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Abstract

While there is a rich literature on methods for computing the curvature of discrete sur-
faces, the case of discrete surfaces with boundary is often ignored. We show how to compute
curvature measures for discrete surfaces with boundary using the theory of normal cycles.
Our curvature formulae for discrete surfaces exhibit boundary terms not seen in previous
formulae. We also derive error bounds comparing the curvature measure of a discrete surface
to the curvature measure of a smooth surface that it approximates.

1 Introduction

Understanding the curvature of anatomical surfaces is important for biomedical applications.
Examples of anatomical surfaces include heart and brain surfaces. Quantifying the structure
of these anatomical surfaces can enhance our understanding of anatomical function and help
us identify diseases. Anatomical surfaces can be studied by extracting discrete surfaces
approximating the anatomical surface from 3D imaging data. We represent these discrete
surfaces using triangular surface meshes, i.e. a surface formed as the union of triangles
whose vertices lie on our discrete surface. Thus the problem of computing the curvature
of anatomical surfaces reduces to the question of how to compute the curvature of discrete
surfaces.

There is a rich literature of methods for estimating the curvature of smooth surfaces using
approximating discrete surfaces. One approach is to use finite element analysis, approximat-
ing the curvature at a vertex using approximating polynomials [14]. An approach combining
finite element and finite volume analysis has been used by Meyer, at el., to approximate the
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Beltrami-Laplace operator and curvature [7]. Another common approach is to compute cur-
vature measures which quantify the average curvature over regions in a surface [13], [10]. We
generalize an approach due to Cohen-Steiner and Morvan that uses the concept of a normal
cycle from geometric measure theory to compute curvature measures [10]. The advantage of
this approach is that the curvature of a large class of surfaces, including both smooth and
discrete surfaces, can be computed in terms of normal cycles. Another advantage is that
Cohen-Steiner and Morvan showed how to use geometric measure theory to compute error
bounds on the difference of the curvature measures of a smooth surface and an approximat-
ing discrete surface. However, Cohen-Steiner and Morvan developed their theory only for
smooth and discrete surfaces without boundary. When studying anatomical surfaces, one of-
ten considers surfaces with boundary in order, for example, to study localized regions of the
brain and to avoid the problem of large-scale heterogeneties in the data due to imperfections
in the MRI data collection process. Thus, it is important to have a principled approach to
the computation of the curvature of discrete surfaces with boundary, complete with error
bounds on curvature estimates.

In this thesis, we will show how to compute the curvature of discrete surfaces with bound-
ary using normal cycles. We will focus on computing the Gauss curvature and mean curvature
normal of surfaces with boundary. Gauss curvature is an intrinsic property of surfaces which
can be computed in terms of distance and angles on the surface and is independent of how the
surface is embedded in three-dimensional space. Mean curvature is important in area mini-
mization problems and in smoothing algorithms. For technical reasons, we analyze the mean
curvature normal, which is a vector-valued curvature whose length is the mean curvature at
each point. We also show how to compute the vector second fundamental form, which is a
bilinear form that encodes the principle curvatures of a surface. The thesis concludes with a
proof of a convergence theorem describing how the curvature of a discrete surface converges
to the curvature of a smooth surface that it approximates as the mesh size converges to zero.
This convergence theorem parallels the error bounds given by Cohen-Steiner and Morvan [9].
However, the theorem and its proof are more involved for surfaces with boundary.

The structure of this thesis is as follows. We will begin in Section 1 with an overview of
basic concepts in differential geometry and geometric measure theory. In particular, we will
discuss how curvature is computed on smooth surfaces. In Section 2, we provide concrete
definitions of the normal cycle of smooth and discrete surfaces with boundary. These defini-
tions are consistent with the abstract definition of the normal cycle of subanalytic sets given
in [3]. In Sections 3, 4, and 5, we use the normal cycle to compute explicit formulae for the
Gauss curvature, mean curvature normal, and vector second fundamental form for smooth
and discrete surfaces with boundary. In Section 6, we state and prove the convergence the-
orem. We will first prove a general convergence theorem comparing the curvature measures
of a region on a discrete surface and its image under a Lipschitz homeomorphism from the
discrete surface to the smooth surface. We will then derive a more explicit version of the
theorem using an explicit homeomorphism between the discrete and smooth surfaces.

2 Background material

2.1 Smooth manifolds in Rm

We begin by considering the concept of a manifold. We formally define an n-dimensional
topological manifold M to be a topological space such that for each point p ∈ M , there is
an open neighborhood U of p in M and a continuous bijective mapping x : D → U , where
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D is an open set in Rn. In other words, we can parameterize M locally using maps x. We
will only be considering submanifolds of Euclidean spaces Rm. In this case, we say a map
x : D → Rm, D ⊆ Rn, is smooth if x is infinitely differentiable and we say x is regular if its
Jacobian has rank n [12, p. 38]. A topological manifold M ⊆ Rm is a smooth manifold if for
every point p ∈ M there is smooth regular map x : D → M , where D ⊆ Rn is open, such
that p ∈ x(D). The smooth regular maps x are called patches [12, p. 125-126]. Examples
of manifolds in R3 include curves, surfaces, and R3 itself. We say a mapping f : M1 → M2

between smooth manifolds is a smooth map if y−1 ◦ f ◦ x is infinitely differentiable for any
patches x of M1 and y of M2 [12, p. 160].

We will be interested in studying surfaces such as the closed unit disk which is not included
in our current definition of a smooth manifold. Thus we define an n-dimensional manifold
with boundary to be a topological space M for which given a point p ∈M , there is an open
neighborhood U of p in M and a continuous bijective mapping x : D → U , where D is either
an open set in Rn or an open set of the half plane {(x1, ..., xn) : xn > 0} [11, p. 200]. As
before, we say M is a smooth manifold with boundary if we can always choose such maps
x so that they are smooth and regular and we will refer to the smooth regular maps x as
patches [11, p. 201]. We say a point p ∈ M lies in the interior of M if p there is an open
neighborhood U of p in M and a continuous bijective mapping x : D → U , where D is an
open set in Rn. The set of all points that lie in the interior of M is called the interior of M
and is denoted by intM . We say a point p ∈M lies on the boundary of M if p 6∈ intM . The
set of all points p that lie on the boundary of M is called the boundary of M and is denoted
by ∂M [11, p. 205]. If ∂M = ∅, we say M is a manifold without boundary. For every point
p ∈ ∂M , there is a map x : [0, 1)× (0, 1)n−1 → M such that p = x(0, u1, ..., un−1) ∈ ∂M for
some ui ∈ (0, 1), i = 1, 2, ..., n− 1. When M has a boundary, ∂M is an (n− 1)-dimensional
manifold since the map y : (−1, 1)n−1 → M defined by y(u1, ..., un−1) = x(0, u1, ..., un−1) is
a patch for ∂M .

To study the geometry of a manifold, we introduce the concept of a vector. A vector ~v
at a point p ∈ Rm can be regarded as a directed line segment from p to the point p+~v. The
set of all tangent vectors at p will be denoted by TpRm. We know TpRm is a vector space
isomorphic to Rm under the canonical isomorphism mapping the directed line segment from
p to the point p+ ~v to the point ~v in Rm. Given any n-dimensional manifold M in Rm, we
define TpM to be the set of velocity vectors at p to curves lying in M and passing through
p. Note that TpM is an n-dimensional vector subspace of TpRm. Given a patch x : D →M ,

D ⊂ Rn, the set of vectors
{
∂x
∂xi

: i = 1, 2, ..., n
}

is a basis for TpM . The tangent bundle
to M is the the manifold TM defined by TM =

⋃
p∈M TpM . There is a projection map

π : TM → M defined by π(~v) = p for all vectors ~v ∈ TpM . We define a vector field on M

to be a mapping ~X : M → TM that assigns to every point p ∈ M a vector ~X(p) ∈ TpM .
A vector field ~X is a smooth if it is a smooth mapping between manifolds ~X : M → TM .
We can also regard vectors and vector fields to be differential operators on smooth functions
f : M → R. Given a vector field ~X on M ⊆ Rm, ~X(f) : M → R is the function whose value
at a point p ∈M is the directional derivative of f in the direction ~X(p).

Let M ⊆ Rm be an n-dimensional smooth manifold. A frame at p ∈ M is an ordered
n-tuple of n linearly independent vectors (~v1, ~v2, ..., ~vn), where ~vj ∈ TpM for all j. An
orientation at p ∈ M is an equivalence class of frames which is defined as follows. Given
two frames (~v1, ~v2, ..., ~vn) and (~w1, ~w2, ..., ~wn), let P be the change of basis matrix from the
basis {~v1, ~v2, ..., ~vn} to the basis {~w1, ~w2, ..., ~wn}. We say (~v1, ~v2, ..., ~vn) and (~w1, ~w2, ..., ~wn)
have the same orientation if det(P ) > 0 and (~v1, ~v2, ..., ~vn) and (~w1, ~w2, ..., ~wn) have the
different orientations if det(P ) < 0. Thus orientation is an equivalence relation on frames
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with precisely two equivalence classes. We often choose one equivalence class so that all the
frames in that equivalence class are said to be positively oriented and all the frames in the
other equivalence class are said to be negatively oriented. We say that M ⊆ Rm is orientable
if there is choice of orientation at each point of M such that given any two continuous
frame fields ( ~X1, ~X2, ..., ~Xn) and (~Y1, ~Y2, ..., ~Yn) on a connected open subset U ⊆ M , either
( ~X1(p), ~X2(p), ..., ~Xn(p)) and (~Y1(p), ~Y2(p), ..., ~Yn(p)) have the same orientation at every p ∈ U
or ( ~X1(p), ~X2(p), ..., ~Xn(p)) and (~Y1(p), ~Y2(p), ..., ~Yn(p)) have different orientations at every
p ∈ U . For the rest of this paper we will only consider smooth manifolds that are orientable.
In the case that M is an oriented surface in R3, we can associate an orientation with a choice
of a unit normal field ~U on M by declaring a frame ( ~X1, ~X2) at p ∈M positively oriented if
~U(p) and ~X1× ~X2 have the same direction. The boundary of an oriented manifold M is also
an oriented manifold. Suppose M ⊆ R3 is a orientable smooth surface with boundary and
let (~T , ~V , ~U) be the orthonormal frame field, called the Darboux frame, on ∂M such that ~T
is tangent to ∂M , ~V is tangent to M and directed into M , and ~U is the positive unit normal
field to M . We can define an orientation on ∂M by letting ~T be a positively oriented vector
field on ∂M if (~T , ~V ) is a positively oriented frame field on M .

2.2 Differential forms

Before discussing differential forms, we will consider the general concept of a dual vector
space. Given a vector space V , we define the dual vector space of V to be V ∗ = Hom(V,R),
the set of all linear transformations from V to R. Given a basis {~v1, ~v2, ..., ~vn} of V , we define
the dual basis {ω1, ω2, ..., ωn} for V ∗ so that ωi(~vj) = 1 if i = j and ωi(~vj) = 0 if i 6= j. It can
be shown that a dual basis is in fact a basis for V ∗ and as a consequence V ∗ is isomorphic
to V .

Now let M be an n-dimensional manifold in Rm and p be a point in M . The space
of 1-forms on M at p, denoted by T ∗pM , is the dual vector space of TpM . An element
ωp ∈ T ∗pM is called a 1-form and is a linear functional on TpM which assigns to each vector
~v ∈ TpM a real number ωp(~v). A common example of a 1-form on R3 is the differential dg
of a smooth function g : R3 → R. We define dg by dg(~v) = ~v(g) for all v ∈ TpR3. Since
(λ~v + ~w)(g) = λ~v(g) + ~w(g) for all vectors ~v, ~w ∈ TpR3 and for any scalar λ ∈ R, dg is a
linear operator on vectors. We can consider the differentials of the coordinate functions x, y,
and z. Given a vector ~v = (v1, v2, v3), the 1-forms dx, dy, dz satisfy dx(~v) = v1, dy(~v) = v2,
and dz(~v) = v3. One can show that at a point p ∈ R3, dx, dy, dz form a dual basis for T ∗pR3

corresponding to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of TpR3. Hence we can represent every
1-form ωp ∈ T ∗pR3 in the familiar form ωp = g1dx+ g2dy+ g3dz, where the gi are real-valued
functions of the points p in M .

