Π
(
w◦, r◦

∣∣ θ, θ) and then

verifying that it will be satisfied by the solution to the relaxed problem. Using the change of variable in

Lemma B.3, we have the solution to the relaxed problem w‡ =w◦+ w̃‡, where w̃‡ is the solution to

min
−λ∆α

2β
≤w̃≤λ∆α

2β

w̃2, subject to w̃2 +
λcαl∆θ

2βθ

(
w̃− λ∆α

2β

)
≥ 0. (B.11)
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As the quadratic function on the left-hand side of the constraint in (B.11) achieves its minimum at w̃ =

−λcαl∆θ

4βθ
< 0, the optimal solution to (B.11) is thus given by its larger (and positive) root

w̃‡ =−λ
cαl∆θ

4βθ̄
+

1

4βθ̄

√
(λcαl∆θ)

2
+ 4λλcαl∆αθ̄∆θ > 0, (B.12)

from which (B.8) follows immediately. In particular, we note that

w̃‡ <
λ∆α

2β
⇔ 4λλcαl∆αθ̄∆θ

4βθ̄

[
λcαl∆θ+

√
(λcαl∆θ)

2
+ 4λλcαl∆αθ̄∆θ

] < λ∆α

2β

⇔ 2λcαl∆θ < λ
cαl∆θ+

√
(λcαl∆θ)

2
+ 4λλcαl∆αθ̄∆θ,

which obviously holds.

To verify the ignored constraint Π
(
w, r̄◦

∣∣ θ, θ)≥Π
(
w◦, r◦

∣∣ θ, θ), it suffices to show, by (B.7), that (w̃‡)
2 ≤

λc∆θαlλ∆α
4β2θ

. As w̃‡ binds the constraint in (B.11), this is equivalent to

(
w̃‡
)2

=
λcαl∆θ

2βθ

(
λ∆α

2β
− w̃‡

)
≤ λc∆θαlλ∆α

4β2θ
⇔ w̃‡ ≥ λ∆α

2β

(
1− θ̄/θ

)
,

which obviously holds by (B.12).

For contract (w‡, r̄◦) to be sustained by some equilibrium belief, we need to show that neither the less risky

nor the riskier manufacturer has an incentive to deviate to any off-equilibrium strategy under that belief.

• For the riskier manufacturer, we have shown that her profit of deviating to any (w, r̄◦) with w≥w‡ and

hence being mistaken as a less risky type is dominated by her equilibrium profit, i.e., Π
(
w,r◦

∣∣ θ̄, θ)≤ π◦. Since

all other (w,r) induces a belief that she is the riskier type, the symmetric-information (w◦, r◦) maximizes

her profit Π (w,r | θ, θ) to π◦. Therefore, the riskier manufacturer indeed has no incentive to deviate from

her symmetric-information (w◦, r◦).

• For the less risky manufacturer whose return price is restricted to r◦, it suffices to show that she has

no incentive to deviate her wholesale price to any w 6= w‡ and thus to be mistaken as a riskier type θ,

i.e., Π
(
w,r◦

∣∣ θ, θ̄)≤Π
(
w‡, r̄◦

∣∣ θ̄, θ̄) for all w. Indeed, if this condition fails, no other deviation belief θ̂ can

support w‡, because Π
(
w,r◦

∣∣∣ θ̂, θ̄) is non-decreasing in θ̂ as pointed out in the proof of Lemma B.2 and hence

Π
(
w,r◦

∣∣∣ θ̂, θ̄)≥Π
(
w,r◦

∣∣ θ, θ̄)>Π
(
w‡, r̄◦

∣∣ θ̄, θ̄) for all θ̂ ≥ θ. In light of the fact that Π
(
w‡, r̄◦

∣∣ θ̄, θ)= π◦,

it is equivalent to show that

Π
(
w,r◦

∣∣ θ, θ̄)−π◦ ≤Π
(
w‡, r̄◦

∣∣ θ̄, θ̄)−Π
(
w‡, r̄◦

∣∣ θ̄, θ) . (B.13)

Direct calculation reveals

Π
(
w‡, r̄◦

∣∣ θ̄, θ̄)−Π
(
w‡, r̄◦

∣∣ θ̄, θ)=− λcβ

2λ
∆θr̄◦

(
λ∆α

β
−w‡+ θr◦

)

=− λcαl∆θ

8βλθ̄

λ∆α+
λcαl∆θ

2θ̄
−

√
(λcαl∆θ)

2

4θ̄2
+
λλcαl∆α∆θ

θ̄

 , (B.14)

and

Π
(
w,r◦

∣∣ θ, θ̄)−π◦ =
λcβ

2λ

(
w− θ̄r̄◦

)(λ∆α

β
−w+ θr◦

)+

− β

2

(
w− α

2β

)2

− λcλ(∆α)2

8β
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=
λcβ

2λ

(
w̃+

λ∆α

2β

)(
λ∆α

2β
− αl∆θ

2βθ̄
− w̃

)+

− β

2
w̃2− λcλ(∆α)2

8β
. (B.15)

Therefore, (B.13) is equivalent to showing

b(w̃) := λc
(
w̃+ λ∆α

2β

)(
λ∆α
2β
− αl∆θ

2βθ̄
− w̃

)+

−λw̃2

≤ λc(λ∆α)2

4β2 − λcαl∆θ
4β2θ̄

[
λ∆α+ λcαl∆θ

2θ̄
−
√

(λcαl∆θ)
2

4θ̄2
+ λλcαl∆α∆θ

θ̄

]
, ∀w̃≥− α

2β
.

(B.16)

We note that the piecewise quadratic equation

b(w̃) =

{
−λw̃2, if w̃≥ 1

2β

(
λ∆α− αl∆θ

θ̄

)
,

−w̃2− λcαl∆θ
2βθ̄

w̃+ λcλ∆α
4β2

(
λ∆α− αl∆θ

θ̄

)
, if w̃≤ 1

2β

(
λ∆α− αl∆θ

θ̄

)
,

(B.17)

achieves its maximum

max b(w̃) =

{(
λcαl∆θ

4βθ̄

)2

+ λcλ∆α
4β2

(
λ∆α− αl∆θ

θ̄

)
, if λ∆α≥ 1+

√
λ

2
αl∆θ
θ̄
,

0, if λ∆α≤ 1+
√
λ

2
αl∆θ
θ̄
,

(B.18)

at w̃=−λcαl∆θ
4βθ̄

>− α
2β

and w̃= 0>− α
2β

, respectively.

— For λ∆α≥ 1+
√
λ

2
αl∆θ
θ̄

, we have

(
λcαl∆θ

4βθ̄

)2

+
λcλ∆α

4β2

(
λ∆α− αl∆θ

θ̄

)
≤ λc(λ∆α)2

4β2
− λcαl∆θ

4β2θ̄

λ∆α+
λcαl∆θ

2θ̄
−

√
(λcαl∆θ)

2

4θ̄2
+
λλcαl∆α∆θ

θ̄


⇔ 3

4

λcαl∆θ

θ̄
≤

√
(λcαl∆θ)

2

4θ̄2
+
λλcαl∆α∆θ

θ̄
⇔ 5

16

λcαl∆θ

θ̄
≤ λ∆α,

which holds when λ∆α≥ 1+
√
λ

2
αl∆θ
θ̄

.

— For λ∆α≤ 1+
√
λ

2
αl∆θ
θ̄

, we have

λc(λ∆α)2

4β2
− λcαl∆θ

4β2θ̄

λ∆α+
λcαl∆θ

2θ̄
−

√
(λcαl∆θ)

2

4θ̄2
+
λλcαl∆α∆θ

θ̄

≥ 0

⇔ (λ∆α)
2− 2 (λ∆α)

(
αl∆θ

θ̄

)
+λ

(
αl∆θ

θ̄

)2

≤ 0,

which holds for
(

1−
√
λc
)(

αl∆θ
θ̄

)
≤ λ∆α≤ 1+

√
λ

2
αl∆θ
θ̄

, i.e., if and only if ∆θ/θ̄≤ (1 +
√
λc)∆α/αl.

Finally, we determine the retailer’s order quantity as well as unsold inventory. By Lemma 1, since we have

w‡ − θ̄r̄◦ = w◦ + w̃‡ − αl
2β

= w̃‡ + λ∆α
2β
≤ λ∆α

β
because w̃‡ < λ∆α

2β
, all inventory is sold out in the case of high

baseline demand realization and, in particular, (3.1) implies that the retailer’s stocking quantity is

s̄‡ =
λcβθr̄◦+λαh−βw‡

2λ
=
λcβθ̄r̄◦+λαh−βw◦

2λ
+
β

2λ

(
w◦−w‡

)
=
αh
4

+
1

8λθ̄

{
λcαl∆θ−

√
(λcαl∆θ)2 + 4λλcαl∆αθ̄∆θ

}
,

obtaining (B.9). By Lemma 1, again, the unsold inventory in the case of low baseline demand realization is

q̄‡ =
1

2

[
∆α−β/λ

(
w‡− θ̄r̄◦

)]
=

1

2

[
∆α/2−β/λw̃‡

]
,

from which (B.10) follows by (B.12). �
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Proposition B.2. The solution to (4.9) is given by

r̄† =
αl

2βθ̄
+

1

4βθθ̄

{
α∆θ−

√
(α∆θ)2 + 4λ∆ααlθ∆θ

}
< r◦ < r◦. (B.19)

Contract (w◦, r̄†) can always be sustained as a separating equilibrium of the returns risk signaling game, in

which the retailer’s order quantity and unsold inventory in case of low baseline demand are given by

s̄† =
αh
4

+
λc

8λθ

{
α∆θ−

√
(α∆θ)2 + 4λ∆ααlθ∆θ

}
< s◦, and (B.20)

q̄† =
∆α

4
+

1

8λθ

{
α∆θ−

√
(α∆θ)2 + 4λ∆ααlθ∆θ

}
< q◦, respectively; (B.21)

no unsold inventory results from high baseline demand realization.

Proof of Proposition B.2. We solve (4.9) by first ignoring the second constraint Π
(
w◦, r

∣∣ θ, θ) ≥
Π
(
w◦, r◦

∣∣ θ, θ) and then verifying that it will be satisfied by the solution to the relaxed problem. Using the

change of variable in Lemma B.3, we have the solution to the relaxed problem r̄† = r̄◦ − ũ†/θ̄, where ũ† is

the solution to

min
ũ∈[−λ∆α

2β
,λ∆α

2β
∧αl

2β ]
ũ2, subject to ũ2 +

∆θ

θ

(
αl
2β
− ũ
)(

ũ− λ∆α

2β

)
≥ 0. (B.22)

Straightforward algebra reduces the constraint in (B.22) to

ũ2 +
α∆θ

2βθ
ũ− λ∆ααl∆θ

4β2θ
≥ 0, (B.23)

where the quadratic function on the left-hand side is minimized at ũ = −α∆θ
4βθ

< 0. Therefore, (B.22) is

minimized at its larger (and positive) root

ũ† =−α∆θ

4βθ
+

1

4βθ

√
(α∆θ)

2
+ 4λ∆ααlθ∆θ > 0, (B.24)

from which (B.19) follows. In particular, we notice that

ũ† <
λ∆α

2β
⇔ 4λ∆ααlθ∆θ

4βθ

[
α∆θ+

√
(α∆θ)

2
+ 4λ∆ααlθ∆θ

] < λ∆α

2β

⇔ 2αl∆θ < (2α∆θ <)α∆θ+

√
(α∆θ)

2
+ 4λ∆ααlθ∆θ,

which obviously holds; and that

ũ† <
αl
2β

⇔ 4λ∆ααlθ∆θ

4βθ

[
α∆θ+

√
(α∆θ)

2
+ 4λ∆ααlθ∆θ

] < αl
2β

⇔ 2λ∆α∆θ < (2α∆θ <)α∆θ+

√
(α∆θ)

2
+ 4λ∆ααlθ∆θ,

which again obviously holds.

To verify that Π
(
w◦, r†

∣∣ θ, θ)≥Π
(
w◦, r◦

∣∣ θ, θ), it suffices to show, by (B.7), that (ũ†)
2 ≤ ∆θαlλ∆α

4β2θ
. As ũ†

binds (B.23), this is equivalent to(
ũ†
)2

=
λ∆ααl∆θ

4β2θ
− α∆θ

2βθ
ũ† ≤ ∆θαlλ∆α

4β2θ
⇔ ũ† ≥ 0,

which in fact follows from (B.24).

We claim that contract (w◦, r̄†) can be sustained by the retailer’s posterior belief that the manufacturer

offering such a contract is less risky and is otherwise riskier. To that end, we need to show that neither the

less risky nor the riskier manufacturer has incentive to deviate to the off-equilibrium strategies under such

a posterior belief.
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• For the riskier manufacturer, we have shown that her profit of deviating her return price to r̄† and hence

being mistaken as a less risky type is dominated by her equilibrium profit, i.e., Π
(
w◦, r†

∣∣ θ̄, θ)≤ π◦. As any

other contract (w,r) induces a belief that she is a riskier type, the symmetric-information (w◦, r◦) maximizes

her profit Π (w,r | θ, θ) to π◦. Therefore, the riskier manufacturer indeed has no incentive to deviate from

her symmetric-information contract (w◦, r◦).

• For the less risky manufacturer whose wholesale price is restricted to w◦, it suffices to show that she

has no incentive to deviate her return price to any r̄ 6= r̄† and thus to be mistaken as a riskier type, i.e.,

Π
(
w◦, r̄

∣∣ θ, θ̄)≤Π
(
w◦, r̄†

∣∣ θ̄, θ̄) for all r̄, which is, by (B.1), equivalent to

h(r̄) := (w◦− θ̄r̄)
(
λ∆α

β
−w◦+ θr

)+

≤ f(r̄†) :=
(
w◦− θr†

)[λ∆α

β
−
(
w◦− θr†

)]+

, ∀r̄. (B.25)

We note that h(r̄)≡ 0 for r̄≤w◦/θ̄ and hence (B.25) holds, if w◦/θ̄≤ (w◦−λ∆α/β)/θ. Thus, we just need

to show (B.25) holds for the parameter range w◦/θ̄ > (w◦−λ∆α/β)/θ or equivalently

αl−λ∆α

αl +λ∆α
≤ θ/θ̄. (B.26)

On the other hand, it is straightforward to see that the quadratic function (w◦ − θ̄r̄)
(
λ∆α
β
−w◦+ θr

)
is

maximized at r̄� := (θ̄+θ)αl−∆θλ∆α

4βθ̄θ
and hence h(r̄)≤ h(r̄�). Hence, direct calculation yields

f(r̄†)−h(r̄)≥f(r̄†)−h(r̄�) =

(
λ∆α

2β

)2

−

(
α∆θ−

√
(α∆θ)2 + 4λαl∆αθ∆θ

)2

(4βθ)2
−
[
(θ+ θ̄)λ∆α−∆θαl

]2
(4β)2θθ̄

=
2α∆θ

(4βθ)2

{√
(α∆θ)2 + 4λαl∆αθ∆θ−

(
1 +

θ

2θ̄

)
α∆θ

}
,

which is positive because (B.26) implies that

(α∆θ)2 + 4λαl∆αθ∆θ−
(

1 +
θ

2θ̄

)2

(α∆θ)2 = α2θ∆θ

{
4αlλ∆α

α2
− (4θ̄+ θ)∆θ

4θ̄2

}
=α2θ∆θ

{
(3θ̄+ θ)θ

4θ̄2
−
(
αl−λ∆α

αl +λ∆α

)2
}
≥ α2(θ)2/θ̄2∆θ

{
3θ̄+ θ

4
− θ
}

=
3α2(θ)2(∆θ)2

4θ̄2
> 0.

This concludes the verification of the equilibrium belief.

Finally, we determine the retailer’s order quantity as well as unsold inventory. Since w◦−θr† = ũ†+ λ∆α
2β

<

λ∆α/β because ũ† < λ∆α
2β

, Lemma 1 suggests that all inventory is sold out in the case of high baseline

demand realization, and in particular, (3.1) implies that the retailer’s stocking quantity s̄† = λcβθr†+λαh−βw◦

2λ
,

which is given by (B.20) and obviously smaller than s◦ = αh/4. By Lemma 1, again, the unsold inventory in

the case of low baseline demand realization is

q̄† =
1

2

[
∆α−β/λ

(
w◦− θ̄r̄†

)]
=

1

2

[
∆α/2−β/λũ†

]
,

from which (B.21) follows by (B.24). �

Lemma B.4. The solution (w̃?, ũ?) to (B.5)-(B.7) satisfies w̃? >− α
2β

and −λ∆α
2β

< ũ? < λ∆α
2β

.

Proof. Suppose ũ? =±λ∆α
2β

. Then, (0, ũ†) with ũ† given by (B.24) is a feasible solution to (B.5)-(B.7),

but

λ (w̃?)
2

+λc (ũ?)
2 ≥ λc

(
λ∆α

2β

)2

>λ(0)2 +λc(ũ†)2,

contradicting the optimality of (w̃?, ũ?). Therefore, we must have −λ∆α
2β

< ũ? < λ∆α
2β

. Subsequently, we must

have w̃? ≥ ũ?− αl
2β
>−λ∆α

2β
− αl

2β
=− α

2β
. �



10 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

Lemma B.5. There exists (w̃, ũ) such that (i) −λ∆α
2β
≤ ũ≤ 0, (ii) ũ− αl

2β
≤ w̃ ≤ 0, (iii) (B.6) holds, and

(iv) λw̃2 +λcũ2 < λc∆θαlλ∆α

4β2θ
. Therefore, the optimal solution to (B.5)-(B.6) automatically satisfies (B.7).

Proof of Lemma B.5. For ũ = 0, the left-hand side of (B.6) reduces to the quadratic function λw̃2 −
λc∆θλ∆α

2βθ

(
w̃+ αl

2β

)
in w̃, which takes a negative value −λcαl∆θλ∆α

4β2θ
at w̃ = 0 and a positive value

λα2
l

4β2 at

w̃=− αl
2β

. Hence, there exists a root w̃[ ∈
(
− αl

2β
,0
)

of this the quadratic function such that w̃= w̃[ and ũ= 0

satisfies −λ∆α
2β
≤ ũ≤ 0, ũ− αl

2β
≤ w̃≤ 0 and (in fact binds) (B.6). Straightforward verification reveals that

λ(w̃[)2 +λc02 =
λc∆θλ∆α

2βθ

(
w̃[ +

αl
2β

)
<
λc∆θαlλ∆α

4β2θ
<
λc∆θαlλ∆α

4β2θ

where the first inequality follows from w̃[ < 0 and the second inequality indicates that (B.7) will be satisfied

by the optimal solution to (B.5)-(B.6). �

Lemma B.6. The solution (w̃?, ũ?) to (B.5)-(B.7) is the solution to the following system of equations

λw̃2 +λcũ2 +
λc∆θ

θ

(
w̃− ũ+

αl
2β

)(
ũ− λ∆α

2β

)
=0, (B.27)

λcũ2−λw̃2 + 2λw̃ũ− λcλ∆α

2β
ũ− λα

2β
w̃=0, (B.28)

such that w̃? < 0, ũ? > 0, 0<λw̃? +λcũ? <λcũ† and w̃?− ũ? <−ũ†, where ũ† is given by (B.24).

Proof. By Lemma B.5, solving (B.5)-(B.7) is equivalent to solve the relaxed problem (B.5)-(B.6) by

ignoring (B.7). By Lemma B.4, we can also ignore the bound constraint −λ∆α
2β
≤ ũ≤ λ∆α

2β
. Furthermore, we

are going to ignore the constraint w̃+ αl
2β
≥ ũ, which will be verified to hold by the optimal (w̃?, ũ?) to the

relaxed problem.