The space T ∗M =
⋃
p∈M T ∗pM is the cotangent bundle to M and is a 2n-dimensional

manifold. There is a projection map π : T ∗M → M defined by π(ω) = p for all vectors
ω ∈ T ∗pM . To every vector field ~X on M , we can associate a 1-form on M , also denoted
by ~X, defined by ~X(~Y ) = ~X • ~Y for all ~Y ∈ TR3. At each point p ∈ M , the mapping
from the vector ~v ∈ TpM to the corresponding 1-form ~v ∈ T ∗pM is an isomorphism between
TpM and T ∗pM . In particular, given an orthonormal basis {~v1, ~v2, ..., ~vn} of TpM , the set of
corresponding 1-forms {~v1, ~v2, ..., ~vn} is the corresponding dual basis for T ∗pM .

An important operation on 1-forms is the pullback operation. Let f : M1 → M2 be a
smooth map between smooth manifolds M1 and M2. For a vector ~v ∈ TpM1, we define the
pushforward of ~v to be the vector f∗~v ∈ TpM2 such that for any smooth function g : M2 → R,
f∗~v(g) = ~v(g ◦ f). By duality, we define the pullback (f∗ω)p of a 1-form ωf(p) ∈ T ∗f(p)M2 to
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be the 1-form in T ∗pM1 such that (f∗ω)p(~v) = ωf(p)(f∗~v) for any vector ~v ∈ TpM1.
We will primarily be working with 1-forms of the following form on TR3. We will regard

TR3 as TR3 ' Ep × En, where Ep ' R3 is called the point space and En ' R3 is called
the normal space. An element in TR3 can therefore be written as (p, n), where p ∈ En is a
point in space and n ∈ En is a vector at the point p. We will also study the manifold TR3.
A vector in T(p,n)(TR3) can be written as (~v1, ~v2), where ~v1 ∈ TEp and ~v2 ∈ TEn. Since
TR3 ' Ep × En, the differential form associated with (~v1, ~v2) ∈ T (TR3), which we will also
denote by (~v1, ~v2) satisfies (~v1, ~v2)((~w1, ~w2)) = ~v1 • ~w1 + ~v2 • ~w2 for all (~w1, ~w2) ∈ T (TR3).

A 2-form ω is a bilinear functional which at every point p ∈ M assigns to every pair
of vectors ~v1, ~v2 ∈ TpM a real number ωp(~v1, ~v2) such that ωp(~v1, ~v2) = −ωp(~v2, ~v1). Given
1-forms ω1 and ω2, we define the 2-form ω1 ∧ ω2 by

(ω1 ∧ ω2)(~v1, ~v2) =
∣∣∣∣ ω1(~v1) ω2(~v1)
ω1(~v2) ω2(~v2)

∣∣∣∣ .
Given a smooth map f : M1 →M2 between smooth manifolds M1 and M2 and a 2-form ω on
M2, we define the pullback of ω to be the 2-form f∗ω defined by (f∗ω)(v1, v2) = ω(f∗~v1, f∗~v2).
We define the exterior differentive operator d from k-forms to (k+1)-forms to be the unique
operator that satisfies the following properties:

1. d(a1ω1 + a2ω2) = a1dω1 + a2dω2 for k-forms ω1 and ω2 and a1, a2 ∈ R,

2. d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)jω1 ∧ dω2 for any j-form ω1 and k-form ω2, and

3. d(dω) = 0 for any differential form ω.

Thus the exterior derivative a 1-form ω =
∑m

i=1 gidxi on Rm is the 2-form dω =
∑m

i=1 dgi∧dxi.
Given a smooth map f : M1 → M2 between smooth manifolds M1 and M2, the chain rule
implies d(f∗ω) = f∗d(ω) for any k-form ω.

2.3 Triangulated surfaces in R3

A triangulated surface T ⊆ R3 is a 2-dimensional topological manifold that is the finite union
of closed triangles. The closed triangles will be referred to as the faces of T . We further
require that any two distinct faces of T must either be disjoint, intersect each other at a
common edge, or intersect each other at a common vertex. The closure of the edges of the
faces of T are called the edges of T and the vertices of the faces of T are called the vertices
of T .

An orientation of a triangular face of T is an ordering v1, v2, v3 of the vertices of the
triangle. We denote such an oriented triangle by [v1, v2, v3]. We say two orientations are the
same if they differ from each other by an even permutation of the vertices. For example, the
oriented triangles [v1, v2, v3] and [v2, v3, v1] have the same orientation, where as [v1, v2, v3]
and [v1, v3, v2] have opposite orientations. An orientation of an edge of a triangle is an
ordering v1, v2 of the vertices of the edge. We will denote such an oriented edge by [v1, v2].
An edge with vertices v1 and v2 has precisely two orientations, [v1, v2] and [v2, v1], so we
say the oriented edges [v1, v2] and [v2, v1] have opposite orientations. An oriented triangle
induces an orientation on its edges by [v1, v2], [v2, v3], and [v3, v1] being the oriented edges
of [v1, v2, v3]. We say a triangulated surface T is orientable if each face of T can be oriented
so that whenever two faces share a common a edge, the orientations induced by the faces on
the edge are opposite orientations.
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2.4 Currents

A k-dimensional current S on M is a linear functional which assigns to every smooth k-form
ω onM a real number S(ω). We will often write 〈S, ω〉 = S(ω). The degree of a k-dimensional
current on Rm is m − k. The support, sptS, of a current S is the smallest closed set such
that if a differential form ω is zero almost everywhere on sptS, then S(ω) = 0. We restrict
our attention to k-dimensional currents with compact support to ensure that S(ω) is finite
for all smooth k-forms ω.

Given two k-dimensional currents S1 and S2 and scalars α1, α2 ∈ R, α1S1 + α2S2 is the
current defined by (α1S1 + α2S2)(ω) = α1S1(ω) + α2S2(ω). Given a map f : M1 → M2

between smooth manifolds M1 and M2, the pushforward of a current S on M1 is the current
f#S on M2 defined by f#S(ω) = S(f∗ω). We define the boundary of a k-current S by
∂S(ω) = S(dω). A cycle is a current S such that ∂S = 0. Given a k-dimensional current
S and a smooth j-form η with j ≤ k, (η ∧ S) is the (k − j)-dimensional current defined by
(η ∧ S)(ω) = (−1)jkS(η ∧ ω).

We can associate to every closed, compact, oriented smooth k-dimensional manifold M
in Rm a current [M ] defined by

[M ](ω) =
∫
M
ω,

for any k-form ω. Also, for a point p ∈ Rm, we define [p] the be the 0-dimensional current
such that [p](g) = g(p) for any function f : M → R. In the context of currents associated
with a surface M ⊂ R3, the operations defined above have special interpretations. Given an
injective map f : M → R3, the pushforward of [M ] satisfies f#[M ] = [f(M)] and thus for
any 2-form ω,

[f(M)](ω) = f#[M ](ω) =
∫
M
f∗ω.

Also, if x : [0, 1]2 →M is a coordinate chart on M , then for any 2-form ω,

[M ](ω) =
∫
M
ω =

∫
[0,1]2

x∗ω =
∫ 1

0

∫ 1

0
ω(xx,xy)dxdy,

where xx and xy denote the partial derivatives of x with respect to x and y, respectively.
By Stokes’ Theorem, the boundary of [M ] and the current [∂M ] that is associated with the
boundary of M are equal since

∂[M ](ω) =
∫
M
dω =

∫
∂M

ω = [∂M ](ω)

for any (n − 1)-form ω. Given a differential form ω and smooth manifold of the same
dimension, ω ∧ [M ] is the zero dimensional current such that

(ω ∧ [M ])(f) =
∫
M
f · ω

for any function f : M → R.
There are many special spaces of currents, among them the space of rectifiable currents.

The general definition of a rectifiable current is quite technical. However, for our purposes
it suffices to know that if S is a k-dimensional current of the form

S =
t∑
i=1

ai[Mi], (1)
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where theMi are k-dimensional closed, compact, oriented manifolds (possibly with boundary)
and each ai is an integer, then S is a rectifiable current. A current S is an integral current
if S and ∂S are both rectifiable currents. Hence, any current S of the form given by (1)
is also an integral current. A current S of the form given by (1) is also an example of a
current that is representable by integration. Given a Borel set B ⊆ Rm and a current S that
is representable by integration, we define the current S restricted to B, denoted by SxB, by

(SxB)(ω) = S(χB · ω),

where χB : RM → {0, 1} is the characteristic function for B [2, 4.1.7]. In the case that S of
the form given by (1), SxB is given by

(SxB)(ω) =
t∑
i=1

ai

∫
Mi∩B

ω.

2.5 Curvature

All information about the curvature of a smooth surface M in R3 is encoded in the second
fundamental form. The scalar second fundamental hp of M at a point p is the symmetric
bilinear form on tangent vectors satisfying hp( ~X, ~Y ) = −∇X

~U · ~Y for all X,Y ∈ TpM , where
~U is the positively oriented unit normal vector field on M [5, p. 139]. The eigenvalues κ1

and κ2 of the linear operator associated with hp are called the principal curvatures and the
corresponding eigenvectors ~e1 and ~e2 are called the principal directions. By the Spectral
Theorem, may write the second fundamental form as

h = κ1~e1 ⊗ ~e1 + κ2~e2 ⊗ ~e2,

where for vectors ~E, ~X, ~Y ∈ TpM , we define ( ~E⊗ ~E)( ~X, ~Y ) = ~E( ~X) ~E(~Y ) = ( ~E • ~X)( ~E • ~Y ).
From this information, we can determine the Gauss and mean curvatures of a smooth

surface M . The Gauss curvature K(p) at a point p ∈ M is the determinant of the second
fundamental form and is equal to κ1κ2. The mean curvature H(p) is one half the trace of
the second fundamental form and is equal to 1

2(κ1 + κ2).
It will also be helpful to describe the curvature of an oriented curve in a smooth surface or

on its boundary. Let γ ⊂M be an oriented smooth curve. The Darboux frame field (~T , ~V , ~U)
along γ is the positively oriented orthonormal frame field along γ such that ~T is the positively
unit tangent vector field to γ and ~U is the positively oriented unit normal vector field to M
along γ. We define the geodesic curvature κg of γ to be equal to D~T

~T • ~V [12, p. 337]. One
can think of the geodesic curvature of γ as a measure of how much γ is bending inside the
surface M .

3 Normal cycles

To study the curvature of a triangulated surface, we use the concept of the normal cycle of the
surface. The normal cycle of a smooth or triangulated surface M ⊂ R3 is an integral current
on TR3 and is denoted by N(M). Intuitively, we can think of N(M) as the integral current
associated with the set of unit normal vectors to M ; however, the normal vector at a point
where a surface is not smooth is not defined. An abstract definition of N(M) is given by Joe
Fu for the large class of subanalytic subsets M of Rn [3]. In particular, Joe Fu’s definition of a
normal cycle applies to triangulated surfaces, which are all subanalytic sets. The normal cycle
satisfies the property, known as additivity, that N(M1∪M2) = N(M1)+N(M2)−N(M1∩M2)
for any compact subanalytic sets M1 and M2 [3, Theorem 4.2].
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3.1 The normal cycle of a smooth surface

In their work on the curvature measures of smooth surfaces M without boundary, Cohen
Steiner and Morvan used the fact that M = ∂V is the boundary of a three dimensional
region V ⊂ R3. In this case, the normal cycle of M is given by the N(M) = i+#[M ]. Here
i+ : M → TR3 is defined by i+(p) = (p, ~U(p)), where ~U is the positive unit normal vector
field to M . To distinguish this definition of the normal cycle from the one we will use in this
thesis, we use notation N(V ) for i+#[M ] [10].

We want all normal cycles to be cycles, i.e. to have zero boundary, so when we consider
the normal cycle of a smooth surface with boundary we must consider both the positive and
negative unit normal vectors to the surface.

Definition. Suppose M is a smooth surface with boundary. The normal cycle of M above
the interior of M is the integral current NintM (M) defined by NintM (M) = i+#[M ]−i−#[M ],
where i+, i− : M → TR3 are the maps i+(p) = (p,+~U(p)) and i−(p) = (p,−~U(p)). Let
(~T , ~V , ~U) be the Darboux frame field along the smooth boundary of M . The normal cycle
of M above the boundary of M is the integral current N∂M (M) defined by N∂M (M) =
i∂#([∂M ] × [0, π]) where i∂ : ∂M × [0, π] → TR3 is the map i∂(p, θ) = (p,−~U(p) cos θ −
~V (p) sin θ). Then the normal cycle of M is the integral current N(M) defined by N(M) =
NintM (M) +N∂M (M).

Geometrically, NintM (M) is an integral current associated with both the positive and
negative unit normal bundles on M , and N∂M (M) is an integral current associated with a
bundle of outward half-circular arcs of unit vectors along ∂M . The orientation of these sets
associated with N(M) are chosen to be consistent with the Joe Fu’s definition of a normal
cycle and so that N(M) is a cycle:

∂N(M) = ∂i+#[M ]− ∂i−#[M ] + ∂i∂#([∂M ]× [0, π])

= i+#[(∂M)]− i−#[(∂M)] + ([{(p,−~U(p)) : p ∈ ∂M}]− [{(p, ~U(p)) : p ∈ ∂M}])
= [{(p, ~U(p)) : p ∈ ∂M}]− [{(p,−~U(p)) : p ∈ ∂M}] + [{(p,−~U(p)) : p ∈ ∂M}]

−[{(p, ~U(p)) : p ∈ ∂M}]
= 0.

We can visualize a normal cycle using the map (p, n) 7→ p+ n for (p, n) ∈ TRn. In Figure 1,
we see that the normal cycle of a disk looks like a shell surrounding the disk.

Note that for a surface M without boundary that N(M) 6= N(V ) where M = ∂V . For
example, if M is a sphere and V is the inside of the sphere, then N(V ) is the integral current
associated with the outward unit normal bundle of the sphere, whereas N(M) is an integral
current associated with the union of the outward and inward unit normal bundles of the
sphere.

3.2 The normal cycle of a triangulated surface

We shall consider two approaches to describing the normal cycle of a triangulated surface T .
The first approach is to determine the normal cycles of the vertices, edges, and faces of T ,
which are themselves subanalytic sets, and then use additivity to add the normal cycles of the
vertices, edges, and faces of T together to obtain N(T ). The normal cycle N(v) of a vertex v
is the integral current associated with the sphere of unit vectors in TvR3. The normal cycle
N(e) of an edge e is the cylindrical integral current associated with unit normal vectors along

8
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Figure 1: The normal cycle of a circular disk can be represented in R3 as the set of points at
distance ε from the disk.

e that are perpendicular to e plus integral currents associated with hemispherical caps of unit
vectors at the vertices of e, shown in Figure 2(a). The normal cycle N(f) of a face f is the
sum of the following integral currents: the currents associated with the planes of positive
and negative unit normal bundles to f , the currents associated with the half-cylinder of unit
vectors along each edge of f that are perpendicular to that edge, and the currents supported
on the sphere of unit vectors at each vertex v of f associated with a spherical polygon, shown
in Figure 2(b). These spherical polygons are 2-gons which have precisely two vertices at the
two unit normal vectors to f and boundary curves along the great circles perpendicular to
the edges incident at v. The orientation of the normal cycles of the vertices, edges, and faces
of T is given by the outward unit normal vector to the spherical parts being the positive unit
normal vector and the orientation on the cylindrical and planar parts being chosen so that
the normal cycles have zero boundary. Note that in Figure 2 we are visualizing the normal
cycle using the map (p, n) 7→ p+ n for (p, n) ∈ TR3.

Figure 2: The normal cycle of a face and an edge.

(a) Normal cycle of an edge. (b) Normal cycle of a face.

We then define the normal cycle of T by applying the additivity property of normal cycles
using the generalized Inclusion-Exclusion Principle.

9



Definition. For a triangulated surface T , the normal cycle of T is the integral current
defined by

N(T ) = N
(⋃n

i=1
fi

)
=

n∑
k=1

(−1)k−1
∑

1≤σ(1)<σ(2)<...<σ(k)≤n

N

(⋂k

i=1
fσ(i)

)
(2)

where T has n faces fi and each σ : {1, 2, ..., k} → {1, 2, ..., n} gives the indices of k faces of
T [10].

Theorem 1. For a triangulated surface T ⊆ R3,

N(T ) =
∑

f⊂T a face

N(f)−
∑

e⊂intT an edge

N(e) +
∑

v∈intT a vertex

N(v),

Proof. Since any intersection of the faces of T must be a face, edge, or vertex of T , (2) is
equivalent to

N(M) =
∑

f⊂T a face

a(f)N(f) +
∑

e⊂intT an edge

b(e)N(e) +
∑

v∈intT a vertex

c(v)N(v). (3)

for some integers a(f), b(e), and c(v) depended on f , e, and v, respectively. Thus to proof
the claim, we must determine the a(f), b(e), and c(v) using combinatorics.

For every face f , N(f) occurs exactly once in (2) with multiplicity +1, thus a(f) = 1. For
every edge e ⊂ intT , N(e) occurs exactly once in (2) with multiplicity −1 as the intersection
of two faces. So if e ⊂ intT , b(e) = −1. No edge e ⊂ ∂T can be formed as the intersection
of faces and thus if e ⊂ ∂M , b(e) = 0.

For a vertex v ∈ intT , suppose there m faces of T incident at v. Let Star(v, T ) denote the
union of v and the interiors of the faces and edges incident to v. The only terms in (2) that
contribute to N(v) belong to the Star(v, T ), so we will restrict our attention to Star(v, T ).
There are

(
m
k

)
ways to intersect k faces in Star(v, T ). Thus by counting the multiplicities of

faces, edges, and vertices in Star(v, T ) and equating (2) and (3),

1 =
m∑
k=1

(−1)k−1

(
m

k

)
=

∑
f⊂Star(vT ) a face

a(f) +
∑

e⊂Star(v,T ) an edge

b(e) + c(v)

= #{faces f in Star(v, T )} −#{edges e in Star(v, T )}+ c(v) (4)
= m−m+ c(v) = c(v).

Thus if v ∈ ∂T , c(v) = 1. If v 6∈ ∂T and there m faces of T incident at v, the number of edges
in intT incident to v is m−1. The counts in (4) are otherwise unchanged and it follows that
if v 6∈ ∂T , c(v) = 0.

Therefore a(f) = 1 if f is a face of T , b(e) = −1 if e ⊂ intT is an edge of T , c(v) = 1 if
v ∈ intT is a face of T , and a(f), b(e), and c(v) are all zero otherwise. Thus (3) is equivalent
to the claim.

The following corollary can be applied to most of the measures that we will derive and
is stated in its most general form. The corollary is a direct consequence of the properties of
integral currents and Theorem 1.

Corollary 1. Let T be a triangulated surface and ω be a 2-form. If S = T or S is a face,
edge, or vertex of T , define the measure φS by φS(B) = 1

2〈N(S)xπ−1(B), ω〉 for any Borel
set B. Then

φT =
∑

f⊂T a face

φf −
∑

e⊂intT an edge

φe +
∑

v∈intT a vertex

φv. (5)

10



The other approach to describing N(T ) is to write N(T ) as the sum of planar, cylin-
drical, and spherical integral currents supported above the faces, edges, and vertices of T ,
respectively. We used a similar approach for describing the normal cycle of a smooth surface,
writing the normal cycle of a smooth surface M as the sum of an integral current supported
above the interior of M and an integral current supported above the boundary of M .

Theorem 2. We can write the normal cycle of T as

N(T ) =
∑

f⊂T a face

Nf (T ) +
∑

e⊂T an edge

Ne(T ) +
∑

v∈T a vertex

Nv(T ),

where Nf (T ) = N(T )xπ−1(int f), Ne(T ) = N(T )xπ−1(int e), and Nv(T ) = N(T )xπ−1({v}).

Proof. Since T is a disjoint union of the interiors of its faces, interior of its edges, and its
vertices,

N(T ) = N(T )xπ−1(T )

= N(T )xπ−1

 ⋃
f⊂T a face

int f ∪
⋃

e⊂T an edge

int e ∪
⋃

v∈T a vertex

{v}


= N(T )x

 ⋃
f⊂T a face

π−1(int f) ∪
⋃

e⊂T an edge

π−1(int e) ∪
⋃

v∈T a vertex

π−1({v})


=

∑
f⊂T a face

N(T )xπ−1(int f) +
∑

e⊂T an edge

N(T )xπ−1(int e) +
∑

v∈T a vertex

N(T )xπ−1({v})

=
∑

f⊂T a face

Nf (T ) +
∑

e⊂T an edge

Ne(T ) +
∑

v∈T a vertex

Nv(T ).

Note that Nf (T ) and N(f) denote two different integral currents. In particular N(f) is
cycle where as Nf (T ) is not a cycle. Similarly, Ne(T ) 6= N(e) and Nv(T ) 6= N(v).

Given a face f of T , Nf (T ) is called the normal cycle of T above f and is the integral
current associated with the positively oriented unit normal vectors to f with the orientation
induced by f minus the integral current associated with the negatively oriented unit normal
vectors to f with the orientation induced by f . Given an edge e of T , Ne(T ) is called the
normal cycle of T above e and is given by Ne(T ) = [C+

e ]−[C−e ] where C+
e and C−e are compact

smooth manifolds defined as follows (see Figure 3). The manifold C+
e is the cylindrical subset

consisting of (p, n) ∈ TR3 with p ∈ e and n lying on the shortest circular arc between the
positively oriented unit normal vectors to the faces incident to e. Similarly, the manifold C−e
is the cylindrical subset consisting of (p, n) ∈ TR3 with p ∈ e and n lying on the shortest
circular arc between the negatively oriented unit normal vectors to the faces incident to e.
Given a vertex v of T , Nv(T ) is called the normal cycle of T above v. The normal cycle of
T above v is supported on the sphere of unit vectors in TvR3. Since Nv(T ) is a complicated
integral current, we shall not provide an explicit description of this integral current. Details
are given in [10].

4 Gauss curvature measure

We will generalize the Gauss curvature measure studied by Cohen-Steiner to smooth and
triangulated surfaces with boundary [10]. Recall that the Gauss curvature K(p) at a point

11



Figure 3: The normal cycle of above a face, edge, and vertex.
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p in a smooth surface M equals the product of the principal curvatures of M at p. Our goal
is to define the Gauss curvature measure φGM of a surface M using the normal cycle of M in
such a way that for the special case where M is a smooth surface M without boundary, for
any Borel set B ⊆ R3,

φGM (B) =
∫
M∩B

KdA.

Definition. Let p ∈ R3 and n ∈ TpR3 be a unit vector and let (~u1, ~u2, n) be a positively
oriented orthonormal frame. The Gauss curvature 2-form ωG on TR3 is defined by

ωG(p,n) = (0, ~u1) ∧ (0, ~u2).

Note that ωG(p,n) is independent of the choice of frame (~u1, ~u2, n) [10].
Let M ⊆ R3 be a smooth or triangulated surface. Then the Gauss curvature measure φGM

is defined by
φGM (B) = 1

2〈N(M)xπ−1(B), ωG〉.

for all Borel sets B ⊆ R3.

4.1 Smooth surfaces with boundary

Recall that the arclength form on a smooth curve γ ⊆ R3 is the 1-form ds such that ds(~T ) = 1
for the positive unit tangent vector ~T to γ. The area form on a smooth surface M is the
2-form dA such that dA(~v1, ~v2) = 1 for any positively oriented orthonormal frame of vectors
(~v1, ~v2).

Theorem 3. For a smooth surface M ⊆ R3 with a smooth boundary,

φGM = KdA ∧ [M ] + κgds ∧ [∂M ].

where κg is the geodesic curvature of ∂M .