The necessary condition for (w̃?, ũ?) to be the optimal solution to the relaxed problem is that there exists

a Lagrangian multiplier ξ ≥ 0 associated with (B.6) such that

2λw̃?− ξ
(

2λw̃? +
λc∆θ

θ
ũ?− λc∆θλ∆α

2βθ

)
=0, (B.29)

2λcũ?− ξ
(

2λcθ

θ
ũ? +

λc∆θ

θ
w̃? +

λc∆θα

2βθ

)
=0. (B.30)

We claim that ξ > 0. Otherwise, (B.29) and (B.30) immediately imply that w̃? = ũ? = 0, which can be

easily verified to violate (B.6). Therefore, (B.6) must be binding, yielding (B.27), which immediately implies

that w̃? + αl
2β
≥ ũ? because ũ? < λ∆α

2β
by Lemma B.4.

Rearranging terms in (B.29), we have

2λ(1− ξ)w̃? =
ξλc∆θ

θ

(
ũ?− λ∆α

2β

)
< 0, (B.31)

where the last inequality follows from Lemma B.4; and rearranging terms in (B.30), we have

2
(
θ− θξ

)
ũ? = ξ∆θ

(
w̃? +

α

2β

)
> 0, (B.32)

where the last inequality follows again from Lemma B.4. Therefore, we have w̃? 6= 0 and ũ? 6= 0.

By eliminating ξ from (B.29) and (B.30), we obtain

λw̃?

λcũ?
=

2λw̃? + λc∆θ
θ
ũ?− λc∆θλ∆α

2βθ

2λcθ

θ
ũ? + λc∆θ

θ
w̃? + λc∆θα

2βθ

=
2λw̃? + λc∆θ

θ

(
ũ?− λ∆α

2β

)
2λcũ? + λc∆θ

θ

[(
w̃?− ũ? + αl

2β

)
+
(
λ∆α
2β
− ũ?

)] . (B.33)
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Rearranging terms of (B.33) yields

λw̃?
[(
w̃?− ũ? +

αl
2β

)
−
(
ũ?− λ∆α

2β

)]
= λcũ?

(
ũ?− λ∆α

2β

)
,

immediately implying (B.28) and

λw̃?

λcũ?
=−

λ∆α
2β
− ũ?

w̃?− ũ? + αl
2β

+ λ∆α
2β
− ũ?

< 0, (B.34)

where the negativity follows by noting that ũ? < λ∆α
2β

and w̃? + αl
2β
≥ ũ?.

We have the following three possibilities:

1. If ξ > θ/θ > 1, then (B.31) and (B.32) imply that w̃? > 0 and ũ? < 0, respectively. However, (B.27)

suggests

λ(w̃?)2 +λc(ũ?)2 =
λc∆θ

θ

(
w̃?− ũ? +

αl
2β

)
︸ ︷︷ ︸

>
αl
2β

(
λ∆α

2β
− ũ?

)
︸ ︷︷ ︸

>λ∆α
2β

>
λc∆θαlλ∆α

4β2θ
,

contradicting Lemma B.5. Hence, this case can be ruled out.

2. If θ/θ > ξ > 1, then (B.31) and (B.32) imply that w̃? > 0 and ũ? > 0, respectively. However, this

contradicts (B.34), ruling out this case as well.

3. As such, we must have ξ < 1< θ
θ
, which implies that w̃? < 0 and ũ? > 0 according to (B.31) and (B.32),

respectively. Together with (B.34), implies that λw̃?

λcũ?
∈ (−1,0) and λw̃? +λcũ? > 0. Therefore, by (B.33),

− 1<
2λw̃? + λc∆θ

θ

(
ũ?− λ∆α

2β

)
2λcũ? + λc∆θ

θ

[(
w̃?− ũ? + αl

2β

)
+
(
λ∆α
2β
− ũ?

)] < 0, (B.35)

which, by multiplying the denominator on both sides of (B.35) and rearranging terms, yields

2λw̃? + 2λcũ? +
λc∆θ

θ

(
w̃?− ũ? +

αl
2β

)
> 0. (B.36)

Finally, we demonstrate w̃? − ũ? <−ũ† and λw̃? + λcũ? < λcũ†. Indeed, both (w̃?, ũ?) and (0, ũ†) satisfy

the quadric equation (B.27), which can, via the change of variable z̃ = w̃− ũ, be rewritten as

θ

λc
w̃2− (θ+ θ)w̃z̃+ θz̃2 +

∆θαl
2β

w̃− α∆θ

2β
z̃− ∆θαlλ∆α

4β2
= 0. (B.37)

Let z̃? := w̃?− ũ? and z̃† :=−ũ†. Then, (w̃?, z̃?) and (0, z̃†) satisfy (B.37).

Since w̃? ∈
(
− α

2β
,0
)

and ũ?, ũ† ∈
(

0, λ∆α
2β

)
as shown above and in the proof of Proposition B.2, we focus

on examining the quadratic curve (B.37) in the region Ω :=
{

(w̃, z̃) :− α
2β
≤ w̃≤ 0 and 0< w̃− z̃ < λ∆α

2β

}
.

Total differentiation of (B.37) yields

dz̃

dw̃
=

2 θ
λc
w̃− (θ+ θ)z̃+ αl∆θ

2β

(θ+ θ)w̃− 2θz̃+ α∆θ
2β

, (B.38)

where we notice that

(θ+ θ)w̃− 2θz̃+
α∆θ

2β
= 2θ(w̃− z̃) + ∆θ

(
w̃+

α

2β

)
> 0.

Therefore, the quadratic curve in (B.37) is segmented into (at most) two branches in Ω by the straight

line 2 θ
λc
w̃− (θ+ θ)z̃ + αl∆θ

2β
= 0: in the region where 2 θ

λc
w̃− (θ+ θ)z̃ + αl∆θ

2β
> (<)0, z̃ is strictly increasing

(decreasing) in w̃. Since

2
θ

λc
w̃?− (θ+ θ)z̃? +

αl∆θ

2β
=2

θ

λc
w̃?− (θ+ θ) (w̃?− ũ?) +

αl∆θ

2β
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=
θ

λc

[
2λw̃? + 2λcũ? +

λc∆θ

θ

(
w̃?− ũ? +

αl
2β

)]
> 0 by (B.36)

and

2
θ

λc
0− (θ+ θ)z̃†+

αl∆θ

2β
= (θ+ θ)ũ†+

αl∆θ

2β
> 0 because ũ† > 0,

(w̃?, z̃?) and (0, z̃†) are on the increasing branch of the quadratic curve in (B.37). Therefore, w̃? < 0 imme-

diately suggests that

w̃?− ũ? = z̃? < z̃† =−ũ†.

As (w̃?, ũ?) satisfies (B.27), we must have

λc
[
(ũ∗)2 +

∆θ

θ

(
αl
2β
− ũ∗

)(
ũ∗− λ∆α

2β

)]
=−λ(w̃∗)2− λc∆θ

θ̄
w̃∗
(
ũ∗− λ∆α

2β

)
< 0,

where the inequality follows from w̃∗ < 0 and ũ∗ < λ∆α
2β

. Namely, ũ∗ must lie between the negative and

positive roots of the quadratic equation on the left-hand side of (B.23). Thus, we have ũ∗ < ũ†, leading to

λw̃? +λcũ? = λ(w̃?− ũ?) + ũ? <−λũ†+ ũ† = λcũ†,

which completes the proof. �

Lemma B.7. Π
(
w,r

∣∣ θ, θ̄)≤Π
(
w?, r̄?

∣∣ θ̄, θ̄) for all w≥ θ̄r̄≥ 0.

Proof of Lemma B.7. We first make the following two observations:

Observation 1. The return-price-only signaling strategy (w◦, r̄†) is a feasible solution to (4.3), implying that

Π
(
w?, r̄?

∣∣ θ̄, θ̄)>Π
(
w◦, r̄†

∣∣ θ̄, θ̄).
Observation 2. Furthermore, Π

(
w?, r̄?

∣∣ θ̄, θ̄) > Π
(
w◦, r̄†

∣∣ θ̄, θ̄) = λcβ

2λ
f (r†) + 1

2
[−β(w◦)2 +αw◦] > α2

8β
≥

1
2

[−βw2 +αw] for all w≥ 0, where the function f(·) is defined in the proof of Proposition B.2 showing that

f (r†)> 0.

We now demonstrate the lemma. For any w − θr̄ ≥ λ∆α/β, (B.1) suggests that Π
(
w,r

∣∣ θ, θ̄) =

1
2

[−βw2 +αw] and hence the lemma follows from Observation 2 above. For any 0≤w− θr̄≤ λ∆α/β, (B.1)

suggests that

Π
(
w,r

∣∣ θ, θ̄)=
λcβ

2λ
(w− θ̄r̄)

(
λ∆α

β
−w+ θr̄

)
+

1

2

[
−βw2 +αw

]
, (B.39)

whose first term, as a quadratic function of r̄ ∈
[

1
θ

(w−λ∆α/β)
+
, 1
θ
w
]
, achieves its unconstrained maximum

at r̄= 1
θ

(
θ̄+θ

2θ̄
w− λ∆α

2β

)
. We thus examine the following two cases:

1. If w≥ θ̄λ∆α
β∆θ

, then we have 0≤ 1
θ

(
θ̄+θ

2θ̄
w− λ∆α

2β

)
≤ 1

θ
(w−λ∆α/β) and hence the first term in (B.39) is

decreasing in r̄ ∈
[

1
θ

(w−λ∆α/β) , 1
θ
w
]
, suggesting

Π
(
w,r

∣∣ θ, θ̄)≤Π

(
w,

1

θ
(w−λ∆α/β)

∣∣∣∣ θ, θ̄)=
1

2

[
−βw2 +αw

]
<Π

(
w?, r̄?

∣∣ θ̄, θ̄) ,
where the last inequality follows again from Observation 2 above.
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2. If w ≤ θ̄
θ̄+θ

λ∆α
β

, then 1
θ

(w−λ∆α/β) ≤ 1
θ

(
θ̄+θ

2θ̄
w− λ∆α

2β

)
≤ 0 and hence the first term in (B.39) is a

quadratic function in r and can straightforwardly be shown to be decreasing in r̄ ∈
[
0,w/θ̄

]
, suggesting that

Π
(
w,r

∣∣ θ, θ̄)≤Π
(
w,0

∣∣ θ, θ̄)=
λcβ

2λ
w

(
λ∆α

β
−w

)
+

1

2

[
−βw2 +αw

]
=− β

2λ
w2 +

αh
2
w, (B.40)

which is maximized at ŵ = θ̄
θ̄+θ

λ∆α
β

if αh/αl ≤ 2θ̄/∆θ and at ŵ = λαh/(2β) otherwise. In both cases, we

claim that (ŵ,0) satisfies the first constraint in (4.3), suggesting that

Π
(
w?, r̄?

∣∣ θ̄, θ̄)≥Π
(
ŵ,0

∣∣ θ̄, θ̄)≥Π
(
ŵ,0

∣∣ θ, θ̄)≥Π
(
w,r

∣∣ θ, θ̄) ,
where the first inequality follows from the optimality of (w?, r̄?) in (4.3) (with the knowledge that the

second constraint in (4.3) is nonbinding according to Lemma B.5), the second inequality follows from the

monotonicity of Π
(
ŵ,0

∣∣∣ θ̂, θ̄) in θ̂, and the last inequality is because (ŵ,0) maximizes Π
(
w,r

∣∣ θ, θ̄).
Now we verify the claim that (ŵ,0) satisfies the first constraint in (4.3), which is, according to Lemma B.3,

equivalent to showing that the transformed quantities w̃ = ŵ−w◦ and ũ= θ̄r̄◦ + w̃ = αl
2β

+ w̃ satisfy (B.6),

which is immediate by noting that w̃− ũ+ αl
2β

= 0.

3. If θ̄
θ̄+θ

λ∆α
β
≤w≤ θ̄λ∆α

β∆θ
, then we have 1

θ

(
θ̄+θ

2θ̄
w− λ∆α

2β

)
∈
[

1
θ

(w−λ∆α/β)
+
, 1
θ
w
]

and hence

Π
(
w,r

∣∣ θ, θ̄)≤Π

(
w,

1

θ

(
θ̄+ θ

2θ̄
w− λ∆α

2β

) ∣∣∣∣ θ, θ̄)=
λcβ

8λθ̄θ

(
θ̄λ∆α

β
−∆θw

)2

+
1

2

(
−βw2 +αw

)
. (B.41)

• When λc (∆θ)
2 ≥ 4λθ̄θ, the quadratic function of w on the right-hand side of (B.41) is convex and

hence reaches the maximum at either w = θ̄
θ̄+θ

λ∆α
β

or w = θ̄
∆θ

λ∆α
β

, which correspond to the first two cases,

respectively.

• When λc (∆θ)
2
< 4λθ̄θ or equivalently (∆θ)

2
<λ

(
θ̄+ θ

)2
, the quadratic function of w on the right-hand

side of (B.41) is concave and achieves its unconstrained maximum at

w=
λθ̄ (2θα−λc∆θ∆α)

β
[
λ(θ̄+ θ)2− (∆θ)2

] , (B.42)

which can be verified to be within
(

θ̄
θ̄+θ

λ∆α
β
, θ̄

∆θ
λ∆α
β

)
if and only if ∆θ

θ̄+θ
< αl

∆α
< λ(θ̄+θ)

∆θ
. Therefore, we consider

the following three scenarios:

— When αl
∆α
≤ ∆θ

θ̄+θ
, the quadratic function of w on the right-hand side of (B.41) is decreasing in w ∈[

θ̄
θ̄+θ

λ∆α
β
, θ̄

∆θ
λ∆α
β

]
and hence achieves its maximum at w= θ̄

θ̄+θ
λ∆α
β

, with the corresponding r̄= 0, for which

the lemma has been shown in Case 1.

— When αl
∆α
≥ θ̄

∆θ
λ∆α
β

, the quadratic function of w on the right-hand side of (B.41) is increasing in

w ∈
[

θ̄
θ̄+θ

λ∆α
β
, θ̄

∆θ
λ∆α
β

]
and hence achieves its maximum at w = θ̄

∆θ
λ∆α
β

, making the first term on the right-

hand side of (B.41) zero. Hence, Observation 2 above immediately implies the lemma.

— When ∆θ
θ̄+θ

< αl
∆α

< λ(θ̄+θ)

∆θ
, the quadratic function of w on the right-hand side of (B.41) is maximized

at (B.42), yielding the maximum value (after some algebra)

λcλ(∆α)2 +α2

8β︸ ︷︷ ︸
π◦

+
λc

8β

{[
(θ̄+ θ)λ∆α−αl∆θ

]2
λ(θ̄+ θ)2− (∆θ)2

−λ(∆α)2

}
. (B.43)
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Therefore, the lemma is equivalent to showing Π
(
w?, r̄?

∣∣ θ̄, θ̄) dominates (B.43). By Lemma B.3 and B.5, it

suffices to show that there exists (w̃, ũ) feasible to (B.4) and (B.6) such that

λw̃2 +λcũ2 =
λcλ

4β2

{[
(θ̄+ θ)λ∆α−αl∆θ

]2
λ(θ̄+ θ)2− (∆θ)2

−λ(∆α)2

}
, (B.44)

which can be verified to be greater than zero for ∆θ
θ̄+θ

< αl
∆α

< λ(θ̄+θ)

∆θ
. Making the following change of variable

w̃=
1√
λ

x
√

1 +
√
λ

2
− y

√
1−
√
λ

2

 , ũ=
1√
λc

x
√

1−
√
λ

2
+ y

√
1 +
√
λ

2

 , (B.45)

we then can straightforwardly verify that

λw̃2 +λcũ2 = x2 + y2, (B.46)

and (B.6) is equivalent to(
θ̄+ θ+

∆θ√
λ

)
x2 +

λc∆θ

β

αl−
√
λ∆α√

2(1 +
√
λ)
x+

(
θ̄+ θ− ∆θ√

λ

)
y2 +

λc∆θ

β

αl +
√
λ∆α√

2(1−
√
λ)
y− λc∆θαlλ∆α

2β2
≥ 0.

(B.47)

Obviously, the (w̃, ũ) defined through (B.45) by letting x= 0 and y=−

√
λcλ
4β2

{
[(θ̄+θ)λ∆α−αl∆θ]

2

λ(θ̄+θ)2−(∆θ)2 −λ(∆α)2

}
satisfies (B.44) by virtue of (B.46). It is also straightforward to verify that such (w̃, ũ) satisfies (B.4).

We now verify that it also satisfies (B.47), which implies that the corresponding (w̃, ũ) must satisfy (B.6).

To that end, plugging it to (B.47) renders it to

2(1 +
√
λ)√

λ(θ̄+ θ)−∆θ

{
2λ
θ̄+ θ

∆θ
αl∆α−α2

l −λ(∆α)2

}
≥

(
αl +

√
λ∆α

)2

√
λ(θ̄+ θ) + ∆θ

,

which is equivalent to

2(1 +
√
λ)√

λ(θ̄+ θ)−∆θ

{
2λ
θ̄+ θ

∆θ
z− z2−λ

}
−

(
z+
√
λ
)2

√
λ(θ̄+ θ) + ∆θ

≥ 0, (B.48)

with z := αl/∆α ∈
(

∆θ
θ̄+θ

, λ(θ̄+θ)

∆θ

)
. As the right-hand side of (B.48) is a concave quadratic function in z, to

demonstrate that (B.48) holds for all z ∈
(

∆θ
θ̄+θ

, λ(θ̄+θ)

∆θ

)
, we just need to show it holds at the ends of the

interval. Indeed, when z = ∆θ
θ̄+θ

, (B.48) reduces to

2(1 +
√
λ)√

λ(θ̄+ θ)−∆θ

{
λ(θ̄+ θ)2

(∆θ)2
− 1

}
−
√
λ(θ̄+ θ) + ∆θ

(∆θ)2
≥ 0 ⇔ 2(1 +

√
λ)≥ 1,

which obviously holds. When z = λ(θ̄+θ)

∆θ
, (B.48) reduces to

2(1 +
√
λ)√

λ(θ̄+ θ)−∆θ

{
1− (∆θ)2

λ(θ̄+ θ)2

}
−
√
λ(θ̄+ θ) + ∆θ

λ(θ̄+ θ)2
≥ 0 ⇔ 2(1 +

√
λ)≥ 1,

which also holds.

Finally, we need to show that (w̃, ũ) identified above also satisfies −λ∆α
2β
≤ ũ ≤ λ∆α

2β
and w̃ − ũ ≥ − αl

2β
.

Under the change of variable in (B.45) with x = 0, this is equivalent to show y2 ≤ 1−
√
λ

2β2 (λ∆α)
2

and(√
1−
√
λ

2λ
+
√

1+
√
λ

2λc

)
y≤ αl

2β
, which are straightforward to hold by y=−

√
λcλ
4β2

{
[(θ̄+θ)λ∆α−αl∆θ]

2

λ(θ̄+θ)2−(∆θ)2 −λ(∆α)2

}
.

Therefore, (w̃, ũ) defined by (B.45) with x= 0 and y =−

√
λcλ
4β2

{
[(θ̄+θ)λ∆α−αl∆θ]

2

λ(θ̄+θ)2−(∆θ)2 −λ(∆α)2

}
is a feasible

solution to (B.5)-(B.6) that satisfies (B.44), completing the proof. �
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Proof of Proposition 1. By Lemma B.3, the solution (w?, r?) to (4.3) is given by w? = w◦ + w̃? and

r? = r◦+ (w̃?− ũ?)/θ, where (w̃?, ũ?) is the solution to (B.5)-(B.7). Because w̃? < 0 and ũ? > 0 according to

Lemma B.6, we thus have w? =w◦+ w̃? <w◦ and r? = r◦+ (w̃?− ũ?)/θ < r◦.

By (3.1), the retailer’s order quantity under (w?, r?) is given by

s? = sR
(
w?, r?, θ

)
=
λcβθr? +λαh−βw?

2λ
=
λcβθr◦+λαh−βw◦

2λ︸ ︷︷ ︸
αh/4=s◦

− β

2λ
(λw̃? +λcũ?)< s◦,

where the second equality follows from Lemma B.3 and the last inequality follows from the fact that λw̃? +

λcũ? > 0 in Lemma B.6.

Since ũ? < λ∆α
2β

, we have w? − θr? = ũ? + λ∆α
2β

< λ∆α
β

= αh
4

= s◦, which, according to Lemma 1, suggests

that all inventory is sold out in the case of high baseline demand. Again by Lemma 1 and the fact that

ũ? =w?− θ̄r̄?− λ∆α
2β

, we have the unsold inventory in the case of low baseline demand realization to be

q̄? =
1

2

[
∆α−β/λ

(
w?− θ̄r̄?

)]
=

1

2
[∆α/2−β/λũ?]< ∆α

4
= q◦,

where we use the fact that ũ? > 0 (Lemma B.6) to obtain the inequality.

We now verify that (w?, r?) can be sustained as a separating equilibrium by the retailer’s posterior belief

that the manufacturer is less risky upon contract (w?, r?) being offered and is otherwise riskier. To that

end, we need to show that neither the less risky nor the riskier manufacturer has incentive to deviate to the

off-equilibrium strategies under such a posterior belief.

• The riskier manufacturer’s profit of deviating to (w?, r?) and hence being mistaken as a less risky

type is, by definition, dominated by her equilibrium profit as (w?, r?) satisfies the first constraint in (4.3):

Π
(
w?, r?

∣∣ θ̄, θ)≤ π◦. Among all (w,r) 6= (w?, r?), under which the manufacturer is believed to be of the riskier

type, the symmetric-information (w◦, r◦) maximizes her profit Π (w,r | θ, θ) to π◦. Therefore, the riskier

manufacturer indeed has no incentive to deviate from her symmetric-information contract terms (w◦, r◦).

• For the less risky manufacturer, we need to show that she has no incentive to deviate to any (w, r̄) 6=

(w?, r?). If the deviation takes place, the manufacturer will be mistaken as a riskier type, earning a profit

of Π
(
w,r

∣∣ θ, θ̄), which is dominated by her equilibrium profit Π
(
w?, r̄?

∣∣ θ̄, θ̄) by Lemma B.7. Thus, the

less risky manufacturer has no incentive to deviate from (w?, r?). This concludes the verification of the

equilibrium belief. �

Proof of Proposition 2. First, w? <w◦ <w‡ follows from Proposition 1 and (B.8) Proposition B.1.

By Proposition B.2, r† < r◦ < r◦ follows from (B.19). To show r? < r†, we recall that by Lemma B.3, the

solution (w?, r?) to (4.3) is given by w? =w◦+ w̃? and r? = r◦+ (w̃?− ũ?)/θ, where (w̃?, ũ?) is the solution

to (B.5)-(B.7). Because w̃? < 0 and w̃?− ũ? <−ũ† according to Lemma B.6, we thus have w? =w◦+ w̃? <w◦

and r? = r◦+ (w̃?− ũ?)/θ < r◦− ũ†/θ= r†.

The profit rank π† < π? < π◦ simply follows from the fact that (4.2) is a relaxed problem of (4.3), which

is in turn a relaxed problem of (4.9). To show that π† >π‡, we recognize from (B.5) that it is equivalent to

show

π◦− β

2λ
λc
(
ũ†
)2

= π† >π‡ = π◦− β

2λ

(
w̃‡
)2
,
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or equivalently,
√
λcũ† < w̃‡. (B.49)

By (B.12) and (B.24), (B.49) is equivalent to

λcαl∆θ+
√

(λcαl∆θ)2 + 4λλcαl∆αθ̄∆θ <
√
λcα∆θ+

√
λc(α∆θ)2 + 4λλc∆ααlθ∆θ

λcαl +
√

(λcαl)2 + 4λλcαl∆αθ̄/∆θ <
√
λcα+

√
λcα2 + 4λλc∆ααlθ/∆θ,

which always holds if the following function in x∈ [0,∞) is positive:

Υ(x) :=
√
λcα−λcαl +

√
λcα2 + 4λλc∆ααlx−

√
(λcαl)2 + 4λλcαl∆α(1 +x)> 0. (B.50)

We note that

Υ′(x) =
2λλc∆ααl [(λ

cαl)
2 + 4λλcαl∆α−λcα2]

√
λcα2 + 4λλc∆ααlx

√
(λcαl)2 + 4λλcαl∆α(1 +x)

[√
λcα2 + 4λλc∆ααlx+

√
(λcαl)2 + 4λλcαl∆α(1 +x)

] ,
whose sign is given by that of (λcαl)

2 +4λλcαl∆α−λcα2. Namely, Υ(x) is a monotonic function in x∈ [0,∞).

Therefore, to show (B.50), it suffices to show

Υ(0) =
√
λcα−λcαl−

√
(λcαl)2 + 4λλcαl∆α> 0, and (B.51)

lim
x→∞

Υ(x)>0. (B.52)

Direct calculation reveals that (B.51) hold because(√
λcα−λcαl

)2

−
(
(λcαl)

2 + 4λλcαl∆α
)

=4λc
[
α2−

√
λcααl−λ∆ααl

]
=4λc

(
1−
√
λc
)[
α2
l +λ∆ααl +

(
1 +
√
λc
)
λ(∆α)2

]
> 0.

To see (B.52), we note that

Υ(x) =
√
λcα−λcαl +

λc [α2−λcα2
l − 4λαl∆α]

√
λcα2 + 4λλc∆ααlx+

√
(λcαl)2 + 4λλcαl∆α(1 +x)

→
√
λcα−λcαl > 0 as x→∞.

This completes the proof of (B.49) and hence π† >π‡ holds.

To see that s̄† > s̄‡, we notice that it is equivalent to

s◦− β

2λ
λcũ† = s̄† > s̄‡ = s◦− β

2λ
w̃‡ ⇔ λcũ† < w̃‡,

which holds and follows immediately from (B.49).

To see that s? > s̄†, we note that

s̄† =
λcβθr†+λαh−βw◦

2λ
=
λcβθr◦+λαh−βw◦

2λ
− β

2λ
λcũ†

and hence the result follows from the fact that λw̃? +λcũ? <λcũ† in Lemma B.6. �
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Appendix C: Proofs in Section 5

Lemma C.1. In the demand potential signaling game, the unique equilibrium that survives the intuitive

criterion is the most efficient separating equilibrium. In this equilibrium, the low-demand manufacturer offers

her symmetric information contract (w◦, r◦).

Proof of Lemma C.1. We first note that Π
(
w,r

∣∣∣ λ̂, λ) is increasing in λ̂, as we compute

Πλ̂

(
w,r

∣∣∣ λ̂, λ)=

{
1
2
λ̂−2β(w− r) (w−λcr) , if β(w− r)≤ λ̂∆α,

1
2
∆αw, if β(w− r)≥ λ̂∆α.

By the weakened condition of Cho and Sobel (1990) in Engers (1987), the selection of the most efficient

separating equilibrium hinges on showing that the marginal rate of substitution (MRS) of one of signals

(i.e., w or r) for the belief λ̂ is monotonic in λ. Indeed, direct calculation reveals that the MRS of r for λ̂ is

given by

−
Πr

(
w,r

∣∣∣ λ̂, λ)
Πλ̂

(
w,r

∣∣∣ λ̂, λ) =
λc
(
λ̂∆α−β(w− r)

)
+ λ̂βw

λ̂−1β(w− r)(w−λcr)
− λ̂

w− r
, for 0≤ β(w− r)≤ λ̂∆α,

which is monotonically decreasing in λ. (For β(w− θ̂r)≥ λ̂∆α, Π
(
w,r

∣∣∣ θ̂, θ) is independent of r and λ, and

hence is irrelevant. )

The equilibrium strategy for the low-demand manufacturer follows from similar argument as in the proof

of Lemma B.2 by recognizing that π◦ = Π (w◦, r◦ | λ,λ) ≤ Π
(
w◦, r◦

∣∣∣ λ̂, λ) for any λ̂ ≥ λ, because of the

monotonicity of Π
(
w,r

∣∣∣ λ̂, λ) in λ̂. �

Lemma C.2. Any (w,r) feasible to (5.4) must satisfy w− r≤ λ∆α/β.

Proof of Lemma C.2. If w− r > λ∆α/β on the contrary, then the constraints of (5.4) imply that

Π
(
w◦, r◦

∣∣ λ,λ)≤Π
(
w,r

∣∣ λ,λ)=
1

2
w(αl + λ̄∆α−βw) = Π

(
w,r

∣∣ λ,λ)≤ π◦ = Π (w◦, r◦ | λ,λ) ,

leading to a contradiction because

Π
(
w◦, r◦

∣∣ λ,λ)−Π (w◦, r◦ | λ,λ) =
1

2
∆λr◦ [∆α−β/λ(w◦− r◦)] =

1

8β
αl∆α∆λ> 0. �

Road map of remaining proofs. Following the solution strategy similar to that in the returns risk case,

Lemma C.3 transforms price decisions into retailer’s quantity decisions; Propositions C.1 and C.2 establish

the two partial signaling benchmarks formulated in (5.7) and (5.8), respectively (including the verification of

supporting off-equilibrium beliefs). To establish the most efficient separating equilibrium formulated in (5.4),

the proof of Proposition 3 consists of identifying its direction of distortion and verifying that the pessimistic

off-equilibrium belief supports it.

Lemma C.3 (Change of Variable). For any (w,r) feasible to (5.4), let w̃ :=w−w◦ =w− αl+λ̄∆α
2β

and

ũ :=w− r− (w◦− r◦) =w− r− λ̄∆α
2β

. Then, w= αl+λ̄∆α
2β

+ w̃, r̄= w̃− ũ+ αl
2β

, and

w̃+
αl
2β
≥ ũ≥− λ̄∆α

2β
, and ũ≤ λ̄∆α

2β
. (C.1)



18 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

Furthermore,

Π
(
w,r

∣∣ λ,λ)= π◦− β

2λ̄

(
λ̄w̃2 + λ̄cũ2

)
(C.2)

Π
(
w,r

∣∣ λ,λ)≤ π◦ is equivalent to

λ̄w̃2 + λ̄cũ2 + ∆λ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
, (C.3)

and Π
(
w,r

∣∣ λ,λ)≥Π
(
w◦, r◦

∣∣ λ,λ) is equivalent to

λ̄w̃2 + λ̄cũ2 ≤ λ̄∆λ [(∆α)2 +αl∆α]

4β2
. (C.4)

Proof of Lemma C.3. By Lemma C.2, we can restrict to w− r≤ λ∆α/β. Thus, direct substitution of w̃

and ũ in (5.1) immediately yields (C.2) and

Π
(
w,r

∣∣ λ,λ)= π◦− β

2λ̄

[
λ̄w̃2 + λ̄cũ2 + ∆λ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)]

.

Using the symmetric-information expressions in Lemma 3, we thus immediately obtain (C.3) and (C.4). �

Proposition C.1. The solution to (5.7) is given by

w] =
ᾱ

2β
− 1

4β

{√
(αl∆λ)

2
+ 4λ̄∆λαh∆α−αl∆λ

}
<w◦ <w◦. (C.5)

Contract (w], r◦) can be sustained as a separating equilibrium of the demand potential signaling game if and

only if ∆λ/λ
[
1 + λ̄/(4λ)

]
≤ 4αh∆α/α2

l . In this equilibrium, the retailer’s order quantity and unsold inventory

in case of low baseline demand are given by

s̄] =
αh
4

+
1

8λ̄

{√
(αl∆λ)

2
+ 4λ̄∆λαh∆α−αl∆λ

}
> s◦, and (C.6)

q̄] =
∆α

4
+

1

8λ̄

{√
(αl∆λ)

2
+ 4λ̄∆λαh∆α−αl∆λ

}
> q◦, respectively; (C.7)

no unsold inventory results from high baseline demand realization.

Proof. We first solve the relaxed problem of (5.7) by ignoring the second constraint and will then show

that the solution to the relaxed problem automatically satisfies the ignored constraint. Using the change of

variable specified in Lemma C.3, the solution to the relaxed problem w] =w◦+ w̃] = αl+λ̄∆α
2β

+ w̃], where w̃]

is the solution to the following problem

min
λ̄∆α
2β
≥w̃≥− λ̄∆α

2β

w̃2 (C.8)

subject to w̃2 +
αl∆λ

2β

(
λ̄∆α

2β
− w̃

)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
. (C.9)

Straightforward algebra reduces (C.9) to

w̃2− αl∆λ

2β
w̃− λ̄∆λ [(∆α)2 +αl∆α]

4β2
≥ 0, (C.10)

whose left-hand side is a quadratic function of two roots. As this quadratic function is minimized at w̃ =
αl∆λ

4β
> 0, it immediately follows that the smaller (and negative) root

w̃] =
αl∆λ

4β
−

√(
αl∆λ

4β

)2

+
λ̄∆λ [(∆α)2 +αl∆α]

4β2
∈
(
− λ̄∆α

2β
,0

)
(C.11)
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minimizes (C.8). In particular, the verification of w̃] > − λ̄∆α
2β

is straightforward. Subsequently, we obtain

(C.5) by substituting the expression of w̃] into w] =w◦+ w̃].

To see that w] <w◦, we note that

w◦−w] =
1

4β

√
(αl∆λ)

2
+ 4λ̄∆λ [(∆α)2 +αl∆α]− 1

4β
(2∆λ∆α+αl∆λ)

=− αhλ∆λ∆α

β

(√
(αl∆λ)

2
+ 4λ̄∆λ [(∆α)2 +αl∆α] + 2∆λ∆α+αl∆λ

) > 0.

We now verify that the ignored constraint is satisfied. By Lemma C.3, it is equivalent to show that(
w̃]
)2 ≤ λ̄∆λ [(∆α)2 +αl∆α]

4β2
, (C.12)

which is equivalent to (by using the fact that w̃] is the root of the right-hand side of (C.10))(
w̃]
)2

=
αl∆λ

2β
w̃] +

λ̄∆λ [(∆α)2 +αl∆α]

4β2
≤ λ̄∆λ [(∆α)2 +αl∆α]

4β2
⇔ w̃] ≤ 0,

and hence obviously holds.

For contract (w], r◦) to be sustained by some equilibrium belief, we need to show that neither high- nor

low-demand manufacturer has an incentive to deviate to any off-equilibrium strategy under that belief.

• For the low-demand manufacturer, we have shown that her profit of deviating to (w], r◦) and hence

being mistaken as of high demand potential is dominated by her equilibrium profit, i.e., Π
(
w], r◦

∣∣ λ̄, λ)≤ π◦.
As any other contract (w,r) induces a belief that she is of low demand potential, the symmetric-information

(w◦, r◦) maximizes her profit Π (w,r | λ,λ) to π◦. Therefore, the low-demand manufacturer indeed has no

incentive to deviate away from her symmetric-information contract (w◦, r◦).

• For the high-demand manufacturer whose return price is restricted to r◦, it suffices to show that she

has no incentive to deviate her wholesale price to any w 6= w] and thus to be mistaken as of low demand

potential λ, i.e., Π
(
w,r◦

∣∣ λ, λ̄)≤Π
(
w], r◦

∣∣ λ̄, λ̄) for all w. Indeed, if this condition fails, no other deviation

belief λ̂ can support w], because Π
(
w,r◦

∣∣∣ λ̂, λ̄) is non-decreasing in λ̂ as pointed out in the proof of Lemma

C.1 and hence Π
(
w,r◦

∣∣∣ λ̂, λ̄)≥Π
(
w,r◦

∣∣ λ, λ̄)>Π
(
w], r◦

∣∣ λ̄, λ̄) for all λ̂≥ λ.

— For any w≤ r◦+λ∆α/β = αl/(2β) +λ∆α/β, (5.1) implies that

Π
(
w,r◦

∣∣ λ, λ̄)=
β

2

{
w

(
αl +λ∆α

β
−w

)
+λ−1

(
λcw− λ̄cr◦

)(λ∆α

β
+ r◦−w

)}
=
β

2

{
−λ−1w2 +

[
∆α

β
+
αl
β

(
1 +

λc + λ̄c

2λ

)]
w− λ̄c

λ

αl
2β

(
λ∆α

β
+
αl
2β

)}
,

which reaches its (unconstrained) maximum (calculated below) at w= λ

2

[
∆α
β

+ αl
β

(
1 + λc+λ̄c

2λ

)]
≤ αl/(2β) +

λ∆α/β:

β

2

{
λ

4

[
∆α

β
+
αl
β

(
1 +

λc + λ̄c

2λ

)]2

− λ̄c

λ

αl
2β

(
λ∆α

β
+
αl
2β

)}

=
1

8β

{
λ(∆α)2 + (λ+ λ̄)αl∆α+

[
1 +

(∆λ)2

4λ

]
α2
l

}
. (C.13)

On the other hand, (C.2) suggests that

Π
(
w], r◦

∣∣ λ̄, λ̄)=π◦− β

2λ̄

(
w̃]
)2
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=
λ̄ ((∆α)2 + 2αl∆α) +α2

l

8β
− β

2λ̄

[
αl∆λ

2β
w̃] +

λ̄∆λ [(∆α)2 +αl∆α]

4β2

]
=

1

8β

{
λ(∆α)2 + (λ+ λ̄)αl∆α+α2

l

}
− αl∆λ

4λ̄
w̃], (C.14)

where the second equality follows from (5.3) and the fact that w̃] is the root of the right-hand side of (C.10).

Therefore, to show that Π
(
w,r◦

∣∣ λ, λ̄)≤Π
(
w], r◦

∣∣ λ̄, λ̄) for all w≤ αl/(2β) +λ∆α/β, we need, by (C.13)

and (C.14),

1

8β

{
λ(∆α)2 + (λ+ λ̄)αl∆α+

[
1 +

(∆λ)2

4λ

]
α2
l

}
≤ 1

8β

{
λ(∆α)2 + (λ+ λ̄)αl∆α+α2

l

}
− αl∆λ

4λ̄
w̃],

or equivalently,

w̃] =
αl∆λ

4β
−

√(
αl∆λ

4β

)2

+
λ̄∆λ [(∆α)2 +αl∆α]

4β2
≤− λ̄αl∆λ

8βλ
,

which holds if and only if ∆λ/λ
[
1 + λ̄/(4λ)

]
≤ 4 [(∆α)2 +αl∆α]/α2

l , the assumption in the proposition.

— For w≥ r◦+λ∆α/β = αl/(2β) +λ∆α/β, (5.1) implies that

Π
(
w,r◦

∣∣ λ, λ̄)=
β

2
w

(
αl +λ∆α

β
−w

)
,

whose unconstrained maximum is achieved at w = αl+λ∆α

2β
< αl/(2β) + λ∆α/β. Therefore, the maximum

of Π
(
w,r◦

∣∣ λ, λ̄) over w ≥ αl/(2β) + λ∆α/β is achieved at w = αl/(2β) + λ∆α/β, leading us back to the

previous case.