Remark. In the above equation, we regard zero-dimensional currents as measures in the
following sense: if S is a zero dimensional current, then S(B) = S(χB) for all Borel sets B,
where χB is the characteristic function of B.

Proof. Let B ⊆ R3 be a Borel set. Let ~U be the positively oriented unit normal vector field
on M and (~T , ~V , ~U) be the Darboux frame field along ∂M . Recall that

N(M) = i+#[M ]− i−#[M ] + i∂#([∂M ]× [0, π]) (6)

where

i+(p) = (p, ~U(p)),
i−(p) = (p,−~U(p)),

i∂(p, θ) = (p,−~U(p) cos θ − ~V (p) sin θ).

Recall from multivariable calculus that

〈i+#[M ]xπ−1(B), ωG〉 =
∫
i+(M∩B)

ωG =
∫
M∩B

ωG (∇~u1
i+,∇~u2

i+) dA

13



where ∇~YX = (~Y (X1), ~Y (X2), ~Y (X3)) is the covariant derivative of ~X = (X1, X2, X3) in the
direction ~Y . For p ∈ intM , let (~u1, ~u2, ~U(p)) be a positively oriented orthonormal frame.
Recall that the second fundamental form h is defined by h( ~X, ~Y ) = −∇ ~X

~U • ~Y for vector
fields ~X, ~Y . Then

ωG
(p,~U(p))

(∇~u1
i+,∇~u2

i+) =

∣∣∣∣∣ ~u1 • ∇~u1
~U ~u2 • ∇~u1

~U

~u1 • ∇~u2
~U ~u2 • ∇~u2

~U

∣∣∣∣∣ =
∣∣∣∣ −hp(~u1, ~u1) −hp(~u2, ~u1)
−hp(~u1, ~u2) −hp(~u2, ~u2)

∣∣∣∣ = K

since Gauss curvature is the determinant of the Second Fundamental Form. Similarly
ωG

(p,~U(p))
(∇~u1

i−,∇~u2
i−) = −K. So

〈(i+#[M ]− i−#[M ])xπ−1(B), ωG〉 =
∫
M

2KdA = 2KdA ∧ [M ](B). (7)

Next recall from multivariable calculus that

〈i∂#([∂M ]× [0, π])xπ−1(B), ωG〉 =
∫
i∂(∂M∩B×[0,π])

ωG =
∫
∂M∩B

∫ π

0
ωG
(
di∂
ds ,

di∂
dθ

)
dθds

where we regard p(s) as a unit speed parameterization of the boundary of M . For p ∈ ∂M
and θ ∈ [0, π], (~u1, ~u2, n) = (T,U sin θ − V cos θ,−U cos θ − V sin θ) is an orthonormal frame
on ∂M . We compute

dn
ds = [h(~T , ~T )~T + h(~T , ~V )~V ] cos θ + [κg ~T − h(~T , ~V )~U ] sin θ

= [h(~T , ~T ) cos θ + κg sin θ]~u1 + h(~T , ~V )~u2,
dn
dθ = ~V sin θ − ~U cos θ = ~u2,

so

ωG(p,n)

(
di∂
ds ,

di∂
dθ

)
=
∣∣∣∣ ~u1 • ∇~u1

n ~u2 • ∇~u1
n

~u1 • ∇~u2
n ~u2 • ∇~u2

n

∣∣∣∣ = κg cos θ + h(~T , ~T ) sin θ.

Hence

〈i∂#([∂M ]× [0, π])xπ−1(B), ωG〉 =
∫
∂M∩B

∫ π

0
(h(~T , ~T ) cos θ + κg sin θ)dθds

=
∫
∂M∩B

2κgds = 2κgds ∧ [∂M ](B). (8)

The result follows from (6), (7), and (8).

4.2 Triangulated surfaces with boundary

Theorem 4. For a triangulated surface T ⊆ R3,

φGT =
∑

v∈intT a vertex

α(v)[v] +
∑

v∈∂T a vertex

β(v)[v].

where α(v) equals 2π minus the sum of the angles incident at v and β(v) equals π minus the
sum of the angles incident at v.
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Proof. Consider the normal cycle above the faces, edges, and vertices of T . Let f be a face of
T and (p, n) ∈ sptNf (T ). If (~u1, ~u2, n) is an orthonormal frame, then the vectors (~u1, 0) and
(~u2, 0) span the tangent plane to sptNf (T ). Since ωG(p,n)((~u1, 0), (~u2, 0)) = 0, ωG|sptNf (T ) = 0.
Similarly, for an edge e of T , ωG|sptNe(T ) = 0, and for a vertex v of T , ωG|sptNv(T ) is the
area form for the sphere of unit vectors in TvR3. Thus ωG|sptN(T ) is supported on above the
vertices of T .

By Corollary 1, we can write the normal cycle as

φGT =
∑

f⊂T a face

φGf −
∑

e⊂intT an edge

φGe +
∑

v∈intT a vertex

φGv . (9)

For a vertex v of T , N(v) is the current associated with the sphere of unit vectors in TvR3,
so φGv = 2π[v]. For an edge e in the interior of T joining two vertices v1 and v2, the normal
cycle of e above either vertex is a hemisphere of unit vectors and thus φGe = π[v1] + π[v2].
For a triangular face f with edges v1, v2, and v3, the normal cycle of f above vi is an integral
current associated with a spherical 2-gon joining the unit normal vectors to f . If ϑi is the
angle between the edges of f incident at vi, the angular width of this 2-gon is π − ϑi along
the great circle perpendicular to the unit normal vectors of f . So φGf =

∑3
i=1(π − ϑi)[vi].

Now fix an vertex v of M . Suppose there are m faces fi incident to v at T and the angles
between the two edges of fi incident at v is θi. If v ∈ intM , by (9),

φGT x{v} =
m∑
i=1

(π − θi)[v]−mπ[v] + 2π[v] =

(
2π −

m∑
i=1

θi

)
[v] = α(v)[v],

while if v ∈ ∂M ,

φGT x{v} =
m∑
i=1

(π − θi)[v]− (m− 1)π[v] + 0 =

(
π −

m∑
i=1

θi

)
[v] = β(v)[v].

4.3 Gauss-Bonnet Formula

An important result from classical differential geometry is the Gauss-Bonnet formula.

Theorem 5. (Gauss-Bonnet Formula) For a smooth surface M ⊆ R3 with a smooth bound-
ary,

2πχ(M) =
∫ ∫

M
KdA+

∫
∂M

κgds,

where χ(M) is the Euler characteristic of M .

In terms of curvature measures, we can express the Gauss-Bonnet formula as φGM (M) =
2πχ(M). We will prove this fact for triangulated surfaces.

Theorem 6. For a triangulated surface T ⊆ R3 with a smooth boundary,

φGT (T ) = 2πχ(T ).
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Proof. In the special case that T is a triangle, φGT (T ) equals 3π minus the sum of the interior
angles of T . Since the sum of the interior angles of a triangle is π, φGT (T ) = 2π. Similarly,
for any edge e of T , φGe (T ) = 2π, and for any vertex v of T , φGv (T ) = 2π. So by (9),

φGT (T ) =
∑

f⊂T a face

φGf (T )−
∑

e⊂intT an edge

φGe (T ) +
∑

v∈intT a vertex

φGv (T )

= 2π ·#{faces of T} − 2π ·#{edges in intT}+ 2π ·#{vertices in intT}.

Since #{edges in ∂T} = #{vertices in ∂T},

φGM (M) = 2π ·#{faces of T} − 2π ·#{edges of T}+ 2π ·#{vertices of T} = 2πχ(M),

proving the claim.

5 Mean curvature vector

Recall that the mean curvature H(p) at a point p on a smooth surface M is the average of
the principal curvatures of M at p. We would like to derive a curvature measure φHM for
smooth and triangulated surfaces with boundary such that in the special case that M is a
smooth surface without boundary,

φHM (B) =
∫
M∩B

2HdA.

In [10], such a measure is defined when M is a smooth surface without boundary by

φHM (B) = −〈i+#[M ]xπ−1(B), ωH〉,

where the 2-form ωH is defined so that if p ∈ R3, n ∈ TpR3 is a unit vector, and (~u1, ~u2, n)
is a positively orthonormal frame, then

ωH(p,n) = (~u1, 0) ∧ (0, ~u2) + (0, ~u1) ∧ (~u2, 0).

Note that ωH(p,n) is independent of the choice of frame (~u1, ~u2, n). (Also note that [10] defines
mean curvature as −1 times the sum of the principal curvatures.)

An obvious way to extend φHM to surfaces with boundary is by defining

φHM (B) = 1
2〈N(M)xπ−1(B),−ωH〉.

However, for a smooth surface M without boundary,

φHM (B) = 1
2〈N(M)xπ−1(B),−ωH〉 = 1

2〈i+#[M ]xπ−1(B),−ωH〉 − 1
2〈i−#[M ]xπ−1(B),−ωH〉

= 1
2

∫
M∩B

2HdA− 1
2

∫
M∩B

2HdA = 0. (10)

One way to try to get around this cancellation would be to define a normal cycle N+(M) of
M such that N+(M) = i+#[M ] for a smooth surface M without boundary. However, if M is
a surface with boundary, we can not define such a normal cycle N+(M) in such a way that
∂N+(M) = 0. Another approach is to instead define a mean curvature vector measure; that
is define a measure φH~U

M for a smooth or triangulated surface M such that for the special
case where M is a smooth surface without boundary, for any Borel set B ⊆ R3,

φH
~U

M (B) =
∫
M∩B

2H~UdA.
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This approach is motivated by the fact that the cancellation in (10) occurs due to orientation
issues: by reversing the direction of ~U we reverse the sign of H and the orientation of M
and thus 〈i+#[M ]xπ−1(B), ωH〉 = 〈i−#[M ]xπ−1(B), ωH〉. We did not have this problem with
Gauss curvature since the Gauss curvature is independent of the orientation of M . The mean
curvature vector H~U is also independent of the orientation of M .

Definition. Let M ⊆ R3 be a smooth or triangulated surface. The mean curvature vector
2-form ωH

~U is a vector-valued 2-from on TR3 defined by ωH
~U

(p,n) = −nωH(p,n) for p ∈ R3 and

n ∈ TpR3. The mean curvature vector measure φH~U
M is defined by

φH
~U

M (B) = 1
2〈N(M)xπ−1(B), ωH~U 〉,

for all Borel sets B ⊆ R3.

Note that ωH~U is a vector valued measure, i.e. for every Borel set B ⊆ R3, ωH~U (B) is a
vector.

5.1 Smooth surfaces with boundary

Theorem 7. Let M ⊆ R3 be an oriented smooth surface with a smooth boundary and let
(~T , ~V , ~U) be a Darboux frame on the boundary of M . Then

φH
~U

M = 2H~UdA ∧ [M ] + ~V ds ∧ [∂M ].

Proof. We will modify the prove of the Gauss curvature measure theorem for smooth surfaces.
Let B ⊆ R3 be a Borel set. Recall that

N(M) = i+#[M ]− i−#[M ] + i∂#([∂M ]× [0, π]). (11)

For p ∈ intM , let ~e1, ~e2 be the principal directions1 with corresponding principal cur-
vatures κ1, κ2 and observe that (~e1, ~e2, ~U(p)) is an orthonormal frame. Without loss of
generality, suppose (~e1, ~e2, ~U(p)) is a positively oriented frame. Recall from multivariable
calculus that

〈i+#[M ]xπ−1(B), ωH~U 〉 =
∫
M∩B

ωH
~U (∇~e1i+,∇~e2i+) dA.

We compute

ωH
~U

(p,~U(p))
(∇~e1i+,∇~e2i+) = −~U(p)

∣∣∣∣∣ ~e1 • ~e1 ~e2 • ∇~e1
~U

~e1 • ~e2 ~e2 • ∇~e2
~U

∣∣∣∣∣− ~U(p)

∣∣∣∣∣ ~e1 • ∇~e1
~U ~e2 • ~e1

~e1 • ∇~e2
~U ~e2 • ~e2

∣∣∣∣∣
= −~U(p)

∣∣∣∣ 1 0
0 −κ2

∣∣∣∣− ~U(p)
∣∣∣∣ −κ1 0

0 1

∣∣∣∣ = κ1
~U(p) + κ2

~U(p)

= 2H~U(p).

Similarly ωH~U
(p,−~U(p))

(∇~e1i−,∇~e2i−) = −2H~U(p). So

〈(i+#[M ]− i−#[M ])xπ−1(B), ωH~U 〉 =
∫
M

4H~U(p)dA = 4H~U(p)dA ∧ [M ](B). (12)

1If p is an umbilic point, i.e. κ1 = κ2, we choose ~e1, ~e2 to be any pair of orthogonal unit vectors in TpM .
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Next recall that

〈i∂#([∂M ]× [0, π])xπ−1(B), ωH~U 〉 =
∫
∂M∩B

∫ π

0
ωH

~U
(
di∂
ds ,

di∂
dθ

)
dθds

where we regard p(s) as a unit speed parameterization of the boundary of M . For p ∈ ∂M ,
(~u1, ~u2, n) = (~T , ~U sin θ − ~V cos θ,−~U cos θ − ~V sin θ) is an orthonormal frame on ∂M . We
compute

dn
ds = [h(~T , ~T ) cos θ + κg sin θ]~u1 − h(~T , ~V )~u2,

dn
dθ = ~U sin θ − ~V cos θ = ~u2,

so

ωH
~U
(
di∂
ds ,

di∂
dθ

)
= −n

∣∣∣∣ ~u1 • ~T ~u2 • dn
ds

~u1 • 0 ~u2 • dn
dθ

∣∣∣∣− n

∣∣∣∣ ~u1 • dn
ds ~u2 • ~T

~u1 • dn
dθ ~u2 • 0

∣∣∣∣
= −n

∣∣∣∣ 1 ~u2 • dn
ds

0 ~u2 • ~u2

∣∣∣∣− n

∣∣∣∣ ~u1 • dn
ds 0

~u1 • ~u2 0

∣∣∣∣ = −n.

Hence

〈i∂#([∂M ]× [0, π])xπ−1(B), ωH~U 〉 =
∫
∂M∩B

∫ π

0
−ndθds

=
∫
∂M∩B

∫ π

0
(~U cos θ + ~V sin θ)dθds

=
∫
∂M∩B

2~V ds = 2~V ds ∧ [∂M ](B). (13)

The result follows from (11), (12), and (13).

One advantage of the mean curvature vector measure is that we can use it to approximate
both mean curvature and the unit normal vector field to a surface. We can approximate the
mean curvature at a point p by φHM (Bp)/Area(Bp) and we can approximate the unit normal
vector field to a surface M at p by the vector φH~U (Bp)/‖φH

~U (Bp)‖, where Bp is a small
open neighborhood of p. This method for approximating unit normal vectors assumes that
φH

~U (Bp) 6= 0. In the case that φH~U (Bp) = 0 for a smooth surface M , we have

2H(p)~U(p) ≈
φHM (Bp)
Area(Bp)

= 0 ⇒ H(p) ≈ 0.

A good example of this behavior is the saddle surface z = x2 − y2 where p is the origin. We
conclude that φHM (B) = 0 is often an indication that the surface (or surface being approxi-
mated, in the case of triangulated surfaces), has zero mean curvature. Thus one should not
use this method for computing unit normal vectors in this case.

5.2 Triangulated surfaces with boundary

Definition. Let T ⊆ R3 be a triangulated surface and e be an edge of T . If e ⊂ intT , let
~U1 and ~U2 be the positively oriented unit normal vectors to the faces incident at e. Let

~U+ =
~U1 + ~U2

‖~U1 + ~U2‖
and ~U− =

~U2 − ~U1

‖~U2 − ~U1‖
.
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Choose coordinates (x, y, z) for R3 so that e lies along the x-axis, ~U− lies on the positive
y-axis and ~U− lies on the positive z-axis. Define β to be the angle from ~U1 to ~U2 in the
yz-plane.

If e ⊂ ∂T , let ~T be the tangent vector to e, ~U be the unit normal vector to the face
containing e, and ~V = ~U × ~T so that (~T , ~V , ~U) is an positively oriented frame.

Theorem 8. Let T ⊆ R3 be an oriented triangulated surface. For any Borel set B ⊆ R3,

φH
~U

T (B) =
∑

e⊂intT an edge

−2 sin(β/2)~U+ds ∧ [e](B) +
∑

e⊂∂T an edge

~V ds ∧ [e](B),

=
∑

e⊂intT an edge

−2 sin(β/2) length(e ∩B)~U+ +
∑

e⊂∂T an edge

~V length(e ∩B).

Proof. The proof is similar to the computation of the mean curvature vector measure for a
smooth surface. First we observe that the ωH~U |sptN(T ) is supported above the edges of T .
We can prove this by considering the normal cycle above the faces, edges, and vertices of
T in much that same we did for the proof of the Gauss curvature measure theorem for a
triangulated surface.

Let B ⊆ R3 be a Borel set and let be an edge of T . If e ⊂ intT , assume e is oriented
so that ~U− × ~U+ is the positive tangent vector to e. Let ie : e × R → TR3 be the map
ie(p, θ) = (p, ~U+ cos θ + ~U− sin θ). Then the normal cycle of T above e equals ie#([e] ×
[−β/2, β/2]) − ie#([e] × [π − β/2, π + β/2]), i.e. the normal cycle of T above e is a sum of
two integral currents associated with cylindrical surfaces in TR3 with opposite orientations
(see Figure 3). As we showed in the mean curvature vector theorem for a smooth surface,
ωH

~U
(
die
ds ,

die
dθ

)
= −n. Integrating over both cylindrical parts of the normal cycle above e

yields

〈Ne(T )xπ−1(B), ωH~U 〉 =
∫
e∩B

∫ β/2

−β/2
−ndθds−

∫
e∩B

∫ π+β/2

π−β/2
−ndθds

= −2
∫
e∩B

∫ β/2

−β/2
(~U+ cos θ + ~U− sin θ)dθds

= −2
∫
e∩B

2 sin(β/2)~U+ds

= −4 sin(β/2)~U+ length(e ∩B).

Similarly if e ⊂ ∂T , the normal cycle of T above e equals i∂#([e] × [0, π]) where i∂(p, θ) =
(p,−~U(p) cos θ − ~V (p) sin θ). Then, much like we had in the proof of the mean curvature
vector measure theorem for a smooth surface,

〈Ne(T )xπ−1(B), ωH~U 〉 = 2~V ∧ ds[∂T ](B).

The result follows by summing the mean curvature vector measure over all the edges of T .

The formula in Theorem 8 was previously discussed by Sullivan [13], who defined the
mean curvature vector measure on a triangulated surface to be the right-hand side of the
equation in Theorem 8. By contrast, we define φH~U

T using the normal cycle and then derive
the equation in Theorem 8. Sullivan’s definition was motivated by a force balance equation
for mean curvature in the smooth case, described in the next section.
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5.3 Physical interpretation

One way to think of the mean curvature vector is as the first variation of area. Let M be a
smooth surface. Consider a variational vector field ~X on M that is supported away from the
boundary of M . The vector field then gives us a family of smooth surfaces Mt = {p+ t ~X(p) :
p ∈M}. Let A(t) denote the area of Mt. Then (see [1])

A′(0) = −
∫
M

~X •H~UdA.

With respect to the L2 inner product 〈 ~X, ~Y 〉 =
∫
M
~X • ~Y dA, we can regard −H~U as the

gradient of the area, called the first variation of area [13]. If we take our variation vector
field ~X to be H~U , then A′(0) ≤ 0. In other words, area initially decreases when we deform
M in the direction H~U [1, p. 201]. This fact is the basis for algorithms designed to smooth
triangulated surfaces. Recall from multivariable calculus that a function is minimized when
its gradient is zero. Similarly, A′(0) = 0 for all variational vectors fields ~X when H~U = 0, so
the surface area of a surface with a fixed boundary is minimal when H = 0. Surfaces with
zero mean curvature everywhere are called minimal surfaces [1, p. 197].

The mean curvature vector has an analogy to the Gauss Bonnet formula, known as the
force balance equation: ∫ ∫

M
H~Uds+

∫
∂M

~V ds = 0.

This formula represents a balance between surface tension along ∂M in the ~V direction and
pressure forces acting on and normal to M [13]. In terms of curvature measures, the force
balance equation is equivalent to φH~U

M (M) = 0. As with the Gauss Bonnet formula, there is
a simple proof of this fact for triangulated surfaces.

Theorem 9. For an oriented triangulated surface T ⊆ R3, φH~U
T (T ) = 0.

Proof. We will first prove the result when T is a triangle. Without loss of generality, suppose
T lies in the xy-plane. Going around the triangle clockwise, label the vertices A, B, and C.
Let ~a = ~BC, ~b = ~CA, and ~c = ~AB. The unit normal to each side in the plane containing T
is obtained by rotating the tangent vectors ~a,~b,~c 90-degrees clockwise, denoted by R(~a), etc.
The mean curvature vector measure of side BC is R(~a)/|a| · |a| = R(~a) and similarly for the
other sides. Hence

φH
~U

T (T ) = R(~a) +R(~b) +R(~c) = R(~a+~b+ ~c) = 0.

Now let T be any triangulated surface. For an edge e of T , it follows from the proof of
Theorem 8 that

φH
~U

e (T ) = 〈N(e), ωH~U 〉 =
∫
e

∫ 2π

0
−ndθds =

∫
e

∫ 2π

0
(~U+ cos θ + ~U− sin θ)dθds = 0.

Also φH~U
v (T ) = 0 for a vertex v of T since ωH~U |sptN(v) = 0. So by Corollary 1,

φH
~U

T (T ) =
∑

f⊂T a face

φH
~U

f (T )−
∑

e⊂intT an edge

φH
~U

e (T ) +
∑

v∈intT a vertex

φH
~U

v (T ) = 0

as required.
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6 Second fundamental form

All information about the curvature of a surface is encoded in the second fundamental form.
Recall the scalar second fundamental form h of a smooth surface M is the symmetric bilinear
form on vectors defined so that at each point p ∈ M , hp( ~X, ~Y ) = −∇ ~X

~U • ~Y for vectors
~X, ~Y ∈ TpM , where ~U is the unit normal vector to M . The eigenvalues κ1, κ2 of the
linear operator associated with hp are called the principal curvatures and the corresponding
eigenvectors ~e1, ~e2 are called the principal directions. An equivalent way to define the scalar
second fundamental form is by hp( ~X, ~Y ) = ∇ ~X

~Y • ~U for vectors ~X, ~Y ∈ TpM . We define the
vector second fundamental form II by IIp( ~X, ~Y ) = (∇ ~X

~Y )⊥ for ~X, ~Y ∈ TpM , where (~Z)⊥

denotes the projection of the vector ~Z onto the span of ~U . The scalar and vector second
fundamental form are related by II( ~X, ~Y ) = h( ~X, ~Y )~U .

We want to derive a curvature measure φII(
~X,~Y )

M for smooth and triangulated surfaces with
boundary such that in the special case that M is a smooth surface without boundary,

φ
II( ~X,~Y )
M (B) =

∫
M∩B

II( ~X, ~Y )dA.

Such a measure can be used to compute the principal curvature and directions for triangulated
surfaces. We study the measure that corresponds to II rather than to h since II is independent
of the orientation of M whereas h depends on the orientation of M . We shall combine the
approach from [10] and our approach to studying the mean curvature vector.

Recall h = κ1~e1 ⊗ ~e1 + κ2~e2 ⊗ ~e2. Define h̃ to be the bilinear form defined by h̃ =
κ2~e1 ⊗ ~e1 + κ1~e2 ⊗ ~e2. Define the 2-forms ωh( ~X,~Y ) and ωh̃( ~X,~Y ) so that at (p, n) ∈ TR3,

ω
h( ~X,~Y )
(p,n) = (n× ~X, 0) ∧ (~Y , 0),

ω
h̃( ~X,~Y )
(p,n) = ( ~X, 0) ∧ (n× ~Y , 0).