Finally, we determine the retailer’s order quantity as well as unsold inventory. Since w]− r◦ =w◦+ w̃]−
αl
2β

= w̃] + λ̄∆α
2β
≤ λ̄∆α

β
because w̃] < λ̄∆α

2β
, all inventory is sold out in the case of high baseline demand

realization and, in particular, (3.1) implies that the retailer’s order quantity is

s̄] = sR
(
w], r◦,1, λ̄

)
=
λ̄cβr◦+ λ̄αh−βw]

2λ̄
>
λ̄cβr◦+ λ̄αh−βw◦

2λ̄
= s◦,

which yields (C.6) by substituting the expression of w] given in (C.5). By Lemma 1, again, the unsold

inventory in the case of low baseline demand realization is

q̄] =
1

2

[
∆α−β/λ̄

(
w]− r◦

)]
=

1

2

[
∆α/2−β/λ̄w̃]

]
,

from which (C.7) follows by (C.11). �

Proposition C.2. The solution to (5.8) is given by

r[ =
αl
2β

+
1

4βλc

{√
(∆λα)

2
+ 4λcλ̄∆λαh∆α−∆λα

}
∈ (r◦,w◦) . (C.15)

Contract
(
w◦, r[

)
can always be sustained as a separating equilibrium of the demand potential signaling game,

in which the retailer’s order quantity and unsold inventory in case of low baseline demand are given by

s̄[ =
αh
4

+
λ̄c

8λ̄λc

{√
(∆λα)

2
+ 4λcλ̄∆λαh∆α−∆λα

}
> s◦, and (C.16)

q̄[ =
∆α

4
+

1

8λ̄λc

{√
(∆λα)

2
+ 4λcλ̄∆λαh∆α−∆λα

}
> q◦, respectively; (C.17)

no unsold inventory results from high baseline demand realization.
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Proof. We first solve the relaxed problem of (5.8) by ignoring the second constraint and will then show

that the solution to the relaxed problem automatically satisfies the ignored constraint. Using the change of

variable specified in Lemma C.3, the solution to the relaxed problem r[ = αl
2β
− ũ[, where ũ[ is the solution

to the following problem

min
ũ∈[− λ̄∆α

2β
, λ̄∆α

2β
∧αl

2β ]
ũ2 (C.18)

subject to λ̄cũ2 + ∆λ

(
αl
2β
− ũ
)(

λ̄∆α

2β
− ũ
)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
. (C.19)

Straightforward algebra reduces (C.19) to

λcũ2− ∆λα

2β
ũ− λ̄∆λ [(∆α)2 +αl∆α]

4β2
≥ 0, (C.20)

whose left-hand side is a quadratic function of two roots. As this quadratic function is minimized at ũ =

∆λα
4βλc

> 0, it immediately follows that the smaller (and negative) root

ũ[ =
∆λα

4βλc
−

√(
∆λα

4βλc

)2

+
λ̄∆λ [(∆α)2 +αl∆α]

4β2λc
< 0 (C.21)

minimizes (C.18). Subsequently, we obtain (C.15) by substituting the expression of ũ[ into r[ = αl
2β
− ũ[. In

particular, we note that r[ = r◦ − ũ[ > r◦ and that r[ <w◦ is equivalent to ũ[ >− λ̄∆α
2β

, which indeed holds

because

ũ[ >− λ̄∆α

2β
⇔

(
∆λα

4βλc
+
λ̄∆α

2β

)2

>

(
∆λα

4βλc

)2

+
λ̄∆λ [(∆α)2 +αl∆α]

4β2λc
⇔ λcλ̄ > λ̄c∆λ.

We now verify that the ignored constraint is satisfied. Since ũ[ is a root of the right-hand side of (C.20),

we have

λ̄c
(
ũ[
)2
<λc

(
ũ[
)2

=
∆λα

2β
ũ[ +

λ̄∆λ [(∆α)2 +αl∆α]

4β2
<
λ̄∆λ [(∆α)2 +αl∆α]

4β2
, (C.22)

which shows that the ignored constraint holds by Lemma C.3.

We claim that contract
(
w◦, r[

)
can be sustained as a separating equilibrium by the retailer’s posterior

belief that the manufacturer is of high demand potential upon such a contract being offered and is otherwise

of low demand potential. To that end, we need to show that neither high- nor low-demand manufacturer has

incentive to deviate to any off-equilibrium strategy under such a posterior belief.

• For the low-demand manufacturer, we have shown that her profit of deviating to
(
w◦, r̄[

)
and hence

being mistaken as of high demand potential is dominated by her equilibrium profit, i.e., Π
(
w◦, r[

∣∣ λ̄, λ)≤ π◦.
As any other contract (w,r) induces a belief that she is of low demand potential, the symmetric-information

(w◦, r◦) maximizes her profit Π (w,r | λ,λ) to π◦. Therefore, the low-demand manufacturer indeed has no

incentive to deviate away from her symmetric-information contract (w◦, r◦).

• For the high-demand manufacturer whose wholesale price is restricted to w◦, it suffices to show that

she has no incentive to deviate her return price to any r̄ 6= r̄[ and thus to be mistaken as of low demand

potential, i.e., Π
(
w◦, r̄

∣∣ λ, λ̄)≤Π
(
w◦, r̄[

∣∣ λ̄, λ̄) for all r̄.
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— For any r̄ such that w◦− r̄ > λ∆α/β, we have, by (C.2),

Π
(
w◦, r̄[

∣∣ λ̄, λ̄)−Π
(
w◦, r̄

∣∣ λ, λ̄)=π◦− βλ̄c

2λ̄

(
ũ[
)2− β

2

[(
αl + λ̄∆α

2β

)2

−
∆λ∆α

(
αl + λ̄∆α

)
2β2

]

=
βλ̄c

2λ̄

[
λ̄2(∆α)2

4β2
+
λ̄∆λ

[
λ̄(∆α)2 +αl∆α

]
2β2λ̄c

−
(
ũ[
)2]

>
βλ̄c

2λ̄

[
λ̄∆λ [(∆α)2 +αl∆α]

4β2λc
−
(
ũ[
)2]≥ 0,

where the last inequality follows from (C.22).

— For any r̄ such that 0≤w◦− r̄≤ λ∆α/β, direct calculation from (5.1) yields

Π
(
w◦, r̄

∣∣ λ, λ̄)=
α2

8β
− ∆λ∆αα

4β
+
βλ̄c

2λ

(
λc/λ̄cw◦− r̄

)
(λ∆α/β−w◦+ r̄)

=π◦− λ̄cλ̄(∆α)2

8β
− ∆λ∆αα

4β
+
βλ̄c

2λ

(
λc/λ̄cw◦− r̄

)
(λ∆α/β−w◦+ r̄) .

Here, the quadratic equation
(
λc/λ̄cw◦− r̄

)
(λ∆α/β−w◦+ r̄) in r̄ achieves its unconstrained maximum(

∆λ
2λ̄c

w◦+ λ∆α

2β

)2

at r̄= λc+λ̄c

2λ̄c
w◦− λ∆α

2β
, which surely satisfies w◦− r̄≤ λ∆α/β and is smaller than w◦ if and

only if ∆α/ᾱ≥∆λ/(2λ̄cλ). Thus, we consider the following two cases:

∗ When ∆α/ᾱ≤∆λ/(2λ̄cλ), the quadratic equation
(
λc/λ̄cw◦− r̄

)
(λ∆α/β−w◦+ r̄) reaches it max-

imum ∆λ
λ̄c

ᾱ
2β

λ∆α

β
at r̄=w◦, leading to

Π
(
w◦, r̄

∣∣ λ, λ̄)≤ π◦− λ̄cλ̄(∆α)2

8β
− ∆λ∆αα

4β
+
βλ̄c

2λ

∆λ

λ̄c
ᾱ

2β

λ∆α

β
= π◦− λ̄cλ̄(∆α)2

8β
.

Therefore, Π
(
w◦, r̄

∣∣ λ, λ̄)≤Π
(
w◦, r̄[

∣∣ λ̄, λ̄)= π◦− βλ̄c

2λ̄

(
ũ[
)2

holds if

(
ũ[
)2 ≤( λ̄∆α

2β

)2

⇔ ũ[ ≥− λ̄∆α

2β
,

which is, by (C.21), equivalent to

∆λα

4βλc
+
λ̄∆α

2β
≥

√(
∆λα

4βλc

)2

+
λ̄∆λ∆α

(
λ̄c∆α+ ᾱ

)
4β2λc

⇔ λcλ̄≥ λc∆λ.

The last inequality above obviously holds.

∗ When ∆α/ᾱ≥∆λ/(2λ̄cλ), we have

Π
(
w◦, r̄

∣∣ λ, λ̄)≤π◦− λ̄cλ̄(∆α)2

8β
− ∆λ∆αα

4β
+
βλ̄c

2λ

(
∆λ

2λ̄c
α

2β
+
λ∆α

2β

)2

.

Therefore, Π
(
w◦, r̄

∣∣ λ, λ̄)≤Π
(
w◦, r̄[

∣∣ λ̄, λ̄)= π◦− βλ̄c

2λ̄

(
ũ[
)2

holds if(
ũ[
)2 ≤ λ̄2(∆α)2

4β2
+
λ̄∆λ∆αα

2β2λ̄c
− λ̄

λ

(
∆λ

2λ̄c
α

2β
+
λ∆α

2β

)2

=
λ̄∆λ(∆α)2

4β2
+
λ̄∆λ∆αα

4β2λ̄c
− λ̄

λ

(
∆λα

4βλ̄c

)2

.

By noticing that ũ[ binds (C.20), the above inequality can be rewritten as

∆λα

2βλc
ũ[ +

λ̄∆λ [(∆α)2 +αl∆α]

4β2λc
≤ λ̄∆λ(∆α)2

4β2
+
λ̄∆λ∆αα

4β2λ̄c
− λ̄

λ

(
∆λα

4βλ̄c

)2

,

which is, by (C.21), equivalent to

∆λα

2βλc
∆λα

4βλc
− ∆λα

2βλc

√(
∆λα

4βλc

)2

+
λ̄∆λ [(∆α)2 +αl∆α]

4β2λc
≤ λ̄(∆λ)2(∆α)2

4β2λc
+
λ̄(∆λ)2∆αα

4β2λ̄cλc
− λ̄

λ

(
∆λα

4βλ̄c

)2

.
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Letting x := 2∆α/ᾱ≥∆λ/(λ̄cλ), we can reduce the above inequality to

2 +
λ̄

λ

(
λc

λ̄c

)2

−λcλ̄
(
x2 + 2/λ̄cx

)
− 2

√
1 +

λ̄c

∆λ
λcλ̄

(
x2 + 2/λ̄cx

)
≤ 0.

The left-hand side of the above inequality is a decreasing function in x, and hence we just need to show it

holds for x := 2∆α/ᾱ= ∆λ/(λ̄cλ), which returns to the previous case.

Finally, we determine the retailer’s order quantity as well as unsold inventory. Since w◦− r[ = ũ[ + λ̄∆α
2β

<

λ̄∆α/β because ũ[ < λ̄∆α
2β

, Lemma 1 suggests that all inventory is sold out in the case of high baseline demand

realization, and in particular, (3.1) implies that the retailer’s order quantity is

s̄[ = sR
(
w◦, r̄[,1, λ̄

)
=
λ̄cβr̄[ + λ̄αh−βw◦

2λ̄
>
λ̄cβr◦+ λ̄αh−βw◦

2λ̄
= s◦,

which yields (C.16) by substituting the expression of r̄[ given in (C.15). Again, by Lemma 1, the unsold

inventory in the case of low baseline demand realization is

q̄[ =
1

2

[
∆α−β/λ̄

(
w◦− r̄[

)]
=

1

2

[
∆α/2−β/λ̄ũ[

]
,

from which (C.17) follows by (C.21). �

Proof of Proposition 3. We first claim that we can ignore the second constraint in (5.4). Indeed, as the

contract
(
w◦, r̄[

)
identified in Proposition C.2 satisfies the first constraint in (5.4), the optimal objective

value from the relaxed problem must dominate Π
(
w◦, r̄[

∣∣ λ̄, λ̄)≥Π
(
w◦, r◦

∣∣ λ, λ̄), i.e., the ignored constraint

must be satisfied by the optimal solution to the relaxed problem.

Therefore, (w??, r??) can be identified by ignoring the second constraint in (5.4). Using the change of

variable specified in Lemma C.3, we have w?? = w◦ + w̃?? = αl+λ̄∆α
2β

+ w̃?? and r?? = αl
2β

+ w̃?? − ũ??, where

(w̃??, ũ??) is the solution to the following problem

min
w̃+

αl
2β
≥ũ≥− λ̄∆α

2β
,ũ≤ λ̄∆α

2β

λ̄w̃2 + λ̄cũ2, subject to (C.3). (C.23)

We claim that − λ̄∆α
2β

< ũ?? < λ̄∆α
2β

and hence the bound constraint on ũ can be ignored. Suppose ũ?? =

± λ̄∆α
2β

. Then consider a feasible solution (0, ũ[) to the relaxed problem identified in the proof of Proposition

C.2. We then have

λ̄ (w̃??)
2

+ λ̄c (ũ??)
2 ≥ λ̄c

(
λ̄∆α

2β

)2

> λ̄ (0)
2

+ λ̄c
(
ũ[
)2
,

where the strict inequality follows from the fact that − λ̄∆α
2β

< ũ[ < λ̄∆α
2β

. This immediately contradicts the

optimality of (w̃??, ũ??), proving that − λ̄∆α
2β

< ũ?? < λ̄∆α
2β

.

We now solve (C.23) by ignoring the constraint w̃+ αl
2β
≥ ũ, which will be verified to be satisfied by the

optimal solution. The necessary condition for the optimality of (w̃??, ũ??) is that there exists a Lagarangian

multiplier ξ ≥ 0 associated with (C.3) such that

2λ̄w̃??− ξ
[
2λ̄w̃?? + ∆λ

(
λ̄∆α

2β
− ũ??

)]
=0, (C.24)

2λ̄cũ??− ξ
[
2λ̄cũ?? + ∆λ

(
2ũ??− w̃??− αl + λ̄∆α

2β

)]
=0. (C.25)
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We first note that ξ > 0. Otherwise, (C.24) and (C.25) suggest that w̃?? = ũ?? = 0, violating (C.3). Hence,

(C.3) must be binding, from which we have

∆λ

(
w̃??− ũ?? +

αl
2β

)(
λ̄∆α

2β
− ũ??

)
=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
−
[
λ̄ (w̃??)

2
+ λ̄c (ũ??)

2
]

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
−
[
λ̄02 + λ̄c

(
ũ[
)2]

=∆λ

(
αl
2β
− ũ[

)(
λ̄∆α

2β
− ũ[

)
> 0

where the inequality follows from the optimality of (w̃??, ũ??), the last equality follows from the fact that

(0, ũ[) also binds (C.3), and the last inequality follows from the fact that ũ[ < 0. Subsequently, the ignored

constraint w̃?? + αl
2β
> ũ?? is satisfied.

On the one hand, rearranging terms of (C.24) yields

2(1− ξ)λ̄w̃?? = ξ∆λ

(
λ̄∆α

2β
− ũ??

)
> 0, (C.26)

where the inequality follows from the fact that ũ?? < λ̄∆α
2β

; and rearranging terms of (C.25) yields

2(λ̄c− ξλc)ũ?? =−ξ∆λ
(
w̃?? +

αl + λ̄∆α

2β

)
< 0, (C.27)

where the last inequality follows from the fact that w̃??+ αl
2β
> ũ?? >− λ̄∆α

2β
. Therefore, we must have w̃?? 6= 0

and ũ?? 6= 0.

On the other hand, eliminating ξ from (C.24) and (C.25) yields

λ̄w̃??

λ̄cũ??
=

2λ̄w̃?? + ∆λ
(
λ̄∆α
2β
− ũ??

)
2λ̄cũ?? + ∆λ

(
2ũ??− w̃??− αl+λ̄∆α

2β

) , (C.28)

or equivalently,

λ̄w̃??

λ̄cũ??
=−

λ̄∆α
2β
− ũ??

λ̄∆α
2β
− ũ?? + w̃??− ũ?? + αl

2β

∈ (−1,0), (C.29)

where the bound follows from the fact that ũ?? < λ̄∆α
2β

and w̃?? + αl
2β
> ũ??.

Suggested by (C.26) and (C.27), we consider the following three possibilities:

1. If ξ > 1> λ̄c/λc, then (C.26) and (C.27) suggest that w̃?? < 0 and ũ?? > 0, respectively. However, this

would imply, by the binding constraint (C.3), that

λ̄ (w̃??)
2

+ λ̄c (ũ??)
2

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
−∆λ

(
w̃??− ũ?? +

αl
2β

)(
λ̄∆α

2β
− ũ??

)
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− λ̄∆λαl∆α

4β2
=
λ̄∆λ [(∆α)2 +αl∆α]

4β2
,

contradicting the optimality of (w̃??, ũ??), because another feasible solution (0, ũ[) identified in the proof of

Proposition C.2 yields an even lower value:

λ̄02 + λ̄c
(
ũ[
)2 ≤ λ̄c

λc
λ̄∆λ [(∆α)2 +αl∆α]

4β2
<
λ̄∆λ [(∆α)2 +αl∆α]

4β2
,

where the first inequality follows from (C.22). As such, this case can be ruled out.
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2. If 1> ξ > λ̄c/λc, then (C.26) and (C.27) suggest that w̃?? > 0 and ũ?? > 0, respectively. This, however,

contradicts (C.29) and hence can be ruled out.

3. As such, we must have 1 > λ̄c/λc > ξ, which implies that w̃?? > 0 and ũ?? < 0 according to (C.26)

and (C.27), respectively. Therefore, it follows immediately that w?? > w◦ and r̄?? = αl/(2β) + w̃?? − ũ?? >

αl/(2β) = r◦. It also follows from (C.29) that

λ̄w̃?? + λ̄cũ?? < 0 (C.30)

and, together with (C.28), that (
λ̄+λ

)
w̃?? +

(
λ̄c +λc

)
ũ??− αl∆λ

2β
< 0. (C.31)

By Lemma 1 and the fact that ũ?? = w?? − r̄?? − λ̄∆α
2β

, we have the unsold inventory in the case of low

baseline demand realization to be

q̄?? =
1

2
[∆α−β/λ (w??− r̄??)] =

1

2
[∆α/2−β/λũ??]> ∆α

4
= q◦,

where the inequality follows from the fact that ũ?? < 0.

Finally, we verify that the equilibrium can be sustained by the retailer’s posterior equilibrium belief that

the manufacturer is of high demand potential upon contract (w??, r??) being offered and is otherwise of

low demand potential. To that end, we need to show that neither high- nor low-demand manufacturer has

incentive to deviate to the off-equilibrium strategies under the specified belief.

• The low-demand-potential manufacturer’s profit of deviating to (w??, r??) and hence being mistaken as

of high demand potential is, by definition, dominated by her equilibrium profit according to the constraints

of (5.4): Π
(
w??, r??

∣∣ λ̄, λ)≤ π◦. Among all (w,r) 6= (w??, r??), under which the manufacturer is believed to

be of low demand potential, the symmetric-information (w◦, r◦) maximizes her profit Π (w,r | λ,λ) to π◦.

Therefore, the low-demand manufacturer indeed has no incentive to deviate from her symmetric-information

contract terms (w◦, r◦).

• For high-demand manufacturer, we need to show that she has no incentive to deviate to any (w, r̄) 6=

(w??, r??) and hence to be mistaken as of low demand potential, namely

Π
(
w,r

∣∣ λ, λ̄)≤Π
(
w??, r̄??

∣∣ λ̄, λ̄) . (C.32)

For the rest of the proof, we are to establish (C.32) and hence concludes the verification of the equilibrium

belief.