In [10] the measures φh(
~X,~Y )

M and φh̃(
~X,~Y )

M are defined for a smooth surface M without bound-
ary by

φ
h( ~X,~Y )
M (B) = −〈i+#[M ]xπ−1(B), ωh( ~X,~Y )〉,

φ
h̃( ~X,~Y )
M (B) = −〈i+#[M ]xπ−1(B), ωh̃( ~X,~Y )〉,

so that

φ
h( ~X,~Y )
M (B) =

∫
M∩B

h( ~X, ~Y )dA

φ
h̃( ~X,~Y )
M (B) =

∫
M∩B

h̃( ~X, ~Y )dA.

(Note that [10] defines h using the sign convention h( ~X, ~Y ) = ∇ ~X
~U • ~Y .) Define ĨI by

ĨI( ~X, ~Y ) = h̃( ~X, ~Y )~U for ~X, ~Y ∈ TpM .

Definition. Let M ⊆ R3 be a smooth or triangulated surface. Define the vector-valued

2-forms ωII( ~X,~Y ) and ωĨI( ~X,~Y ) by ωII(
~X,~Y )

(p,n) = −nωh(
~X,~Y )

(p,n) and ωĨI(
~X,~Y )

(p,n) = −nωh̃(
~X,~Y )

(p,n) for p ∈ R3,

n ∈ TpR3, and vectors ~X, ~Y . Define the vector-valued measures φII(
~X,~Y )

M and φĨI(
~X,~Y )

M by

φ
II( ~X,~Y )
M (B) = 1

2〈N(M)xπ−1(B), ωII(
~X,~Y )

(p,n) 〉,

φ
ĨI( ~X,~Y )
M (B) = 1

2〈N(M)xπ−1(B), ωĨI(
~X,~Y )

(p,n) 〉,
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for all Borel sets B ⊆ R3. Define the vector-valued bilinear forms φIIM (B) and φĨIM (B) by(
φIIM (B)

)
( ~X, ~Y ) = φ

II( ~X,~Y )
M (B) and

(
φĨIM (B)

)
( ~X, ~Y ) = φ

ĨI( ~X,~Y )
M (B). Note that φIIM and φĨIM

are measures taking values in the vector space of vector-valued bilinear forms.

6.1 Smooth surfaces with boundary

Theorem 10. Let M ⊆ R3 be an oriented smooth surface with a smooth boundary and let
(~T , ~V , ~U) be a Darboux frame on the boundary of M . Then for any Borel set B ⊆ R3,

φIIM = IIdA[M ] + 1
3{−(~U ⊗ ~V + ~V ⊗ ~U)~U + (2~U ⊗ ~U + ~V ⊗ ~V )~V }ds ∧ [∂M ],

φĨIM = ĨIdA[M ] + (~T ⊗ ~T )~V ds ∧ [∂M ].

Proof. Let B ⊆ R3 be a Borel set. Recall N(M) = [i+(M)] − [i−(M)] + [i∂(∂M × [0, π])].
Recall ~e1, ~e2 are the principal directions on M . Then

ω
II( ~X,~Y )

(p,~U(p))
(∇~e1i+,∇~e2i+) = −~U(p)

∣∣∣∣∣ ( ~X × ~U) • ~e1 ~Y • ∇~e1
~U

( ~X × ~U) • ~e2 ~Y • ∇~e2
~U

∣∣∣∣∣
= −~U(p)

∣∣∣∣∣ ~X • (~U × ~e1) ~Y • ∇~e1
~U

~X • (~U × ~e2) ~Y • ∇~e2
~U

∣∣∣∣∣
= −~U(p)

∣∣∣∣∣ ~X • ~e2 ~Y • −κ1~e1
~X • −~e1 ~Y • −κ2~e2

∣∣∣∣∣
= (κ1(~e1 • ~X)(~e1 • ~Y ) + κ2(~e2 • ~X)(~e2 • ~Y ))~U(p)
= (κ1~e1 ⊗ ~e1 + κ2~e2 ⊗ ~e2)( ~X, ~Y )~U(p) = II( ~X, ~Y ).

Similarly ωII(
~X,~Y )

(p,~U(p))
(∇~e1i−,∇~e2i−) = −II( ~X, ~Y ). So

〈(i+#[M ]− i−#[M ])xπ−1(B), ωII( ~X,~Y )〉 =
∫
M

2II( ~X, ~Y )dA = 2II( ~X, ~Y )dA ∧ [M ](B). (14)

Now observe (~u1, ~u2, n) = (~T , ~U sin θ− ~V cos θ,−~U cos θ− ~V sin θ) is an orthonormal frame
on the boundary of M . Recall from multivariable calculus that

〈i∂#([∂M ]× [0, π])xπ−1(B), ωII( ~X,~Y )〉 =
∫
∂M∩B

∫ π

0
ωII(

~X,~Y )
(
di∂
ds ,

di∂
dθ

)
dθds

where we think of p(s) as a unit speed parameterization of the boundary ofM . Since dn
dθ = ~u2,

ωII(X,Y )
(
di∂
dθ ,

di∂
ds

)
= −n

∣∣∣∣∣ ( ~X × n) • ~u1
~Y • dn

ds

( ~X × n) • 0 ~Y • dn
dθ

∣∣∣∣∣ = −n

∣∣∣∣∣ ~X • (n× ~u1) ~Y • dn
ds

0 ~Y • dn
dθ

∣∣∣∣∣
= −n

∣∣∣∣∣ ~X • ~u2
~Y • dn

ds

0 ~Y • ~u2

∣∣∣∣∣ = −n(u2 ⊗ u2)( ~X, ~Y ).
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Hence∫
i∂(∂M∩B×[0,π])

ωII(
~X,~Y )

=
∫
∂M∩B

∫ π

0
−n(~u2 ⊗ ~u2)( ~X, ~Y )dθds

=
∫
∂M∩B

∫ π

0
((~U ⊗ ~U cos θ sin2 θ − (~V ⊗ ~U + ~U ⊗ ~V ) cos2 θ sin θ + ~V ⊗ ~V cos3 θ)( ~X, ~Y )~U

+(~U ⊗ ~U sin3 θ − (~V ⊗ ~U + ~U ⊗ ~V ) cos θ sin2 θ + ~V ⊗ ~V cos2 θ sin θ)( ~X, ~Y )~V )dθds

=
∫
∂M∩B

2
3(−(~U ⊗ ~V + ~V ⊗ ~U)( ~X, ~Y )~U + (2~U ⊗ ~U + ~V ⊗ ~V )( ~X, ~Y )~V )ds

= 2
3{−(~U ⊗ ~V + ~V ⊗ ~U)( ~X, ~Y )~U + (2~U ⊗ ~U + ~V ⊗ ~V )( ~X, ~Y )~V }ds[∂M ](B). (15)

The formula for φIIM follows from (14) and (15).

Similarly, ωĨI(
~X,~Y )

(p,~U(p))
(∇~e1i+,∇~e2i+) = ĨI( ~X, ~Y ), ωĨI(

~X,~Y )

(p,~U(p))
(∇~e1i−,∇~e2i−) = −ĨI( ~X, ~Y ), and

ωĨI(X,Y )
(
di∂
dθ ,

di∂
ds

)
= −n

∣∣∣∣∣ ( ~X × n) • dn
ds

~Y • ~u1

( ~X × n) • dn
dθ

~Y • 0

∣∣∣∣∣ = −n(~u1 ⊗ ~u1)( ~X, ~Y ),

so

〈(i+#[M ]− i−#[M ])xπ−1(B), ωĨI( ~X,~Y )〉 =
∫
M

2ĨI( ~X, ~Y )dA = 2ĨI( ~X, ~Y )dA ∧ [M ](B).

and ∫
i∂(∂M∩B×[0,π])

ωĨI(X,Y ) =
∫
∂M∩B

∫ π

0
−n(~u1 ⊗ ~u1)( ~X, ~Y )dθds

=
∫
∂M∩B

∫ π

0
(~V cos θ + ~U sin θ)(~T ⊗ ~T )( ~X, ~Y )dθds

=
∫
∂M∩B

2(~T ⊗ ~T )( ~X, ~Y )~Uds

= 2(~T ⊗ ~T )( ~X, ~Y )~V ds ∧ [∂M ](B).

The formula for φĨIM follows.

6.2 Triangulated surfaces with boundary

Theorem 11. Let T ⊆ R3 be an oriented triangulated surface. For any Borel set B ⊆ R3,

φIIT =
∑

e⊂intT an edge

2
3(−(sin3 β

2
~U+ ⊗ ~U+ − (2 sin β

2 + sin3 β
2 )~U− ⊗ ~U−)~U+

− sin3 β
2 (~U+ ⊗ ~U− + ~U− ⊗ ~U+)~U−)ds ∧ [e](B)

+
∑

e⊂∂T an edge

1
3(−(~U ⊗ ~V + ~V ⊗ ~U)~U + (2~U ⊗ ~U + ~V ⊗ ~V )~V )ds ∧ [e],

φĨIT =
∑

e⊂intT an edge

2 sin β
2 (~T ⊗ ~T )~U+ds ∧ [e]−

∑
e⊂∂T an edge

(~T ⊗ ~T )~V ds ∧ [e].
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Proof. The proof is similar to the computation of the second fundamental form vector
measures on the boundary of a smooth surface. Let B ⊆ R3 be a Borel set. First we
observe that the ωII(

~X,~Y )|sptN(T ) is supported above the edges of T . Let e be an edge

of T . Recall from the proof of formula for φH~U
T , the normal cycle of T above e equals

ie#([e]× [−β/2, β/2])− ie#([e]× [π−β/2, π+β/2]). As we showed in the second fundamental
form vector theorem for a smooth surface, i∗eω

II( ~X,~Y ) = n(~u2⊗~u2)( ~X, ~Y )dθds and i∗eω
ĨI( ~X,~Y ) =

n(~u1⊗ ~u1)( ~X, ~Y )dθds, where (~u1, ~u2, n) = (~T ,−~U+ sin θ+ ~U− cos θ, ~U+ cos θ+ ~U− sin θ). In-
tegrating over both cylindrical parts of the normal cycle above e,

〈N(M)xπ−1(e ∩B), ωII(X,Y )〉

= 2
∫
e∩B

∫ β/2

−β/2
−n(~u2 ⊗ ~u2)( ~X, ~Y )dθds

= −2
∫
e∩B

∫ β/2

−β/2
((~U+ ⊗ ~U+ cos θ sin2 θ − (~U+ ⊗ ~U− + ~U− ⊗ ~U+) cos2 θ sin θ

+~U− ⊗ ~U− cos3 θ)~U+ + ((~U+ ⊗ ~U+ sin3 θ − (~U+ ⊗ ~U− + ~U− ⊗ ~U+) cos θ sin2 θ

+~U− ⊗ ~U− cos2 θ sin θ)~U−)( ~X, ~Y )dθds

= −4
3

∫
e∩B

((sin3 β
2
~U+ ⊗ ~U+ + (2 sin β

2 − sin3 β
2 )~U− ⊗ ~U−)~U+

− sin3 β
2 (~U+ ⊗ ~U− + ~U− ⊗ ~U+)~U−)( ~X, ~Y )ds

= −4
3 ((sin3 β

2
~U+ ⊗ ~U+ + (2 sin β

2 − sin3 β
2 )~U− ⊗ ~U−)~U+

− sin3 β
2 (~U+ ⊗ ~U− + ~U− ⊗ ~U+)~U−)( ~X, ~Y )ds ∧ [e](B).

and

〈N(M)xπ−1(e ∩B), ωĨI( ~X,~Y )〉 = 2
∫
e∩B

∫ β/2

−β/2
n(~u1 ⊗ ~u1)( ~X, ~Y )dθds

= 2
∫
e∩B

∫ β/2

−β/2
(U+ cos θ + U− sin θ)(~T ⊗ ~T )( ~X, ~Y )dθds

= 4
∫
e∩B

U+ sin β
2 (~T ⊗ ~T )( ~X, ~Y )ds

= 4U+ sin β
2 (~T ⊗ ~T )( ~X, ~Y )ds ∧ [e](B).

The computation for boundary edges is the same as for smooth surfaces. The result follows
by summing all the edges of M .

7 Convergence Theorem

We wish to establish a theorem showing that the curvature measures of a triangulated surface
approximate the curvature measures of a smooth surface when the triangulated surface is
itself a good approximation of the smooth surface. We take the approach used by Cohen-
Steiner and Morvan, using geometric measure theory to first establish a bound on the flat
norm of the difference between the normal cycles of a smooth surface and an approximating
triangulated surface [9].
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7.1 Analysis of currents

To describe and prove our convergence theorem, we first need to define some norms on
currents. Since currents are linear functionals on differential forms, which are themselves
linear functionals on tangent vectors, the natural way to define the norms on currents is by
first analyzing norms on tangent vectors and the induced norm on differential forms.

For a point p ∈ R3 and a vector ~v ∈ TpR3, we define ‖~v‖ to be the standard Euclidean
norm of ~v. Recall TR3 ' R3 × R3, so any point in TR3 may be represented as (p, n) for
p, n ∈ R3. Furthermore, any vector in T(p,n)(TR3) can be written as (~v, ~w) for ~v ∈ TpR3 and
~w ∈ TnR3. We define ‖(~v, ~w)‖TR3 = max{‖~v‖, ‖~w‖}.

Given a 1-form ω(p,n) at a point (p, n) ∈ TR3, we define [2, 1.8.1]

‖ω(p,n)‖ = sup{ω(p,n)(~v) : ‖~v‖TR3 ≤ 1}.

Given a 2-form ω(p,n) at a point (p, n) ∈ TR3, we define

‖ω(p,n)‖ = sup{ω(p,n)(~v1, ~v2) : ‖~v1‖TR3 ≤ 1, ‖~v2‖TR3 ≤ 1}.

For a differential form ω on TR3, we define ‖ω‖ = sup(p,n)∈TR3 ‖ω(p,n)‖.
Let f : U → Rm, where U ⊆ Rn is open, and let Df denote the first derivative of f ,

provided it is defined. Let

Df(~v) = lim
h→0

f(p+ h~v)− f(p)
h

be the derivative of f in the direction ~v. We define [2, 3.1.1]

‖Df‖ = sup{‖Df(~v)‖ : ‖~v‖ ≤ 1}.

We can represent Df as an m × n matrix, which we will also denote by Df , and thus
compute its norm using linear algebra. In the case that Rm and Rn both have the standard
Euclidean metric, ‖Df‖ equals the square root of the largest eigenvalue of (Df)TDf [6, p.
281]. Furthermore, if m = n and Df is a normal matrix at each point in U , ‖Df‖ equals
the largest absolute value of the eigenvalues of Df . If we replace Rm with TR3 ' R6 and let
n = 3, we can represent Df as a 2 × 1 block matrix with 3 × 3 blocks. The norm of Df is
then computed as the maximum norm of the two blocks.

Given an current S, we define the mass norm M[S] of S by [2, 4.1.7]

M[S] = sup{S(ω) : ‖ω‖ ≤ 1},

and we define the flat norm F[S] of S by [2, 4.1.12]

F[S] = sup{S(ω) : ‖ω‖ ≤ 1, ‖dω‖ ≤ 1}
= inf{M[A] + M[B] : S = A+ ∂B, A,B are currents}.

Geometrically, the flat norm gives a good indication for when two surfaces are close together.
If M1,M2 are closed, compact, oriented smooth surfaces, then F([M1]− [M2]) is small when
the Hausdorff distance between M1 and M2 is small (see Figure 4). For this reason we will
use the flat norm to obtain bounds on the difference of the normal cycles of a triangulated
surface and a smooth surface.

The mass and flat norms are not norms on the entire space of currents on TR3 since the
mass and flat norms of some currents are infinite. Thus we must restrict out attention to
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Figure 4: The flat norm of S − T gives a good indication of when the line segments associated
with S and T are close together. Suppose that the lengths of the line segments are 1 and the
distance between the line segments is ε, then F[S − T ] = 3ε, whereas M[S − T ] = 2.

spaces of currents where the mass and flat norms are true norms. We define the space of
normal currents to be the set of all currents S such that M[S] + M[∂S] < ∞, [2, 4.1.7].
Examples of m-dimensional normal currents include finite sums of currents associated with
closed, compact, oriented m-dimensional manifolds. We define the space of m-dimensional
flat currents to be the flat norm closure of the space of m-dimensional normal currents in
the space of all currents with compact support, [2, 4.1.12].

7.2 Constancy Theorem

To prove the convergence theorem we will also need Federer’s Constancy Theorem. The
Constancy Theorem can be stated in two equivalent ways (see [2, 4.1.31] and [8, Theorem
4.9]).

Theorem 12. (Constancy Theorem) Let S be an m-dimensional flat current supported on an
open set U with compact closure and A ⊂ U be a connected m-dimensional smooth manifold.

1. If sptS \ intA is closed relative to U and spt ∂S ⊆ U \ intA, then there exists a c ∈ R
such that

spt(S − c[A]) ⊆ U \ intA.

Furthermore, if S is an integral current, then c is an integer.

2. If sptS ⊆ A and spt ∂S ⊆ ∂A, then S = c[A] for some c ∈ R. Furthermore, if S is an
integral current, then c is an integer.

Corollary 2. Let S be an m-dimensional flat current supported on the unit sphere S2 ⊆ R3

and A ⊂ S2 be a connected smooth surface. If sptS \A is closed relative to S2 and spt ∂S ⊆
S2 \A, then

spt(S − c[A]) ⊆ S2 \A,

for some c ∈ R. Furthermore, if S is an integral current, then c is an integer.

Proof. Let U be an open neighborhood of S2. By the Constancy Theorem, there is a c ∈ R
such that

spt(S − c[A]) ⊆ U \A.

Note c is an integer if S is an integral current. Since spt(S−c[A]) ⊆ S2, the claim follows.
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7.3 Statement of the theorem

We begin by stating a general bound on the difference of two curvature measures.

Definition. Let M be a smooth surface and let A ⊆ R3. We define the norm ‖ · ‖A on
continuous functions f : A → R by ‖f‖A = 0 if A = ∅ and ‖f‖A = sup{|f(p)| : p ∈ A}
otherwise. Recall that h is the scalar second fundamental form of M and define ‖h‖A by
‖h‖A = 0 if A = ∅ and

‖h‖A = sup{|hp( ~X, ~Y )| : p ∈ A, ‖ ~X‖ = ‖~Y ‖ = 1}

otherwise. Let d(x,A) = infy∈A ‖x− y‖. Define σA by σA = 1 if A 6= ∅ and σA = 0 if A = ∅.
Let T be a triangulated surface homeomorphic to M . Let U ⊆ R3 be an open set

containing T and suppose that ψ : U → M is a Lipschitz map such that ψ|T : T → M is a
homeomorphism. Let B ⊆ R3 be a nonempty Borel set contained in T . We say B is regular
if N(T )xπ−1(B) is an integral current [9]. Let δB = supx∈T∩B ‖x − ψ(x)‖. Define α~U,B to
be the supremum over x ∈ T ∩ B of the angles between unit normal vectors to those faces
whose closure contains x and the unit normal vector to M at ψ(x). Define α~T ,B by α~T ,B = 0
if ∂T ∩ B = ∅ and otherwise α~T ,B is the supremum over x ∈ ∂T ∩ B of the angles between
edges whose closure contains x and the tangent vector to ∂M at ψ(x).

Theorem 13. Let M be a smooth surface and T be a triangulated surface homeomorphic
to M . Let B be a nonempty regular Borel set contained in T . Let U ⊆ R3 be an open set
containing T , and let ψ : U →M be a Lipschitz map with Lipschitz constant λ. Suppose that

(1) ψ|T : T →M is a homeomorphism,

(2) α~U,B < π/2 and α~T ,B < π/2, and

(3) for almost all points x in a neighborhood of ∂T in T , ~v • Dψ(~v) ≥ 0 for all vectors
~v ∈ TxR3.

Let φ be either the Gauss curvature measure or mean curvature normal measure. Then

|φT (B)− φM (ψ(B))| ≤ 1
2C(φ) sup{δB, α~U,B + α~T ,B}

(
max{1, λ}max

{
1, ‖h‖M∩ψ(B),

2
√
‖κg‖2

∂M∩ψ(B) + 2‖h‖2
∂M∩ψ(B) +

πσ∂M∩ψ(B)

π − 2α~U,B

})2

(
M[N(T )xπ−1(B)] + M[∂(N(T )xπ−1(B))]

)
,

where κg is the geodesic curvature of ∂M . Furthermore,

C(φG) = max{‖ωG‖, ‖dωG‖} = 3,

C(φH~U ) =
√

3 max{‖n1ω
H‖, ‖d(n1ω

H)‖} ≤ 12
√

3.

In the case that ∂M = ∅, the above inequality becomes

|φT (B)− φM (ψ(B))| ≤ 1
2C(φ) max{δB, α~U,B}

(
max{1, λ}max

{
1, ‖h‖M∩ψ(B)

})2
·
(
M[N(T )xπ−1(B)] + M[∂(N(T )xπ−1(B))]

)
.

This is equivalent to the bound given in [9].
We want to describe the error bound in Theorem 13 in terms of an explicit choice for the

function ψ. In [9], ψ = prM , where prM (x) is the unique closest point on M to the point x.
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However, in the case that M and T are surfaces with boundary, prM |T is not necessarily a
homeomorphism. Thus, we must use another map for ψ, which will be defined in terms of
functions prM and pr∂M defined as follows. Given a point x, prM (x) is closest point on M
to x and pr∂M (x) is the closest point on ∂M to x. To use such a construction we need the
following lemma, which we will prove in Section 7.8.

Lemma 1. Given a smooth surface M with boundary, there is an open set UM ⊆ R3 con-
taining M on which we can define the map prM : UM → M such that prM (x) is the unique
closest point on M to x ∈ UM . Also, there is an open set U∂M ⊆ R3 containing ∂M on which
we can define the map pr∂M : U∂M → ∂M such that pr∂M (x) is the unique closest point on
∂M to x ∈ U∂M .

We can let UM = {x ∈ R3 : d(x,M) < r}; that is UM is the tubular neighborhood of M
of radius r > 0. It is well-known that such an r must be less 1/‖h‖M [2]. Similarly, we can
let U∂M = {x ∈ R3 : d(x, ∂M) < r} for r > 0 and such an r must be less than 1/‖κ‖∂M ,
where κ is the curvature of ∂M . In what follows, suppose UM = {x ∈ R3 : d(x,M) < r} and
U∂M = {x ∈ R3 : d(x, ∂M) < r} for a fixed r > 0 and further suppose that ∂T ⊆ U∂M .

Figure 5: The slice of U∂M and T in the plane perpendicular to ∂M at pr∂M(x). For x ∈ T ∩U∂M ,
pr∂M(x) is the closest point to x on ∂M , ξ(x) is the unique point on ∂T such that pr∂M(ξ(x)) =
pr∂M(x), and ζ(x) is the point on ∂U∂M that lies on the ray starting at pr∂M(x) and passing
through x.

MT ⊂ U ψ

π

M

πG

Id

TU
π

|MT⊂ 3D

f

spt ( ) |MN M T⊂ 3

( , Id)ψ

( )Mpr x M∂ ∈∂

( )x Tξ ∈∂
x T∈

T

M∂U

( )xζ

We will assume that pr∂M |∂T : ∂T → ∂M is a homeomorphism. Then we may define
ξ : U∂M → ∂T so that ξ(x) ∈ ∂T is the unique point such that pr∂M (ξ(x)) = pr∂M (x) (see
Figure 5). Define ζ : U∂M → ∂U∂M by

ζ(x) = pr∂M (x) +
r

d(x, ∂M)
(x− pr∂M (x))

for x ∈ U∂M . Geometrically, ζ(x) is the point on ∂U∂M that lies on the ray starting at
pr∂M (x) and passing through x (see Figure 5). Define the real-valued function w on points
x ∈ U∂M such that d(ξ(x), ∂M) < d(x, ∂M) < r by

w(x) =
r − d(x, ∂M)
r − d(ξ(x), ∂M)

for x ∈ U∂M . We regard w as a weight function with range that equals one on ∂T , equals
zero on ∂U∂M , and ranges from zero to one for d(ξ(x), ∂M) < d(x, ∂M) < r. We define
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b : UM → UM by

b(x) =


pr∂M (x) if d(x, ∂M) < d(ξ(x), ∂M),
w(x) pr∂M (x) + (1− w(x))ζ(x) if d(ξ(x), ∂M) < d(x, ∂M) < r,
x if d(x, ∂M) > r,

and we define ψ = prM ◦b so that ψ : U → M where U = UM . Conceptually, b stretches T
so that b(∂T ) = ∂M and then prM projects b(T ) onto M .