1. For w− r≥ λ∆α/β, (5.1) yields

Π
(
w,r

∣∣ λ, λ̄)=
1

2
w (αl +λ∆α−βw)≤ (αl +λ∆α)

2

8β
.

On the other hand, the optimality of (w??, r̄??) suggests

Π
(
w??, r̄??

∣∣ λ̄, λ̄)>Π
(
w◦, r̄[

∣∣ λ̄, λ̄)> 1

2
w◦
(
αl + λ̄∆α−βw◦

)
=

(
αl + λ̄∆α

)2
8β

(C.33)

from which and the previous inequality (C.32) then follows.



26 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

2. For 0≤w− r≤ λ∆α/β < λ̄∆α/β, (5.1) implies

Π
(
w,r

∣∣ λ, λ̄)=
1

2
w (αl +λ∆α−βw) +

β

2λ

(
λcw− λ̄cr

)(
r̄−w+

λ∆α

β

)
, (C.34)

in which the second term, as a quadratic function of r̄, achieves its unconstrained maximum at r̄= λ̄c+λc

2λ̄c
w−

λ∆α

2β
>w−λ∆α/β. Thus, we consider the following two cases.

(a) If λ̄c+λc

2λ̄c
w− λ∆α

2β
≥w, or equivalently, w≥ λ̄cλ∆α

β∆λ
, the quadratic function of r̄ in the second term of

(C.34) is increasing in r̄ ∈ [w−λ∆α/β,w] and thus

Π
(
w,r

∣∣ λ, λ̄)≤Π
(
w,w

∣∣ λ, λ̄)=
1

2
w (αl +λ∆α−βw) +

∆λ∆α

2
w=

1

2
w
(
αl + λ̄∆α−βw

)
≤
(
αl + λ̄∆α

)2
8β

.

Thus, (C.32) again follows from (C.33).

(b) If w−λ∆α/β < λ̄c+λc

2λ̄c
w− λ∆α

2β
≤w, or equivalently, 0≤w≤ λ̄cλ∆α

β∆λ
, we then have

Π
(
w,r

∣∣ λ, λ̄)≤Π

(
w,
λ̄c +λc

2λ̄c
w− λ∆α

2β

∣∣∣∣ λ, λ̄)
=

β

2λλ̄c

{
(λ+ λ̄)2− 4λ

4
w2 +

λλ̄c

β

(
αl +

λ+ λ̄

2
∆α

)
w+

(
λλ̄c∆α

2β

)2
}
. (C.35)

Therefore, if (λ+ λ̄)2 ≥ 4λ, the quadratic function (C.35) is convex and achieves its maximum at w= λ̄cλ∆α

β∆λ
,

which falls back to the previous case and hence is proved.

If (λ+ λ̄)2 < 4λ, the quadratic function (C.35) is concave and achieves its unconstrained maximum at

w=
2λλ̄c

β
[
4λ− (λ+ λ̄)2

] (αl + λ+ λ̄

2
∆α

)
> 0, (C.36)

which will be smaller than λ̄cλ∆α

β∆λ
if and only if

αl
∆α

+
λ+ λ̄

2
<

4λ− (λ+ λ̄)2

2∆λ
⇔ 0≤ αl

∆α
<

2

∆λ

(
λ− λ̄(λ+ λ̄)

2

)
. (C.37)

Therefore, if (C.37) does not hold, the quadratic function (C.35) achieves its maximum at w= λ̄cλ∆α

β∆λ
, which

again falls back to the previous case and hence is proved.

In the remaining proof, we will work under (C.37), which implies the maximum of the quadratic function

(C.35) to be

λλ̄c

2β

{
1

4λ− (λ+ λ̄)2

(
αl +

λ+ λ̄

2
∆α

)2

+
(∆α)2

4

}
.

By (C.2), to obtain (C.32), it suffices to show

π◦− β

2λ̄

[
λ̄ (w̃??)

2
+ λ̄c (ũ??)

2
]
≥λλ̄

c

2β

{
1

4λ− (λ+ λ̄)2

(
αl +

λ+ λ̄

2
∆α

)2

+
(∆α)2

4

}

⇔ λ̄ (w̃??)
2

+ λ̄c (ũ??)
2 ≤ λ̄

4β2

{
λ̄cλ̄ (∆α)

2−
[(

2λ− λ̄(λ̄+λ)
)

∆α−∆λαl
]2

4λ− (λ+ λ̄)2

}
, (C.38)

where the right-hand side of (C.38) is positive and, in fact, greater than

λ̄

4β2
(∆α)

2

{
λ̄cλ̄−

[
2λ− λ̄(λ̄+λ)

]2
4λ− (λ+ λ̄)2

}
=

λ̄ (∆α)
2

4β2
[
4λ− (λ+ λ̄)2

] [λλ̄c
2

+
1

2

(
λ− λ̄(λ+ λ̄)

2

)]
> 0,

where the inequalities follow from (C.37).
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By (C.23), to show (C.38), we just need to show that there exists (w̃, ũ) satisfying (C.1) and (C.3) such

that

λ̄w̃2 + λ̄cũ2 =
λ̄

4β2

{
λ̄cλ̄ (∆α)

2− (B∆α−∆λαl)
2

A

}
, (C.39)

where we adopt the abbreviation A := 4λ− (λ+ λ̄)2 and B := 2λ− λ̄(λ̄+λ) for notational convenience.

To that end, we make the following change of variable

w̃=

√
1

λ̄

x
√

1 + λ̄
1
2

2
− y

√
1− λ̄ 1

2

2

 , ũ=

√
1

λ̄c

x
√

1− λ̄ 1
2

2
+ y

√
1 + λ̄

1
2

2

 , (C.40)

we then can straightforwardly verify that

λ̄w̃2 + λ̄cũ2 = x2 + y2, (C.41)

and (C.3) can then be written as(
λ̄c +λc− ∆λ

λ̄
1
2

)
x2− λ̄

c∆λ

β

αl− λ̄
1
2 ∆α√

2(1 + λ̄
1
2 )
x+

(
λ̄c +λc +

∆λ

λ̄
1
2

)
y2− λ̄

c∆λ

β

αl + λ̄
1
2 ∆α√

2(1− λ̄ 1
2 )
y≥ λ̄cλ̄∆λ [(∆α)2 +αl∆α]

2β2
.

(C.42)

Obviously, the (w̃, ũ) defined through (C.40) by letting x = 0 and y = − λ̄
1
2

2β

√
λ̄cλ̄ (∆α)

2− (B∆α−∆λαl)
2

A

satisfies (C.39) by virtue of (C.41). It is also straightforward to verify that such (w̃, ũ) satisfies (C.1).

We now verify that it also satisfies (C.42), which implies that the corresponding (w̃, ũ) must satisfy (C.3).

To that end, plugging it to (C.42) renders it to

1

AB

{(
λ̄

1
2 ∆λ−B

)
(B−∆λz)

2
+Aλ̄cλ̄

1
2

(
Bλ̄

1
2 −∆λz2

)}
︸ ︷︷ ︸

Ψ1(z)

+

√
2λ̄c

(
1 + λ̄

1
2

)
(z+ λ̄

1
2 )

√
λ̄cλ̄− (B−∆λz)

2

A︸ ︷︷ ︸
Ψ2(z)

≥ 0,

(C.43)

where z := αl/∆α<B/∆λ according to (C.37).

When B ≤ λ̄ 1
2 ∆λ (i.e., 4λ2 ≤ λ̄(λ̄+λ)2), we immediately have the first term on the left-hand side of (C.43)

Ψ1(z)≥ 0, and hence (C.43) holds.

When B > λ̄
1
2 ∆λ (i.e., 4λ2 > λ̄(λ̄+λ)2), we recognize that

Ψ2(z)≥Ψ3(z) :=

√
2λ̄c

(
1 + λ̄

1
2

)(
z+ λ̄

1
2

)((
λ̄cλ̄
) 1

2 − B−∆λz√
A

)
,

which suggest that it suffices to show

Ψ1(z) + Ψ3(z)≥ 0, for z ∈ [0,B/∆λ] . (C.44)

Direct calculation reveals that

Ψ1(z) + Ψ3(z) = λ̄cλ̄−
B
(
B− λ̄ 1

2 ∆λ
)

A
+

√
2λ̄λ̄c

(
1 + λ̄

1
2

)((
λ̄cλ̄
) 1

2 − B√
A

)
︸ ︷︷ ︸

constant

+

2∆λ
(
B− λ̄ 1

2 ∆λ
)

A
+

√
2λ̄c

(
1 + λ̄

1
2

)((
λ̄cλ̄
) 1

2 − B− λ̄ 1
2 ∆λ√
A

)
︸ ︷︷ ︸

>0

z
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+ ∆λ


√√√√2λ̄c

(
1 + λ̄

1
2

)
A

− λ̄cλ̄
1
2

B
−

∆λ
(
B− λ̄ 1

2 ∆λ
)

AB

z2.

If the coefficient of z2 is nonnegative, then Ψ1(z) + Ψ3(z) is increasing in z and hence (C.44) follows from

Ψ1(0) + Ψ3(0)>Ψ1(0) =
∆λ

A

[(
1 + λ̄

1
2

)
B+ 2λλ̄c

]
> 0. (C.45)

If the coefficient of z2 is negative, then Ψ1(z) + Ψ3(z) is concave in z, and hence (C.44) follows from (C.45)

and

Ψ1 (B/∆λ) + Ψ3 (B/∆λ) = λ̄cλ̄
1
2

[√
2
(

1 + λ̄
1
2

)(
B/∆λ+ 2λ̄

1
2

)
−
(
B/∆λ− λ̄ 1

2

)]
> 0.

This completes the proof. �

Proof of Proposition 4. First, w?? > w◦ > w◦ > w] follows from Proposition 3 and (C.5) in Proposition

C.1.

By Proposition C.2, r[ > r◦ follows from (C.15). To show that r̄?? = αl/(2β)+w̃??− ũ?? > r̄[ = αl/(2β)− ũ[,

we now demonstrate that

w̃??− ũ?? >−ũ[, (C.46)

where ũ[ is identified in the proof of Proposition C.2. Since both
(
0, ũ[

)
and (w̃??, ũ??) bind the constraint

(C.3),
(
0, z̃[ =−ũ[

)
and (w̃??, z̃?? = w̃??− ũ??) lie on the same quadratic curve in the (w̃, z̃)-space given by

λ̄w̃2 + λ̄c (w̃− z̃)2
+ ∆λ

(
z̃+

αl
2β

)(
λ̄∆α

2β
+ z̃− w̃

)
= constant,

or equivalently,

w̃2 +λcz̃2− (λ̄c +λc)w̃z̃− αl∆λ

2β
w̃+

(αl + λ̄∆α)∆λ

2β
z̃ = constant. (C.47)

Since w̃?? > 0 and ũ??, ũ[ ∈
(
−λ̄∆α/(2β),0

)
, we just need to focus on the region Ω :={

(w̃, z̃) : w̃≥ 0 and z̃ ∈
[
w̃, w̃+ λ̄∆α/(2β)

]}
.

Total differentiation of (C.47) yields

dz̃

dw̃
=

2w̃− (λ̄c +λc)z̃− αl∆λ
2β

(λ̄c +λc)w̃− 2λcz̃− (αl+λ̄∆α)∆λ

2β

, (C.48)

where we note that the denominator (λ̄c + λc)w̃− 2λcz̃− (αl+λ̄∆α)∆λ

2β
= 2λc(w̃− z̃)−∆λ

(
w̃+ αl+λ̄∆α

2β

)
< 0.

Therefore, the region Ω is divided by the straight line 2w̃− (λ̄c +λc)z̃− αl∆λ
2β

= 0 into two segments: in the

segment where 2w̃− (λ̄c +λc)z̃− αl∆λ
2β

< (>)0, z̃ is strictly increasing (decreasing) in w̃.

Since

2w̃??− (λ̄c +λc)z̃??− αl∆λ

2β
=
(
λ̄+λ

)
w̃?? +

(
λ̄c +λc

)
ũ??− αl∆λ

2β
< 0 by (C.31),

and

2 ∗ 0− (λ̄c +λc)z̃[− αl∆λ

2β
= (λ̄c +λc)ũ[− αl∆λ

2β
< 0,

as shown in the proof of Proposition C.2, both
(
0, z̃[

)
and (w̃??, z̃??) lie on the increasing branch of the

quadratic curve in (C.47). Therefore, w̃?? > 0 suggests w̃??− ũ?? = z̃?? > z̃[ =−ũ[, namely (C.46).
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The profit rank π[ <π?? <π◦ simply follows from the fact that (4.2) is a relaxed problem of (5.4), which

is in turn a relaxed problem of (5.8). To show that π[ >π], we recognize from (C.2) that it is equivalent to

show

π◦− β

2λ̄
λ̄c
(
ũ[
)2

= π[ >π] = π◦− β

2λ̄

(
w̃]
)2
,

or equivalently, because both w̃] < 0 and ũ[ < 0,

w̃] <
√
λ̄cũ[. (C.49)

By (C.11) and (C.21), (C.49) is equivalent to√
(αl∆λ)

2
+ 4λ̄∆λ [(∆α)2 +αl∆α]−αl∆λ>

√
λ̄c

√(∆λα

λc

)2

+
4λ̄∆λ [(∆α)2 +αl∆α]

λc
− ∆λα

λc


⇔

√
(∆λα)

2
+ 4λcλ̄∆λ [(∆α)2 +αl∆α] + ∆λα>

√
λ̄c (αl∆λ)

2
+ 4λ̄cλ̄∆λ [(∆α)2 +αl∆α] +

√
λ̄cαl∆λ,

which obviously holds because ᾱ > αl >
√
λ̄cαl and λc > λ̄c. Therefore, we have shown (C.49) and hence

π[ >π].

To see that s̄] > s̄[, we notice that it is equivalent to

s◦− β

2λ̄
w̃] = s̄] > s̄[ = s◦− β

2λ̄
λ̄cũ[ ⇔ w̃] < λ̄cũ[,

which holds and follows immediately from (C.49).

To show s◦ < s̄?? < s̄[, we first claim that ũ?? > ũ[. Since both
(
0, ũ[

)
and (w̃??, ũ??) bind the constraint

(C.3), we have

λ̄c
(
ũ[
)2

+ ∆λ

(
αl
2β
− ũ[

)(
λ̄∆α

2β
− ũ[

)
=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2

>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
−
[
λ̄ (w̃??)

2
+ ∆λw̃??

(
λ̄∆α

2β
− ũ??

)]
=λ̄c (ũ??)

2
+ ∆λ

(
αl
2β
− ũ??

)(
λ̄∆α

2β
− ũ??

)
,

where the inequality follows from the fact that w̃?? > 0> ũ??. That is, the quadratic function

λ̄cũ2 + ∆λ

(
αl
2β
− ũ
)(

λ̄∆α

2β
− ũ
)
− λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
,

has ũ[ < 0 as its smaller root while takes negative value at ũ?? < 0, immediately suggesting that ũ?? > ũ[.

We thus have

λ̄w̃?? + λ̄cũ?? = λ̄ (w̃??− ũ??) + ũ?? >−λ̄ũ[ + ũ[ = λ̄cũ[, (C.50)

where we also used (C.46) to obtain the inequality.

To evaluate the retailer’s stocking quantity as well as unsold inventory, we first note that ũ?? < λ̄∆α
2β

and

hence w??− r?? = ũ?? + λ̄∆α
2β

< λ̄∆α
β
, which, according to Lemma 1, suggests that all inventory is sold out in

the case of high baseline demand. In particular, (3.1) suggests that the retailer orders

s̄[ =sR
(
w◦, r̄[,1, λ̄

)
=
λ̄cβr̄[ + λ̄αh−βw◦

2λ̄
=
λ̄cβr◦+ λ̄αh−βw◦

2λ̄
− β

2λ̄
λ̄cũ[,

s̄?? =sR
(
w??, r̄??,1, λ̄

)
=
λ̄cβr̄?? + λ̄αh−βw??

2λ̄
=
λ̄cβr◦+ λ̄αh−βw◦

2λ̄︸ ︷︷ ︸
s◦

− β

2λ̄

(
λ̄w̃?? + λ̄cũ??

)
.

Therefore, s̄?? > s◦ follows from (C.30) and s̄?? < s̄[ from (C.50). �
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Appendix D: Proofs in Section 6

The retailer’s prior belief is that the manufacturer is of a low-risk high-demand type
(
θ̄, λ̄
)

with probability

υ ∈ (0,1) and is of a high-risk low-demand type (θ,λ) with probability υc ∈ (0,1). Under a separating equi-

librium, the retailer forms belief υ̂ = υ̂(w,r) := P
[
(θ,λ) = (θ̄, λ̄)

∣∣ (w,r)] ∈ {0,1} upon being offered contract

(w,r). Accordingly, we denote

θ̂= θ̂(w,r) =:E [θ | (w,r)] = υ̂θ̄+ υ̂cθ, and λ̂= λ̂(w,r) =: E [λ | (w,r)] = υ̂λ̄+ υ̂cλ.

Consequently, the retailer’s ordering strategy is characterized by Lemma 1 and the manufacturer’s reduced-

form profit function is given by

Π (w,r | υ̂, (θ,λ)) =
1

2
w
(
αl + λ̂∆α−βw

)
+

1

2

(
λ̂cw−λcθr

)[
∆α−β/λ̂(w− θ̂r)

]+
. (D.1)

Similar to Lemmas 2 and 3, we can specialize (D.3) υ̂ ∈ {0,1} (and hence λ̂= λ and θ̂l = θ̂h = θ) to obtain

the symmetric-information contract

w◦(θ,λ) =
αl +λ∆α

2β
and r◦(θ,λ) =

αl
2βθ

, (D.2)

yielding (6.1) and (6.2).

Consequently, the retailer’s ordering strategy is characterized by Lemma 1 and the manufacturer’s reduced-

form profit function is given by

Π (w,r | υ̂, (θ,λ)) =
1

2
w
(
αl + λ̂∆α−βw

)
+

1

2

(
λ̂cw−λcθr

)[
∆α−β/λ̂(w− θ̂r)

]+
. (D.3)

As will be verified later (by identifying the supporting equilibrium belief), manufacturer of type (θ,λ)

offers the symmetric-information contract (w◦, r◦) and hence earns π◦, establishing the first statement of

Proposition 5. Thus, manufacturer of type
(
θ̄, λ̄
)

needs to distinguish herself from type (θ,λ), and, in the

most efficient separating equilibrium, offers the buyback contract according to

max
w≥θ̄r≥0

Π
(
w,r

∣∣ 1, (θ̄, λ̄)
)

subject to Π (w,r | 1, (θ,λ))≤ π◦ and Π
(
w,r

∣∣ 1, (θ̄, λ̄)
)
≥Π

(
w◦, r◦

∣∣ 0, (θ̄, λ̄)
)
,

(D.4)

where the two IC constraints are the non-mimicry condition for type (θ,λ) and (θ̄, λ̄), respectively.

Similar to Lemmas B.3 and C.3, we obtain the following (proof omitted)

Lemma D.1 (Change of Variable). Let δ :=
(
θλc− θ̄λ̄c

)
/θ̄, w̃ := w− ᾱ

2β
and ũ := w− θ̄r− λ̄∆α

2β
(that

is, w=w◦+ w̃ and r̄= r̄◦+ (w̃− ũ)/θ̄). Then,

w≥ θ̄r≥ 0 ⇔ w̃≥ ũ− αl
2β

and − λ̄∆α

2β
≤ ũ≤ λ̄∆α

2β
, (D.5)

Π
(
w,r

∣∣ 1, (θ̄, λ̄)
)

= π◦− β

2λ̄

(
λ̄w̃2 + λ̄cũ2

)
, (D.6)

Π (w,r | 1, (θ,λ))≤ π◦ ⇔ λ̄w̃2 + λ̄cũ2 + δ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
, (D.7)

Π
(
w,r

∣∣ 1, (θ̄, λ̄)
)
≥Π

(
w◦, r◦

∣∣ 0, (θ̄, λ̄)
)
⇔ λ̄w̃2 + λ̄cũ2 ≤ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ θ̄

θ

λ̄αl∆α

4β2
. (D.8)
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As before, Lemma D.1 implies that the solution to (D.4) is given by w??? = w◦ + w̃??? and r̄??? = r̄◦ +

(w̃???− ũ???)/θ̄, where (w̃???, ũ???) is the solution to

min
w̃≥ũ−αl

2β
,− λ̄∆α

2β
≤ũ≤ λ̄∆α

2β

λ̄w̃2 + λ̄cũ2, subject to (D.7), (D.9)

provided that (w̃???, ũ???) satisfies (D.8), i.e., the optimal objective value of (D.9) is bounded below by the

left-hand side of (D.8). We note that if (w̃???, ũ???) does not satisfy (D.8), then (D.4) is infeasible and hence

the most efficient separating equilibrium does not exist.

Straightforward verification yields the following

Lemma D.2. Parameter δ :=
(
θλc− θ̄λ̄c

)
/θ̄ satisfies the following properties: i) δ + λ̄c = λcθ/θ̄ > 0, ii)

δ = ∆λ − λc∆θ/θ̄, iii) δθ̄/θ = ∆λ − λ̄c∆θ/θ, iv) δ ≥ 0 ⇔ ∆θ/θ̄ ≤ ∆λ/λc, v) θ̄
θ

δ2

4λλ̄c
≥ 1 ⇔ ∆θ/θ̄ ≤ 1 −[

λ̄c/
(
1−
√
λ
)2]

(<∆λ/λc) or ∆θ/θ̄≥ 1−
[
λ̄c/

(
1 +
√
λ
)2]

(>∆λ/λc).

D.1. Case of δ < 0 (i.e., θλc < θ̄λ̄c)

Lemma D.3. For δ < 0, there exists a feasible solution (w̃, ũ) to (D.9) such that

λ̄w̃2 + λ̄cũ2 ≤ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ λ̄αl∆α

4β2
, (D.10)

and hence the optimal solution to (D.9), (w̃???, ũ???), must satisfy (D.8).

Proof. Since the objective of (D.9) is to minimize the left-hand side of (D.8), we can ignore constraint

(D.8) once the feasibility of (D.9) is established. Below, we identify such a feasible solution satisfying (D.10),

stronger than (D.8).

• If ∆λ [(∆α)2 + 2αl∆α]− δαl∆α≤ λ̄ (∆α)
2
, then

w̃= ũ=
1

2β

√
λ̄∆λ [(∆α)2 + 2αl∆α]− δλ̄αl∆α∈

(
0,
λ̄∆α

2β

]
binds (D.10) and also satisfies (D.7):

λ̄w̃2 + λ̄cũ2 + δ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
+ δ


(
w̃− ũ+

αl
2β

)
︸ ︷︷ ︸

=
αl
2β

(
λ̄∆α

2β
− ũ
)

︸ ︷︷ ︸
≤ λ̄∆α

2β

− λ̄αl∆α
4β2

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.

• Otherwise, ũ= λ̄∆α
2β

and

w̃=
1

2β

√
∆λ [(∆α)2 + 2αl∆α]− δαl∆α− λ̄cλ̄ (∆α)

2
> ũ=

λ̄∆α

2β

bind (D.10) and also satisfy (D.7):

λ̄w̃2 + λ̄cũ2 + δ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
+ δ

(w̃− ũ+
αl
2β

)(
λ̄∆α

2β
− ũ
)

︸ ︷︷ ︸
=0

− λ̄αl∆α
4β2

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
. �
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Lemma D.4. For δ < 0, (D.7) must be binding at the optimal solution to (D.9).

Proof. Suppose (w̃???, ũ???) satisfy (D.7) with strict inequality. Since w̃??? = ũ??? = 0 does not satisfy

(D.7), we thus consider the following scenarios:

• If ũ??? > 0, there must exist ε > 0 such that ũ???− ε > 0 and, by continuity of the left-hand side of (D.7)

in ũ,

λ̄ (w̃???)
2

+ λ̄c (ũ???− ε)2
+ δ

(
w̃???− ũ??? + ε+

αl
2β

)(
λ̄∆α

2β
− ũ??? + ε

)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.

As ũ??? − ε < ũ??? ≤ λ̄∆α
2β

and w̃??? ≥ ũ??? − αl
2β
> ũ??? − ε− αl

2β
, thus (w̃???, ũ???− ε) is a feasible solution to

(D.9) but contradicts the optimality of (w̃???, ũ???) because λ̄ (w̃???)
2

+ λ̄c (ũ???− ε)2
< λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
.

• If ũ??? < 0 and w̃??? > ũ???− αl
2β

, then there exists ε > 0 such that ũ??? + ε < 0, w̃??? ≥ ũ??? + ε− αl
2β

and,

by continuity of the left-hand side of (D.7) in ũ,

λ̄ (w̃???)
2

+ λ̄c (ũ??? + ε)
2

+ δ

(
w̃???− ũ???− ε+

αl
2β

)(
λ̄∆α

2β
− ũ???− ε

)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.

That is, (w̃???, ũ??? + ε) is a feasible solution to (D.9) but contradicts the optimality of (w̃???, ũ???) because

λ̄ (w̃???)
2

+ λ̄c (ũ??? + ε)
2
< λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
.

• If ũ??? < 0 and w̃??? = ũ???− αl
2β
< 0, then there exists ε > 0 such that ũ??? + ε < 0, w̃??? + ε < 0 and, by

continuity of the left-hand side of (D.7) in (w̃, ũ),

λ̄ (w̃??? + ε)
2

+ λ̄c (ũ??? + ε)
2

+ δ

(
w̃???− ũ??? +

αl
2β

)(
λ̄∆α

2β
− ũ???− ε

)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.

That is, (w̃??? + ε, ũ??? + ε) is a feasible solution to (D.9) but contradicts the optimality of (w̃???, ũ???) because

λ̄ (w̃??? + ε)
2

+ λ̄c (ũ??? + ε)
2
< λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
.

• If w̃??? < 0, using arguments similar to the case of ũ??? > 0, one can show that there exists ε > 0 such

that (w̃??? + ε, ũ???) is a feasible solution to (D.9) but contradicts the optimality of (w̃???, ũ???).

• If w̃??? > 0 and w̃??? > ũ???− αl
2β

, using arguments similar to the case of ũ??? < 0 and w̃??? > ũ???− αl
2β

,

one can show that there exists ε > 0 such that (w̃???− ε, ũ???) is a feasible solution to (D.9) but contradicts

the optimality of (w̃???, ũ???).

• If w̃??? > 0 and w̃??? = ũ???− αl
2β

, which implies that ũ??? > 0, then using arguments similar to the case of

ũ??? < 0 and w̃??? = ũ???− αl
2β

, one can show that there exists ε > 0 such that (w̃???− ε, ũ???− ε) is a feasible

solution to (D.9) but contradicts the optimality of (w̃???, ũ???). �

Lemma D.5. For δ < 0, the optimal solution to (D.9) must satisfy ũ??? = λ̄∆α
2β

or w̃??? = ũ???− αl
2β
< 0 if

and only if

∆λ≥
λ̄cmin

{
α2
l , λ̄ (∆α)

2
}

∆α(αl +αh)
. (D.11)

Proof. We first claim that (w̃???, ũ???) satisfies ũ??? = λ̄∆α
2β

or w̃??? = ũ???− αl
2β

if and only if

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
. (D.12)



Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts 33

The necessity of (D.12) follows from the fact that (w̃???, ũ???) must bind (D.7) by Lemma D.4 and that(
w̃???− ũ??? + αl

2β

)(
λ̄∆α
2β
− ũ???

)
= 0. To see the sufficiency of (D.12), we note, by (D.7), that

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2 ≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ
(
w̃???− ũ??? +

αl
2β

)(
λ̄∆α

2β
− ũ???

)
≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
,

which immediately implies that ũ??? = λ̄∆α
2β

or w̃??? = ũ???− αl
2β

.

It is straightforward to verify that w̃??? exists such that ũ??? = λ̄∆α
2β

, w̃??? ≥ ũ???− αl
2β

= λ̄∆α−αl
2β

, and (D.12)

hold, if and only if

λ̄cλ̄(∆α)2 + [(λ̄∆α−αl)+]2 ≤∆λ
[
(∆α)2 + 2αl∆α

]
= ∆λ∆α(αl +αh). (D.13)

There exists (w̃???, ũ???) such that ũ??? ∈
[
− λ̄∆α

2β
, λ̄∆α

2β

]
, w̃??? = ũ??? − αl

2β
and (D.12) hold, if and only if

there exists ũ∈
[
− λ̄∆α

2β
, λ̄∆α

2β

]
such that g(ũ) =

λ̄∆λ[(∆α)2+2αl∆α]
4β2 , where

g(ũ) := λ̄

(
ũ− αl

2β

)2

+ λ̄cũ2 =

(
ũ− λ̄αl

2β

)2

+ λ̄λ̄c
α2
l

4β2
. (D.14)

It is straightforward to verify that g
(
− λ̄∆α

2β

)
>

λ̄∆λ[(∆α)2+2αl∆α]
4β2 .

• If ∆α ≤ αl, then g(ũ) is monotonically decreasing in ũ ∈
[
− λ̄∆α

2β
, λ̄∆α

2β

]
. Thus, there exists ũ ∈[

− λ̄∆α
2β

, λ̄∆α
2β

]
such that g(ũ) =

λ̄∆λ[(∆α)2+2αl∆α]
4β2 if and only if g

(
λ̄∆α
2β

)
≤ λ̄∆λ[(∆α)2+2αl∆α]

4β2 , which is equiva-

lent to

λ̄(∆α)2− 2λ̄αl∆α+α2
l ≤∆λ

[
(∆α)2 + 2αl∆α

]
. (D.15)

Since λ̄(∆α)2−2λ̄αl∆α+α2
l ≥ λ̄cλ̄(∆α)2 = λ̄cλ̄(∆α)2 + [(λ̄∆α−αl)+]2, (D.15) also implies (D.13), which is

equivalent to (D.11).

• If ∆α > αl, then g(ũ) reaches its minimum at λ̄αl
2β
∈
[
− λ̄∆α

2β
, λ̄αl

2β

]
⊂
[
− λ̄∆α

2β
, λ̄∆α

2β

]
. Thus, there exists

ũ ∈
[
− λ̄∆α

2β
, λ̄∆α

2β

]
such that g(ũ) =

λ̄∆λ[(∆α)2+2αl∆α]
4β2 if and only if g

(
λ̄αl
2β

)
≤ λ̄∆λ[(∆α)2+2αl∆α]

4β2 , which is

equivalent to

λ̄cα2
l ≤∆λ

[
(∆α)2 + 2αl∆α

]
= ∆λ∆α(αl +αh). (D.16)

It is straightforward to verify that

— if ∆α > αl ≥
√
λ̄∆α, then λ̄cα2

l ≥ λ̄cλ̄(∆α)2 = λ̄cλ̄(∆α)2 + [(λ̄∆α − αl)+]2 and hence (D.16) also

implies (D.13), which is equivalent to (D.11);

— if
√
λ̄∆α>αl ≥ λ̄∆α, then λ̄cα2

l ≤ λ̄cλ̄(∆α)2 = λ̄cλ̄(∆α)2 + [(λ̄∆α−αl)+]2 and hence (D.13) implies

(D.16), which is equivalent to (D.11);

— if αl < λ̄∆α, then λ̄cα2
l ≤ λ̄(∆α)2 − 2λ̄αl∆α + α2

l = λ̄cλ̄(∆α)2 + [(λ̄∆α − αl)+]2 and hence (D.13)

again implies (D.16), which is equivalent to (D.11). �

Lemma D.6. For δ < 0, if (D.11) does not hold, the optimal solution to (D.9) must satisfy 0< ũ??? < λ̄∆α
2β

and ũ???− αl
2β
< w̃??? < 0.
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Proof. If (D.11) does not hold, Lemma D.5 implies that ũ??? ∈
[
− λ̄∆α

2β
, λ̄∆α

2β

)
and w̃??? > ũ???− αl

2β
. Hence,

the necessary condition for the optimality of (w̃???, ũ???) is for there to exist a Lagrangian multiplier ξ ≥ 0

associated with (D.7) such that

2λ̄w̃???− ξ
[
2λ̄w̃??? + δ

(
λ̄∆α

2β
− ũ???

)]
=0, (D.17)

2λ̄cũ???− ξ
[
2λ̄cũ??? + δ

(
2ũ???− w̃???− αl + λ̄∆α

2β

)]
≥0, with “=” if ũ??? >− λ̄∆α

2β
. (D.18)

We first note that ξ > 0 and hence (D.7) must be binding. Otherwise, (D.17) and (D.18) suggest that

w̃??? = 0 and ũ??? ≥ 0 with “=” if ũ??? >− λ̄∆α
2β

. Thus, we must have w̃??? = ũ??? = 0, which then violates

(D.7).

Using the properties in Lemma D.2 and rearranging terms of (D.17) and (D.18) yields

2λ̄(1− ξ)w̃??? =ξδ

(
λ̄∆α

2β
− ũ???

)
< 0, (D.19)

2(θ̄λ̄c− ξθλc)/θ̄ũ??? ≥− ξδ
(
w̃??? +

αl + λ̄∆α

2β

)
> 0, (D.20)

where the strict inequality follows from the fact that w̃??? + αl
2β
> ũ??? ∈

[
− λ̄∆α

2β
, λ̄∆α

2β

)
. Therefore, we must

have w̃??? 6= 0 and ũ??? 6= 0. Together with the fact that δ < 0 or equivalently θ̄λ̄c > θλc, we consider the

following three possibilities:

1. If ξ > θ̄λ̄c/(θλc)> 1, then (D.19) and (D.20) suggest that w̃??? > 0 and ũ??? < 0, respectively. However,

as (D.7) is binding, this would imply that

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ
(
w̃???− ũ??? +

αl
2β

)(
λ̄∆α

2β
− ũ???

)
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ λ̄αl∆α

4β2
,

contradicting the optimality of (w̃??, ũ??) by Lemma D.3. Hence, this case can be ruled out.

2. If θ̄λ̄c/(θλc)> ξ > 1, (D.19) and (D.20) suggest that w̃??? > 0 and ũ??? > 0, respectively. However, this

leads to contradiction, because eliminating ξ and δ from (D.17) and (D.18) would yield a contradiction

λ̄c ũ???︸︷︷︸
>0

(
λ̄∆α

2β
− ũ???

)
︸ ︷︷ ︸

>0

≤ λ̄ w̃???︸︷︷︸
>0

(
2ũ???− w̃???− αl + λ̄∆α

2β

)
︸ ︷︷ ︸

<0

.

Hence, this case again can be ruled out.

3. As such, we must have θ̄λ̄c/(θλc)> 1> ξ, which implies that w̃??? < 0 and ũ??? > 0 according to (D.19)

and (D.20), respectively, establishing the lemma. �

Lemma D.7. For δ < 0, if (D.11) does not hold, then

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2
<
λ̄cλ̄2 (∆α)

2

4β2
. (D.21)

Proof. If (D.11) does not hold, it is straight forward to verify that the quadratic function in ũ

λ̄cũ2 + δ

(
αl
2β
− ũ
)(

λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
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has a root ũ[ ∈
(

0, λ̄∆α
2β

)
. That is,

(
0, ũ[

)
binds (D.7). Thus, the optimality of (w̃???, ũ???) must imply that

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2 ≤ λ̄02 + λ̄c

(
ũ[
)2
<
λ̄cλ̄2 (∆α)

2

4β2
,

establishing (D.21). �

Proof of Proposition 5.1 and Corollary 1.1. For δ < 0, Lemma D.3 implies that the optimal solution

(w̃???, ũ???) to (D.9) must satisfy (D.8). Thus, the most efficient equilibrium, if exists, must be given by

w??? =w◦+ w̃??? and r̄??? = r̄◦+ (w̃???− ũ???)/θ̄. By Lemma D.5 and D.6, if ũ??? = λ̄∆α
2β

, then manufacturer(
θ̄, λ̄
)

induces the retailer’s unsold inventory to be

1

2

[
∆α−β/λ̄

(
w???− θ̄r̄???

)]+
=

1

2

[
∆α−β/λ̄

(
ũ??? +

λ̄∆α

2β

)]+

= 0;

otherwise, w̃??? < 0 and − αl
2β
≤ w̃??? − ũ??? < 0, which implies that w??? = w◦ + w̃??? < w◦ and r̄??? = r̄◦ +

(w̃???− ũ???)/θ̄ ∈ [0, r̄◦). We now show that if

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)

= π◦− β

2λ̄

[
λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
]
, (D.22)

then (w???,w???) can be sustained as a separating equilibrium by the retailer’s posterior belief that the

manufacturer is of type
(
θ̄, λ̄
)

upon contract (w???,w???) being offered and is otherwise of type (θ,λ).

• The manufacturer (θ,λ)’s profit of deviating to (w???, r???) and hence being mistaken as of type(
θ̄, λ̄
)

is, by definition, dominated by her equilibrium profit according to the constraints of (D.4):

Π (w???, r??? | 1, (θ,λ)) ≤ π◦. Among all (w,r) 6= (w???, r???), under which the manufacturer is believed to

be of type (θ,λ), the symmetric-information contract (w◦, r◦) maximizes her profit: Π (w,r | 0, (θ,λ)) <

Π (w◦, r◦ | 0, (θ,λ)). Therefore, the manufacturer (θ,λ) indeed has no incentive to deviate from her symmetric-

information contract terms (w◦, r◦).

• For manufacturer
(
θ̄, λ̄
)
, we need to show that she has no incentive to deviate to any (w, r̄) 6= (w???, r???)

and hence to be mistaken as of type (θ,λ), namely the condition (D.22).

Since condition ∆θ/θ̄ >∆λ/λc ≥ λ̄c
[
α2
l ∧ λ̄ (∆α)

2
]
/ [λc∆α(αl +αh)] implies δ < 0 and (D.11), Lemma D.5

implies (D.12) and hence

Π
(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)

=π◦− β

2λ̄

[
λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
]

= π◦− ∆λ [(∆α)2 + 2αl∆α]

8β
= π◦.

On the other hand, (D.3) implies that (after some simple algebra)

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

= Π (w,r | 0, (θ,λ)) +
1

2
δθ̄r̄ [∆α−β/λ(w− θr̄)]+ ≤Π (w,r | 0, (θ,λ))≤ π◦,

where we used the fact that δ < 0. Therefore, (D.22) holds.

The rest of the proof is to establish (D.22) when ∆θ/θ̄ ≥ 1−
[
λ̄c/

(
1 +
√
λ
)2]

but (D.11) does not hold,

and hence concludes the verification of the equilibrium belief.

1. For w− θr≥ λ∆α/β, (D.3) yields

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w

αl +λ∆α︸ ︷︷ ︸
α

−βw

≤ α2

8β
<
ᾱ2

8β
.

On the other hand, Lemma D.7 implies that

Π
(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)

= π◦− β

2λ̄

[
λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
]
>
λ̄cλ̄(∆α)2 + ᾱ2

8β
− β

2λ̄

λ̄cλ̄2 (∆α)
2

4β2
=
ᾱ2

8β
,

thus establishing (D.22).
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2. For 0≤w− θr≤ λ∆α/β, (D.3) implies

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w (αl +λ∆α−βw) +

β

2λ

(
λcw− θ̄λ̄cr

)(
θr̄−w+

λ∆α

β

)
, (D.23)

in which the second term, as a quadratic function of r̄ ∈
[
1/θ (w−λ∆α/β)

+
,1/θw

]
, achieves its uncon-

strained maximum at

r̄= 1/θ

[
θ̄λ̄c + θλc

2θ̄λ̄c
w− λ∆α

2β

]
= 1/θ

[(
1 +

δ

2λ̄c

)
w− λ∆α

2β

]
< 1/θw.

Thus, we consider the following three cases.

(a) For w ≥ − λ̄cλ∆α

βδ
≥ λ∆α/β ≥

(
1 + δ

2λ̄c

)−1 λ∆α

2β
(by Lemma D.2), we have 0 ≤

1/θ
[(

1 + δ
2λ̄c

)
w− λ∆α

2β

]
≤ 1/θ (w−λ∆α/β) and hence the second term of (D.23) is decreasing in

r̄ ∈ [1/θ (w−λ∆α/β) ,1/θw], implying

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,1/θ (w−λ∆α/β)

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w [αl +λ∆α−βw] .

We thus fall back to Case 1, establishing (D.22).

(b) For w ≤
(
1 + δ

2λ̄c

)−1 λ∆α

2β
≤ λ∆α/β, we have 1/θ (w−λ∆α/β) ≤ 1/θ

[(
1 + δ

2λ̄c

)
w− λ∆α

2β

]
≤ 0 and

hence the second term of (D.23) is decreasing in r̄ ∈ [0,1/θw], implying

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,0

∣∣ 0, (θ̄, λ̄)
)

=− β

2λ
w2 +

αh
2
w≤ λα2

h

8β
= Π

(
λαh
2β

,0

∣∣∣∣ 0, (θ̄, λ̄)

)
. (D.24)

• If λαl ≤
(
λ̄+ ∆λ

)
∆α, then (w,r) =

(
λαh
2β
,0
)

is a feasible solution to (D.4), because w̃ = λαh
2β
− ᾱ

2β
=

−λcαl+∆λ∆α

2β
and ũ= λαh

2β
− λ̄∆α

2β
= w̃+ αl

2β
= λαl−∆λ∆α

2β
∈
[
− λ̄∆α

2β
, λ̄∆α

2β

]
satisfy (D.7):

λ̄

(
−λ

cαl + ∆λ∆α

2β

)2

+ λ̄c
(
λαl−∆λ∆α

2β

)2

=
1

4β2

[λ̄(λc)2 + λ̄cλ2
]︸ ︷︷ ︸

≥λ̄λ̄c

α2
l + (∆λ∆α)

2
+ 2
(
λ̄λc− λ̄cλ

)
∆λαl∆α

≥ λ̄λ̄c

4β2
α2
l >

λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
,

where the last inequality follows from the fact that (D.11) does not hold. Thus, the optimality of (w???, r̄???)

implies

Π
(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)
≥Π

(
λαh
2β

,0

∣∣∣∣ 1, (θ̄, λ̄)

)
. (D.25)

Therefore, (D.22) follows from (D.24) and (D.25) by noting that

Π

(
λαh
2β

,0

∣∣∣∣ 1, (θ̄, λ̄)

)
−Π

(
λαh
2β

,0

∣∣∣∣ 0, (θ̄, λ̄)

)
=
β

2

(
λc

λ
− λ̄c

λ̄

)(
λαh
2β

)2

> 0.

• If λαl ≥
(
λ̄+ ∆λ

)
∆α, to establish (D.22) it suffices to show

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2 ≤ 2λ̄

β

[
π◦− λα2

h

8β

]
=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
+
λ̄λcα2

l

4β2
,

which holds by (D.21):

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2
<
λ̄cλ̄2 (∆α)

2

4β2
≤ λ̄cλ̄2

4β2

(
λαl
λ̄

)2

≤ λ̄λcα2
l

4β2
.
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(c) For − λ̄cλ∆α

βδ
≥ w ≥

(
1 + δ

2λ̄c

)−1 λ∆α

2β
, we have 1/θ

[(
1 + δ

2λ̄c

)
w− λ∆α

2β

]
≥ 1/θ (w−λ∆α/β)

+
and

hence

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,1/θ

[(
1 +

δ

2λ̄c

)
w− λ∆α

2β

] ∣∣∣∣ 0, (θ̄, λ̄)

)
=

1

2
w (αl +λ∆α−βw) +

β

2

θ̄λ̄c

θλ

[
δ

2λ̄c
w+

λ∆α

2β

]2

=
1

2

{
β

[
θ̄

θ

δ2

4λλ̄c
− 1

]
w2 +

[
αl +

(
λ+

θ̄

θ

δ

2

)
∆α

]
w+

θ̄λ̄cλ (∆α)
2

4βθ

}
. (D.26)

By Lemma D.2, ∆θ/θ̄≥ 1−
[
λ̄c/

(
1 +
√
λ
)2]

implies that both δ < 0 and θ̄
θ

δ2

4λλ̄c
≥ 1. Hence, the quadratic func-

tion of w in (D.35) is convex and hence reaches its maximum at either w=− λ̄cλ∆α

βδ
or w=

(
1 + δ

2λ̄c

)−1 λ∆α

2β
,

corresponding to the above two cases respectively, for which (D.22) has been established. �

D.2. Case of δ > 0 (i.e., θλc > θ̄λ̄c)

Lemma D.8. For δ > 0, the optimal solution to (D.9) that satisfies (D.8) must satisfy w̃??? > 0 and

ũ??? < 0.

Proof. First, we claim that ũ??? < λ̄∆α
2β

and w̃??? > ũ???− αl
2β

. Otherwise, ũ??? = λ̄∆α
2β

or w̃??? = ũ???− αl
2β

,

so (D.7) and (D.8) imply

λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
≤ λ̄ (w̃???)

2
+ λ̄c (ũ???)

2 ≤ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ θ̄

θ

λ̄αl∆α

4β2
,

leading to a contradiction. Thus, the necessary condition for the optimality of (w̃???, ũ???) is for there to

exist a Lagrangian multiplier ξ ≥ 0 associated with (D.7) such that

2λ̄w̃???− ξ
[
2λ̄w̃??? + δ

(
λ̄∆α

2β
− ũ???

)]
=0, (D.27)

2λ̄cũ???− ξ
[
2λ̄cũ??? + δ

(
2ũ???− w̃???− αl + λ̄∆α

2β

)]
≥0, with “=” if ũ??? >− λ̄∆α

2β
. (D.28)

We first note that ξ > 0 and hence (D.7) must be binding. Otherwise, (D.27) and (D.28) suggest that w̃??? = 0

and ũ??? ≥ 0 with “=” if ũ??? >− λ̄∆α
2β

. Thus, we must have w̃??? = ũ??? = 0, which then violates (D.7).

Using the properties in Lemma D.2 and rearranging terms of (D.27) and (D.28) yields

2λ̄(1− ξ)w̃??? =ξδ

(
λ̄∆α

2β
− ũ???

)
> 0, (D.29)

2(θ̄λ̄c− ξθλc)/θ̄ũ??? ≥− ξδ
(
w̃??? +

αl + λ̄∆α

2β

)
∈ (−∞,0), with “=” if ũ??? >− λ̄∆α

2β
, (D.30)

where the strict inequality follows from the fact that w̃??? + αl
2β
> ũ??? ∈

[
− λ̄∆α

2β
, λ̄∆α

2β

)
.

• If ũ??? =− λ̄∆α
2β

< 0, then the binding (D.7) implies

λ̄ (w̃???)
2

+ δ
λ̄∆α

β
w̃??? =A :=

λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− λ̄c

(
λ̄∆α

)2
4β2

− δ 2λ̄ᾱ∆α

4β2
. (D.31)

We claim that A≥ 0. Otherwise, it is straightforward to verify that the following quadratic equation

λ̄cũ2 + δ

(
αl
2β
− ũ
)(

λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
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has a unique root ũ\ ∈
(
− λ̄∆α

2β
,0
)

, and hence (0, ũ\) binds (D.7). However, this immediately contradicts the

optimality of (w̃???, ũ???) because

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2 ≥ λ̄c

(
λ̄∆α

2β

)2

> λ̄ (0)
2

+ λ̄c
(
ũ\
)2
.

Therefore, (D.31) immediately implies that w̃??? =

√(
δ∆α
2β

)2

+A/λ̄− δ∆α
2β
≥ 0. On the other hand, (D.29)

implies that w̃??? 6= 0. Hence, we must have w̃??? > 0, establishing the lemma.

• If ũ??? >− λ̄∆α
2β

, then (D.28) and (D.30) are binding. Together with the fact that δ > 0 or equivalently

θ̄λ̄c < θλc, we consider the following three possibilities:

1. If ξ > 1> θ̄λ̄c/(θλc), then (D.29) and binding (D.30) suggest that w̃??? < 0 and ũ??? > 0, respectively.

However, as (D.7) is binding, this would imply that

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ
(
w̃???− ũ??? +

αl
2β

)(
λ̄∆α

2β
− ũ???

)
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ λ̄αl∆α

4β2
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ θ̄

θ

λ̄αl∆α

4β2
,

violating (D.8). Hence, this case can be ruled out.

2. If 1> ξ > θ̄λ̄c/(θλc), (D.29) and binding (D.30) suggest that w̃??? > 0 and ũ??? > 0, respectively. How-

ever, this leads to contradiction, because eliminating ξ and δ from (D.27) and binding (D.28) would yield a

contradiction

λ̄c ũ???︸︷︷︸
>0

(
λ̄∆α

2β
− ũ???

)
︸ ︷︷ ︸

>0

= λ̄ w̃???︸︷︷︸
>0

(
2ũ???− w̃???− αl + λ̄∆α

2β

)
︸ ︷︷ ︸

<0

.

Hence, this case again can be ruled out.

3. As such, we must have 1> θ̄λ̄c/(θλc)> ξ, which implies that w̃??? > 0 and ũ??? < 0 according to (D.19)

and binding (D.20), respectively, establishing the lemma. �

Lemma D.9. For δ > 0, the optimal solution to (D.9) must satisfy (D.8) if ∆θ/θ≤ 2∆α/αl.

Proof. Since the objective of (D.9) is to minimize the left-hand side of (D.8), we thus just need to identify

a feasible solution to (D.9) that satisfies (D.8).

• For ∆θ/θ≤∆α/αl, it is straightforward to verify that ũ=−λ̄∆θ
θ

αl
2β

and

w̃=
1

2β

√
∆λ [(∆α)2 + 2αl∆α]− δ θ̄

θ
αl∆α− λ̄λ̄c

(
∆θ

θ
αl

)2

(by Lemma D.2) =
1

2β

√(
λ̄c

∆θ

θ
αl

)2

+ ∆λ [(∆α)2 +αl∆α] + λ̄c
∆θ

θ
α2
l

(
∆α

αl
− ∆θ

θ

)
satisfy ũ ∈

[
− λ̄∆α

2β
,0
]
, w̃− ũ+ αl

2β
≥ λ̄c∆θ

θ

αl
2β

+ λ̄∆θ
θ

αl
2β

+ αl
2β

= θ̄
θ

αl
2β

, and bind (D.8). Subsequently, (w̃, ũ) also

satisfies (D.7):

λ̄w̃2 + λ̄cũ2 + δ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ θ̄

θ

λ̄αl∆α

4β2
+ δ

(
w̃− ũ+

αl
2β

)
︸ ︷︷ ︸

≥ θ̄
θ

αl
2β

(
λ̄∆α

2β
− ũ
)

︸ ︷︷ ︸
≥ λ̄∆α

2β

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.
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• For ∆α/αl ≤∆θ/θ≤ 2∆α/αl, it is straightforward to verify that ũ=− λ̄∆α
2β

and

w̃=
1

2β

√
∆λ [(∆α)2 + 2αl∆α]− δ θ̄

θ
αl∆α− λ̄λ̄c (∆α)

2

(by Lemma D.2) =
1

2β

√
∆λ [(∆α)2 +αl∆α] + λ̄c

∆θ

θ
αl∆α− λ̄λ̄c (∆α)

2

≥ 1

2β

√
∆λ [(∆α)2 +αl∆α] +

(
λ̄c∆α

)2 ≥ λ̄c∆α

2β
> 0> ũ− αl

2β
,

bind (D.8). Subsequently, (w̃, ũ) also satisfies (D.7):

λ̄w̃2 + λ̄cũ2 + δ

(
w̃− ũ+

αl
2β

)(
λ̄∆α

2β
− ũ
)

=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
− δ θ̄

θ︸︷︷︸
≤1+ 2∆α

αl

λ̄αl∆α

4β2
+ δ

(
w̃− ũ+

αl
2β

)
︸ ︷︷ ︸

≥∆α+αl
2β

(
λ̄∆α

2β
− ũ
)

︸ ︷︷ ︸
= 2λ̄∆α

2β

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
+ δ

[
2λ̄∆α [∆α+αl]

4β2
−
(

1 +
2∆α

αl

)
λ̄αl∆α

4β2

]
=
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
+ δ

λ̄αl∆α

4β2
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
. �

Lemma D.10. Suppose δ > 0. There exists ũ� ∈
[
− λ̄∆α

2β
,0
]

such that (0, ũ�) binds (D.7) if and only if

∆θ/θ̄≤
(
λcλ̄− λ̄c∆λ

)
∆α/ (2λcᾱ) . (D.32)

Furthermore, (D.32) implies that ∆θ/θ≤ 2∆α/αl and hence that the optimal solution to (D.9) must satisfy

(D.8).

Proof of Lemma D.10. Substituting w̃= 0 into the left-hand side of (D.9) results in a quadratic convex

function in ũ,

λ̄cũ2 + δ

(
αl
2β
− ũ
)(

λ̄∆α

2β
− ũ
)
,

which takes value of δ λ̄αl∆α
4β2 <

λ̄∆λ[(∆α)2+2αl∆α]
4β2 (the right-hand side of (D.9)) at ũ = 0 and value of

λ̄c λ̄
2(∆α)2

4β2 +δ
2λ̄∆α(αl+λ̄∆α)

4β2 at ũ=− λ̄∆α
2β

. Therefore, there exists ũ� ∈
[
− λ̄∆α

2β
,0
]

such that (0, ũ�) binds (D.9)

if and only if

λ̄c
λ̄2(∆α)2

4β2
+ δ

2λ̄∆α
(
αl + λ̄∆α

)
4β2

≥ λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
(the right-hand side of (D.9)),

which reduces to (D.32) through straightforward verification. Finally, by direct verification, (D.32) implies

that ∆θ/θ̄ ≤ 2∆α/(2∆α+αl), which is equivalent to ∆θ/θ ≤ 2∆α/αl, and hence the last statement in the

lemma follows from Lemma D.9. �

Proof of Proposition 5.2 and Corollary 1.2. For δ > 0, Lemma D.8 implies that the most efficient sepa-

rating equilibrium, if exists, must be given by w??? = w◦ + w̃??? >w◦ and r̄??? = r̄◦ + (w̃???− ũ???)/θ̄ > r̄◦,

where (w̃???, ũ???) is the optimal solution to (D.9) that satisfies (D.8). We now show that if

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)

= π◦− β

2λ̄

[
λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
]
, (D.33)

then (w???,w???) can be sustained as a separating equilibrium by the retailer’s posterior belief that the

manufacturer is of type
(
θ̄, λ̄
)

upon contract (w???,w???) being offered and is otherwise of type (θ,λ).
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• The manufacturer (θ,λ)’s profit of deviating to (w???, r???) and hence being mistaken as of type(
θ̄, λ̄
)

is, by definition, dominated by her equilibrium profit according to the constraints of (D.4):

Π (w???, r??? | 1, (θ,λ)) ≤ π◦. Among all (w,r) 6= (w???, r???), under which the manufacturer is believed to

be of type (θ,λ), the symmetric-information contract (w◦, r◦) maximizes her profit: Π (w,r | 0, (θ,λ)) <

Π (w◦, r◦ | 0, (θ,λ)). Therefore, the manufacturer (θ,λ) indeed has no incentive to deviate from her symmetric-

information contract terms (w◦, r◦).

• For manufacturer
(
θ̄, λ̄
)
, we need to show that she has no incentive to deviate to any (w, r̄) 6= (w???, r???)

and hence to be mistaken as of type (θ,λ), namely the condition (D.33). The rest of the proof is to establish

(D.33) under condition ∆θ/θ̄ ≤min
{(
λcλ̄− λ̄c∆λ

)
∆α/ (2λcᾱ) ,1−

[
λ̄c/

(
1−
√
λ
)2]}

and hence concludes

the verification of the equilibrium belief.

1. For w− θr≥ λ∆α/β, (D.3) yields

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w

αl +λ∆α︸ ︷︷ ︸
α

−βw

≤ α2

8β
< π◦.

Thus, to show (D.33), it suffices to show that

λ̄ (w̃???)
2

+ λ̄c (ũ???)
2 ≤ 2λ̄

β
(π◦−π◦) =

λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
,

which indeed holds as (w̃???, ũ???) must satisfy (D.8) (with δ > 0).

2. For 0≤w− θr≤ λ∆α/β, (D.3) implies

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w (αl +λ∆α−βw) +

β

2λ

(
λcw− θ̄λ̄cr

)(
θr̄−w+

λ∆α

β

)
, (D.34)

in which the second term, as a quadratic function of r̄ ∈
[
1/θ (w−λ∆α/β)

+
,1/θw

]
, achieves its uncon-

strained maximum at

r̄= 1/θ

[
θ̄λ̄c + θλc

2θ̄λ̄c
w− λ∆α

2β

]
= 1/θ

[(
1 +

δ

2λ̄c

)
w− λ∆α

2β

]
> 1/θ (w−λ∆α/β) .

Thus, we consider the following three cases.

(a) For w ≥ λ̄cλ∆α

βδ
, we have 1/θ

[(
1 + δ

2λ̄c

)
w− λ∆α

2β

]
≥ 1/θw and hence the second term of (D.34) is

increasing in r̄ ∈
[
1/θ (w−λ∆α/β)

+
,1/θw

]
, implying

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,1/θw

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w

[
αl +

(
λ+

θ̄

θ
δ

)
∆α−βw

]
≤ 1

8β

[
αl +

(
λ+

θ̄

θ
δ

)
∆α

]2

≤ ᾱ2

8β
.

On the other hand, condition ∆θ/θ̄≤min
{(
λcλ̄− λ̄c∆λ

)
∆α/ (2λcᾱ) ,1−

[
λ̄c/

(
1−
√
λ
)2]}

implies δ > 0

(by Lemma D.2) and condition (D.32). Thus, Lemma D.10 implies that, by (D.6),

Π
(
w???, r???

∣∣ 1, (θ̄, λ̄)
)

= π◦− β

2λ̄

[
λ̄(w̃???)2 + λ̄c(ũ???)2

]
≥ π◦− β

2λ̄
λ̄c(ũ�)2 ≥ π◦− λ̄cλ̄(∆α)2

8β
=
ᾱ2

8β
,

immediately implying that (D.33) holds.

(b) For 0≤ w ≤
(
1 + δ

2λ̄c

)−1 λ∆α

2β
< λ̄cλ∆α

βδ
, we have 1/θ

[(
1 + δ

2λ̄c

)
w− λ∆α

2β

]
≤ 0 and hence the second

term of (D.34) is decreasing in r̄ ∈ [0,1/θw], implying

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,0

∣∣ 0, (θ̄, λ̄)
)

= =− β

2λ
w2 +

αh
2
w≤ λα2

h

8β
≤ ᾱ2

8β
≤Π

(
w???, r???

∣∣ 1, (θ̄, λ̄)
)
,

where the last inequality follows from the same argument in part (a). Thus, (D.33) again holds.
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(c) For
(
1 + δ

2λ̄c

)−1 λ∆α

2β
≤w λ̄cλ∆α

βδ
, we have 1/θ

[(
1 + δ

2λ̄c

)
w− λ∆α

2β

]
≤ 1/θw and hence

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w,1/θ

[(
1 +

δ

2λ̄c

)
w− λ∆α

2β

] ∣∣∣∣ 0, (θ̄, λ̄)

)
=

1

2
w (αl +λ∆α−βw) +

β

2

θ̄λ̄c

θλ

[
δ

2λ̄c
w+

λ∆α

2β

]2

=
1

2

{
β

[
θ̄

θ

δ2

4λλ̄c
− 1

]
w2 +

[
αl +

(
λ+

θ̄

θ

δ

2

)
∆α

]
w+

θ̄λ̄cλ (∆α)
2

4βθ

}
. (D.35)

Again by Lemma D.2, condition ∆θ/θ̄ ≤min
{(
λcλ̄− λ̄c∆λ

)
∆α/ (2λcᾱ) ,1−

[
λ̄c/

(
1−
√
λ
)2]}

implies that

θ̄
θ

δ2

4λλ̄c
≥ 1. Hence, the quadratic function of w in (D.35) is convex and hence reaches its maximum at either

w= λ̄cλ∆α

βδ
or w=

(
1 + δ

2λ̄c

)−1 λ∆α

2β
, corresponding to the above two cases respectively, for which (D.33) has

been established. �

D.3. Case of δ = 0 (i.e., θλc = θ̄λ̄c)

Lemma D.11. There exist at least two solutions to

λ̄w̃2 + λ̄cũ2 =
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
, (D.36)

both satisfying (D.5), one of which satisfies w̃ < 0 and w̃− ũ < 0 and the other of which satisfies w̃ > 0 and

w̃− ũ > 0.

Proof. It is straightforward to see that function g(ũ) :=
[
λ̄
(
1 + αl

λ̄∆α

)2
+ λ̄c

]
ũ2 is monotonically decreasing

in ũ∈
[
− λ̄∆α

2β
,0
]

with

g

(
− λ̄∆α

2β

)
=
λ̄2 (∆α)

2
+ 2λ̄2αl∆α+ λ̄α2

l

4β2
>
λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
, and g(0) = 0<

λ̄∆λ [(∆α)2 + 2αl∆α]

4β2
.

Thus, the Intermediate Value Theorem implies that there is a unique ũ ∈
(
− λ̄∆α

2β
,0
)

such that g(ũ) =

λ̄∆λ[(∆α)2+2αl∆α]
4β2 . Let w̃=

(
1 + αl

λ̄∆α

)
ũ < ũ. Then, (w̃, ũ) specified as such is a solution to (D.36) with w̃ < 0

and w̃− ũ < 0.

To show the existence of the other solution to (D.36), we simply let w̃ = 1
2β

√
∆λ [(∆α)2 + 2αl∆α] and

ũ= 0, which automatically satisfy w̃ > 0 and w̃− ũ > 0. �

Proof of Proposition 5.3 and Corollary 1.3. When δ = 0, it is straightforward to see that the optimal

solution (w̃???, ũ???) to (D.9) is the solution to (D.36) that satisfies (D.5). By Lemma D.11, at least two of such

solutions exist, one with w̃??? < 0 and w̃???− ũ??? < 0 and the other one with w̃??? > 0 and w̃???− ũ??? > 0.

Correspondingly, there exist two solutions to (D.4), w??? =w◦+ w̃??? and r̄??? = r̄◦+ (w̃???− ũ???)/θ̄, which

satisfies the property described in Proposition 5.1. We now show that (w???,w???) can be sustained as a

separating equilibrium by the retailer’s posterior belief that the manufacturer is of type
(
θ̄, λ̄
)

upon contract

(w???,w???) being offered and is otherwise of type (θ,λ).

• The manufacturer (θ,λ)’s profit of deviating to (w???, r???) and hence being mistaken as of type(
θ̄, λ̄
)

is, by definition, dominated by her equilibrium profit according to the constraints of (D.4):

Π (w???, r??? | 1, (θ,λ)) ≤ π◦. Among all (w,r) 6= (w???, r???), under which the manufacturer is believed to

be of type (θ,λ), the symmetric-information contract (w◦, r◦) maximizes her profit: Π (w,r | 0, (θ,λ)) <

Π (w◦, r◦ | 0, (θ,λ)). Therefore, the manufacturer (θ,λ) indeed has no incentive to deviate from her symmetric-

information contract terms (w◦, r◦).



42 Wang, Gurnani, Subramanian: The Informational Role of Buyback Contracts

• For manufacturer
(
θ̄, λ̄
)
, we need to show that she has no incentive to deviate to any (w, r̄) 6= (w???, r???)

and hence to be mistaken as of type (θ,λ), namely

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)
≤Π

(
w???, r̄???

∣∣ 1, (θ̄, λ̄)
)

=π◦− β

2λ̄

[
λ̄ (w̃???)

2
+ λ̄c (ũ???)

2
]

=π◦− ∆λ [(∆α)2 + 2αl∆α]

8β
= π◦,

which holds, because δ =
(
θλc− θ̄λ̄c

)
/θ̄= 0 and (D.3) imply that

Π
(
w,r

∣∣ 0, (θ̄, λ̄)
)

=
1

2
w (αl +λ∆α−βw) +

1

2

(
λcw− λ̄cθ̄r

)
[∆α−β/λ(w− θr)]+

=
1

2
w (αl +λ∆α−βw) +

1

2
(λcw−λcθr) [∆α−β/λ(w− θr)]+

=Π (w,r | (θ,λ),0)≤ π◦. �

Appendix E: Positive Marginal Production Cost

In this appendix, we explore the situation with a positive manufacturer’s marginal production cost, denoted

as c ≥ 0. We find that a positive marginal cost does not qualitatively impact our insights established in

the paper. That is, under asymmetric information about either returns risk or demand potential, signaling

requires the separating type (i.e., the less risky or high-demand manufacturer) to suitably distort her returns

cost away from the symmetric-information level (via the induced retailer’s regular and safety stocks). A

positive marginal production only acts to reduce the induced symmetric-information regular and safety

stocks, but it does not affect the direction of distortions relative to the symmetric-information benchmark (as

it does not enter the retailer’s quantity decision). As the only nuance, under asymmetric information about

returns risk, if the marginal cost is sufficiently high (i.e., λ∆α≤ βc < α), then it is no longer profitable for

either less risky or riskier manufacturer to induce returns, i.e., to induce the retailer to carry a safety stock

and return unsold inventory. As a result, the manufacturer’s returns risk is not relevant to the retailer and

there is no need for the manufacturer to signal her returns risk.

E.1. Returns Risk.

Given a marginal production cost c≥ 0, the manufacturer’s expected profit function (4.1) in the paper needs

to be modified as

Π
(
w,r

∣∣∣ θ̂, θ) :=(w− c)sR
(
w,r, θ̂, λ

)
− 1

2
λcθr

[
∆α−β/λ

(
w− θ̂r

)]+
=

1

2
(w− c)(α−βw) +

λc

2
(w− θr− c)

[
∆α−β/λ

(
w− θ̂r

)]+
.

It is straightforward to verify that the symmetric-information contract is given by

w◦(θ)≡ α+βc

2β
and r◦(θ)

{
∈
[
0, αl+βc−λ∆α

2βθ

]
, if λ∆α≤ βc≤ α,

= αl
2βθ

, if βc≤ λ∆α,

where we recall α= αl + λ∆α is the average baseline demand. Under the symmetric-information contract,

the retailer’s induced regular and safety stock are

s◦r =
(α−βc)+

4
and s◦s =

λc

4
(∆α−βc/λ)

+
, respectively;
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and the manufacturer’s expected profit is given by

π◦ =

[
(α−βc)+

]2
8β

+
λc
[
(λ∆α−βc)+

]2
8βλ

=
2

βλc

{
λc (s◦r)

2
+λ (s◦s)

2
}
.

In words, a positive marginal production cost acts to shift the symmetric-information wholesale price upward

and the induced regular and safety stocks downward, relative to the case of zero marginal production cost

in the paper (see Lemma 2). More specifically, regardless of the manufacturer’s type θ,

• for 0≤ βc < λ∆α<α, the retailer still orders both positive regular and safety stocks (and incurs unsold

inventory of amount s◦s/λ
c in case of low baseline demand realization) and the manufacturer earns positive

profit;

• for λ∆α ≤ βc < α, the retailer only orders positive regular stock but no safety stock (and hence no

returns regardless of baseline demand realization) and the manufacturer earns positive profit (from selling

regular stock);

• for βc≥ α, the retailer orders no regular nor safety stocks (and hence no returns regardless of baseline

demand realization) and the manufacturer earns no profit (i.e., exits the market). Thus, it is meaningful to

only focus on the parameter range βc∈ [0, α].

When returns risk θ becomes the manufacturer’s private information, the riskier manufacturer still offers

her symmetric-information contract and earns her symmetric-information profit π◦ and the less risky manu-

facturer distinguishes herself by offering a contract, say (w,r), which may need to be distorted away from her

symmetric-information counterpart. Using the same variable transformation as in the paper, we can work

with the retailer’s induced quantity decision:

regular stock sr(w) :=
1

2
(α−βw) , and

safety stock ss(w,r) :=
λc

2

[
∆α−β/λ

(
w− θ̄r

)]
.

Notably, the retailer’s quantity decision above is independent of the marginal production cost c.

Consequently, the less risky manufacturer’s profit from offering contract (w,r) can be expressed as

Π
(
w,r

∣∣ θ, θ)=π◦− 2

βλc

{
λc [s◦r − sr(w)]

2
+λ [s◦s − ss(w,r)]

2
}

︸ ︷︷ ︸
less risky manufacturer’s signaling cost

, (E.1)

and the riskier manufacturer’s gain from mimicry can be expressed as

Π
(
w,r

∣∣ θ, θ)−π◦ =λc∆θ · 2

β(λc)2θ̄

[
λcαl

2
−λcsr(w) +λs̄s(w,r)

]
s̄s(w,r)︸ ︷︷ ︸

returns cost

− 2

βλc

{
λc [s◦r − sr(w)]

2
+λ [s◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

. (E.2)

We note that (E.1) and (E.2) are exactly the same as (4.6) and (4.7) in the paper, respectively. The only

difference is that both s◦r and s◦s are lower than their counterparts in (4.6) and (4.7). We also note that

any (w,r) such that s̄s(w,r) = 0 can always make the riskier manufacturer’s gain from mimicry in (E.2)

non-positive. Thus, separation is always feasible.
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• If s◦s = 0 (i.e., λ∆α≤ βc < α), cheap separation is achievable (i.e., the symmetric-information contract

is automatically separating and the less risky manufacturer’s signaling cost is zero), because sr(w) = s◦r and

s̄s(w,r) = s◦s = 0 makes (E.2) equal to zero.

• Otherwise (i.e., βc < λ∆α and s◦s > 0), as in the returns risk case in the paper (see Section 4), the

efficient separation must entail upward distortion of the regular stock sr(w) and downward distortion of the

safety stock s̄s(w,r), which translate to downward distortion of both the wholesale and returns prices.

E.2. Demand Potential.

Given a marginal production cost c≥ 0, the manufacturer’s expected profit function (5.1) in the paper needs

to be modified as

Π
(
w,r

∣∣∣ λ̂, λ) :=(w− c)s?
(
w,r,1, λ̂

)
− 1

2
λcr

[
∆α−β/λ̂ (w− r)

]+
=

1

2
(w− c)(α̂−βw) +

1

2

[
λ̂c(w− c)−λcr

][
∆α−β/λ̂ (w− r)

]+
,

where α̂ := αl + λ̂∆α.

Accordingly, the asymmetric-information contract is given by

w◦(λ)≡ α+βc

2β
and r◦(λ)

{
∈
[
0, αl+βc−λ∆α

2β

]
, if βc≥ λ∆α,

= αl
2β
, if βc≤ λ∆α,

where α := αl + λ∆α. The corresponding retailer’s regular and safety stocks under symmetric information

are given by

s◦r(λ) =
(α−βc)+

4
and s◦s(λ) =

λc

4
(∆α−βc/λ)

+
, respectively;

and the manufacturer’s profit is given by

Π◦ (λ) =

[
(α−βc)+

]2
8β

+
λc
[
(λ∆α−βc)+

]2
8βλ

=
2

βλc

{
λc [s◦r(λ)]

2
+λ [s◦s(λ)]

2
}
.

Again, the effect of a positive marginal production cost is only to shift the symmetric-information wholesale

price upward and the induced regular and safety stocks downward, relative to the case of zero marginal

production cost in the paper (see Lemma 3). In particular, when βc≥ λ∆α, the retailer’s safety stock becomes

zero (and hence no returns regardless of baseline demand realization).

For subsequent notational convenience, we denote

s̄◦r =s◦r(λ̄), s̄◦s = s◦s(λ̄), π◦ = Π◦
(
λ̄
)

; and

s◦r =s◦r(λ), s◦s = s◦s(λ), π◦ = Π◦ (λ) .

When demand potential λ becomes the manufacturer’s private information, the low-demand manufacturer

still offers her symmetric-information contract and earns her symmetric-information profit π◦ and the high-

demand manufacturer distinguishes herself by offering a contract, say (w,r), which may need to be distorted

away from her symmetric-information counterpart. Using the same change of variables as in the paper, we

will work with the retailer’s induced quantity decision:

regular stock s̄r(w) :=
1

2
(ᾱ−βw) , and
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safety stock s̄s(w,r) :=
λ̄c

2

[
∆α−β/λ̄ (w− r)

]
.

Again, we note that the retailer’s quantity decision above is independent of the marginal production cost c.

Subsequently, the high-demand manufacturer’s profit from offering contract (w,r) can be expressed as

Π
(
w,r

∣∣ λ,λ)=π◦− 2

βλ̄c

{
λ̄c [s̄◦r − s̄r(w)]

2
+ λ̄ [s̄◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
high-demand manufacturer’s signaling cost

, (E.3)

and the low-demand manufacturer’s gain from mimicry can be similarly expressed as

Π
(
w,r

∣∣ λ,λ)−π◦ =π◦−π◦− 2

βλ̄c

{
λ̄c [s̄◦r − s̄r(w)]

2
+ λ̄ [s̄◦s − s̄s(w,r)]

2
}

︸ ︷︷ ︸
signaling cost

−∆λ · 2

β(λ̄c)2

[
λ̄cαl

2
− λ̄cs̄r(w) + λ̄s̄s(w,r)

]
s̄s(w,r)︸ ︷︷ ︸

returns cost under contract (w,r)

. (E.4)

We note that (E.3) and (E.4) are exactly the same as (5.5) and (5.6) in the paper, respectively. The only

difference is that both s◦r and s◦s are lower than their counterparts in (5.5) and (5.6). We claim that the

low-demand manufacturer’s gain from mimicry must be non-positive for some s̄r(w) ∈ [0, s̄◦r ] and s̄s(w,r) ∈
[s̄◦s,

λ̄c

2
∆α]. Namely, separation is always feasible. Indeed, substituting s̄r(w) = 0 and s̄s(w,r) = λ̄c

2
∆α into

(E.4) yields

Π
(
w,r

∣∣ λ,λ)−π◦ =π◦−π◦− 2

βλ̄c

{
λ̄c (s̄◦r)

2
+ λ̄

[
s̄◦s −

λ̄c

2
∆α

]2

+
λ̄c

4
∆λ∆αᾱ

}

=−π◦− 2

βλ̄c

{
λ̄

[
s̄◦s −

λ̄c

2
∆α

]2

− λ̄ [s̄◦s]
2

+
λ̄c

4
∆λ∆αᾱ

}
≤ 0,

where we note that (i) if s̄◦s = 0, then
[
s̄◦s − λ̄c

2
∆α
]2− [s̄◦s]

2 ≥ 0, and (ii) if s̄◦s > 0, then[
s̄◦s −

λ̄c

2
∆α

]2

− [s̄◦s]
2

=

[
λc

4
(∆α+βc/λ)

]2

−
[
λc

4
(∆α−βc/λ)

]2

≥ 0.

Therefore, as in the demand potential case in the paper (see Section 5), the efficient separation must entail

downward distortion of the regular stock s̄r(w) and upward distortion of the safety stock s̄s(w,r), which

translate to upward distortion of both the wholesale and returns prices. In particular, as verified below,

cheap separation is not achievable.

• If s̄◦s > 0 and s◦s > 0 (i.e., βc < λ∆α< λ̄∆α), substituting s̄r(w) = s̄◦r and s̄s(w,r) = s̄◦s into (E.4) yields

positive mimicry gain for the low-demand manufacturer:

Π
(
w,r

∣∣ λ,λ)−π◦ =
∆λ

8β

[
(∆α)2− (βc)2

λ̄λ
+αl∆α+

βc

λ̄
αl

]
> 0.

• If s̄◦s > 0, s◦s = 0 and s◦r > 0 (i.e., λ∆α≤ βc <min{α, λ̄∆α}), substituting s̄r(w) = s̄◦r and s̄s(w,r) = s̄◦s

into (E.4) yields positive mimicry gain for the low-demand manufacturer:

Π
(
w,r

∣∣ λ,λ)−π◦ =
1

8β

[
(ᾱ−βc)2 + (λ̄c/λ̄)(λ̄∆α−βc)2− (α−βc)2− (∆λ/λ̄)αl(λ̄∆α−βc)

]
=

1

8β

[
(1/λ̄)(λ̄∆α−βc)2− (λ∆α−βc)2 + (2−∆λ/λ̄)αl(λ̄∆α−βc)

+2αl(βc−λ∆α)]> 0.
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• If s̄◦s > 0, s◦s = 0 and s◦r = 0 (i.e., λ∆α< α≤ βc < λ̄∆α and hence αl <∆λ∆α), substituting s̄r(w) = s̄◦r

and s̄s(w,r) = s̄◦s into (E.4) yields positive mimicry gain for the low-demand manufacturer:

Π
(
w,r

∣∣ λ,λ)−π◦ =
1

8β

[
(ᾱ−βc)2 + (λ̄c/λ̄)(λ̄∆α−βc)2− (∆λ/λ̄)αl(λ̄∆α−βc)

]
=

1

8β

[
α2
l + (1/λ̄)(λ̄∆α−βc)2 + (2−∆λ/λ̄)αl(λ̄∆α−βc)

]
> 0.

• If s̄◦s = 0, s◦s = 0 and s̄◦r > s◦r > 0 (i.e., λ∆α < λ̄∆α ≤ βc < α and hence αl > ∆λ∆α), substituting

s̄r(w) = s̄◦r and s̄s(w,r) = s̄◦s into (E.4) yields positive mimicry gain for the low-demand manufacturer:

Π
(
w,r

∣∣ λ,λ)−π◦ =
1

8β

[
(ᾱ−βc)2− (α−βc)2

]
> 0.

• If s̄◦r > 0, s̄◦s = 0, s◦s = 0 and s◦r = 0 (i.e., λ∆α < max{λ̄∆α,α} ≤ βc < ᾱ), substituting s̄r(w) = s̄◦r and

s̄s(w,r) = s̄◦s into (E.4) yields positive mimicry gain for the low-demand manufacturer:

Π
(
w,r

∣∣ λ,λ)−π◦ =
1

8β
(ᾱ−βc)2 > 0.
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