Theorem 14. Let M , T , and B be defined as in Theorem 13. Let ψ = prM ◦b. Assume the
hypothesizes of Theorem 13 and further suppose that

(a) the vertices of T lie on M and the vertices of ∂T lie on ∂M ,

(b) pr∂M |∂T is a homeomorphism,

(c) d(x, ∂M) < r for all x ∈ ∂T , where r ≤ min
{

1
‖h‖M

, 1
‖κ‖∂M

}
.

Then Theorem 13 holds with

δB ≤ 2δ∂M,B + δM,B,

λ ≤ max
{

1
1− r‖h‖M

,
1

1− r‖κ‖∂M

}
·
(

r

r − δ∂M,∂T
secα~T ,∂T + max

{
1

1− r‖κ‖∂M
,

r

r − δ∂M,∂T

})
.

where δ∂M,B = supx∈∂T∩B d(x, ∂M) and δM,B = supx∈T∩B d(x,M).

7.4 Overview of the proof

We wish to obtain a bound on |φT (B)−φM (ψ(B))|. Recall we define the curvature measure
φ by φT (B) = 1

2〈N(T )xπ−1(B), ω〉 for any Borel set B ⊆ R3, where ω is the curvature 2-form
corresponding to φ, and φM is defined similarly. Thus

φT (B)− φM (ψ(B)) = 1
2〈N(T )xπ−1(B), ω〉 − 1

2〈N(M)xπ−1(ψ(B)), ω〉
= 1

2〈N(T )xπ−1(B)−N(M)xπ−1(ψ(B)), ω〉.

For simplicity, let D = N(T )xπ−1(B) and E = N(M)xπ−1(ψ(B)). By the definition of the
flat norm of a current,

|φGT (B)− φGM (ψ(B))| ≤ 1
2F[D − E]max{‖ωG‖, ‖dωG‖}.

We must be more careful with the mean curvature normal measure since it is a vector-valued
measure. We can apply the flat norm definition to the real-valued components of φH~U

T (B)−
φH

~U
M (ψ(B)). Then ‖φH~U

T (B)− φH
~U

M (ψ(B))‖2 is bounded above by the sum of the squares of
1
2F[D −E]max{‖niωH‖, ‖d(niωH)‖}, i = 1, 2, 3. By symmetry, max{‖niωH‖, ‖d(niωH)‖} is
the same for all i, so

|φH~U
T (B)− φH

~U
M (ψ(B))| ≤ 1

2

√
3F[D − E]max{‖n1ω

H‖, ‖d(n1ω
H)‖}.

Now proving Theorem 13 reduces to computing the flat norm of D−E and the norms of the
curvature 2-forms and their exterior derivatives.
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To obtain a bound on F[D−E], we shall use the homotopy formula for currents. Consider
a homotopy h : [0, 1]× TU → TU defined by

h(t, p, n) = (1− t)(p, n) + tf(p, n)

for some function f : TU → TR3. We will define f to be a lift of ψ with the property
that f#D = E. In [9], f = G ◦ ψ, where G : M → TR3|M is the Gauss map defined by
G(p) = (p, ~U(p)). However, for surfaces with boundary, sptN(M)∩TpR3 contains more than
one point for all p ∈ M . Thus there is no function G on M such that (G ◦ ψ)#D = E. To
avoid this problem, we will instead use a function G from TR3|M to TR3|M , which we will
define in Section 7.6. We then define f : TU → TR3 by the following commutative diagram:

MT ⊂ U ψ

π

M

πG

Id

TU
π

|MT⊂ 3D

f

spt ( ) |MN M T⊂ 3

( , Id)ψ

where D = {(ψ(p), n) : (p, n) ∈ sptN(T )}. In other words, f(p, n) = G(ψ(p), n) for all
(p, n) ∈ TU . By the Homotopy Formula for currents [2, 4.1.9],

D − E = D − f#D = h#([0, 1]×D) + ∂h#([0, 1]×D),

so
F[D − f#D] ≤ M[h#([0, 1]×D)] + M[∂h#([0, 1]×D)].

Note that f and h will be Lipschitz maps but are not differentiable on TU . Thus far we
have only considered the pushforward of currents for smooth maps between manifolds, so in
Section 7.5 we will discuss the pushforward of currents for Lipschitz maps. In Section 7.5,
we will use [2, 4.1.9] to show that

F[D − f#D] ≤ ‖f − Id‖sptN(T ) max{1,Λ2}(M[D] + M[∂D]),

where Id denotes the identity map and Λ is the Lipschitz constant for f . In Section 7.6 we
will compute ‖f − Id‖sptN(T ) and Λ.

The norms of the curvature 2-forms and their derivatives will be computed in Section 7.7.
We will then combine F[D − E] and the norms of the curvature 2-forms to obtain Theorem
13.

In Section 7.8, we will examine our explicit choice of ψ. We will verify that our choice
of ψ is well-defined. We will then prove Theorem 14 by computing δB and λ for our specific
choice of ψ and then applying Theorem 13.

7.5 Pushforward of currents for Lipschitz maps

We shall first define f#S for a flat current S and a Lipschitz map f . Let S be a flat current
supported on an open set V ⊆ Rm. Let f : V → Rm be a Lipschitz map. We define
f#S as in [2, 4.1.14] to be the unique flat current such that if W is an open subset with
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sptS ⊂ W ⊆ V and fi : W → Rm is a sequence of smooth maps such that fi → f uniformly
on W, and ‖Dfi‖ is bounded, then

lim
i→∞

F[f#T − fi#T ] = 0.

Note that given integers aj and closed, compact, oriented manifoldsMi of the same dimension,

f#

 t∑
j=1

aj [Mj ]

 =
t∑

j=1

aj [f(Mj)]. (16)

We can construct the smooth maps fi from the Lipschitz map f as follows. Let B(p, r) ⊂
Rm be the open ball of radius r centered at p. Define ϕ̃ : R3 → R to be a radially symmetric
smooth function that is supported on B(0, 1) and normalized so that

∫
R3 ϕ(x, 1)dx = 1.

Define ϕε : R3 → R for ε > 0 by ϕε(x) = 1
ε3
ϕ̃(xε ). Note ϕε is supported on B(0, ε) with∫

R3 ϕε(x)dx = 1. We define fε : V → Rm for ε > 0 using convolution by

fε(x) = (ϕε ∗ f)(x) =
∫

R3

ϕε(x− y)f(y)dV (y).

Clearly fε is defined on an open subset W ⊂ V for ε sufficiently small. If f is a Lipschitz
function with Lipschitz constant Λ, we have

‖fε(x)− f(x)‖ =
∥∥∥∥∫

R3

ϕε(x− y)f(y)dV (y)− f(x)
∥∥∥∥

=
∥∥∥∥∫

R3

ϕε(x− y)(f(y)− f(x))dV (y)
∥∥∥∥

≤
∫

R3

ϕε(x− y) ‖f(y)− f(x)‖ dV (y)

≤
∫

R3

ϕε(x− y)Λ ‖y − x‖ dV (y)

≤ Λ
∫

R3

ϕε(x− y)εdV (y)

= Λε.

Therefore, fε → f uniformly. Each fε is smooth since Dfε = Dϕε ∗ f . Also,∥∥∥∥fε(x+ h~v)− fε(x)
h

∥∥∥∥ =
∥∥∥∥1
h

∫
R3

ϕε(y)f(x+ h~v − y)dV (y)− 1
h

∫
R3

ϕε(y)f(x− y)dV (y)
∥∥∥∥

=
∥∥∥∥∫

R3

ϕε(y)
f(x+ h~v − y)− f(x− y)

h
dV (y)

∥∥∥∥
≤

∫
R3

ϕε(y)
∥∥∥∥f(x+ h~v − y)− f(x− y)

h

∥∥∥∥ dV (y)

≤
∫

R3

ϕε(y)Λ‖~v‖dV (y)

= Λ‖~v‖,

so ‖Dfε‖ ≤ Λ. We then take fi = fεi for some εi converging to zero.
To prove Theorem 13, we will construct a Lipschitz map f : TU → TR3 and then derive

an estimate for F[D − f#D]. Given f , we estimate F[D − f#D] as follows. Consider the
homotopy h : [0, 1]× TU → TU defined by

h(t, p, n) = (1− t)(p, n) + tf(p, n).
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Approximate h by smooth maps hε : [0, 1] ×W → R3, where W ⊂ TR3 is open set, defined
by hε(t, ·) = ϕε ∗ h(t, ·). Define fε(x) = hε(x, 1). By the Homotopy Formula for currents [2,
4.1.9],

D − fε#D = hε#([0, 1]×D) + ∂hε#([0, 1]×D),

so by [2, 4.1.9],

F[D − fε#D] = M[hε#([0, 1]×D)] + M[∂hε#([0, 1]×D)]
≤ ‖fε − Id‖sptD sup{1, ‖Dfε‖2}(M[D] + M[∂D]).
≤ ‖fε − Id‖sptD max{1,Λ2}(M[D] + M[∂D]).

where Λ is the Lipschitz constant for f . By the triangle inequality,

F[D − f#D] ≤ F[D − fε#D] + F[fε#D − f#D]
≤ ‖fε − Id‖sptD max{1,Λ2}(M[D] + M[∂D]) + F[fε#D − f#D].

for all ε > 0. So letting ε→ 0+, we obtain

F[D − f#D] ≤ ‖f − Id‖sptD max{1,Λ2}(M[D] + M[∂D]).

7.6 Definition and computations for f

We will define f : TU → TR3 in terms of a generalization G : TR3|M → TR3|M of the Gauss
map. We first need the following lemma.

Lemma 2. Let (~T , ~V , ~U) be the Darboux frame on ∂M . We can extend this frame field onto
an open neighborhood W of ∂M in M such that ~U is the unit normal vector field on M and
∇~V

~V is parallel to ~U on ∂M .

Proof. By the Collaring Theorem [4, p. 113, 152], there is an open neighborhood W of ∂M in
M and a smooth embedding c : ∂M × [0,∞) →W such that c(p, 0) = p and ∂c

∂t (p, 0) = ~V (p)
(where t is the parameter on [0,∞)) for all p ∈ ∂M . At each point p ∈ ∂M , define the curve
γp : [0,∞) → M by γp(t) = c(p, t). Using parallel transport, we can extend V to a vector
field on W such that ~V is tangent to M on W and for each p ∈ ∂M , ∇γ′p

~V is parallel to ~U

along γp [5, p. 60]. In particular, since γ′p(p, 0) = ~V (p), ∇~V
~V is parallel to ~U on ∂M . Finally,

extend ~T to a vector field on W so that (~T , ~V , ~U) form a positively oriented orthonormal
frame on W .

Definition. Let G : TR3|M → TR3|M be defined as follows. Let ε > 0. Let (~T , ~V , ~U) be an
extension of the Darboux frame on ∂M defined in Lemma 2. If p ∈M \W , let

G(p, n) =

{
(p,+~U(p)) if n • ~U ≥ 0,
(p,−~U(p)) if n • ~U < 0.

If p ∈W , let n : [0,∞)× [−π/2, π/2]× [0, 2π] → TpR3 be a spherical coordinate parameteri-
zation of TpR3 defined by

n(ρ, ϕ, θ) = ρ cosϕ sin θ ~T + ρ cosϕ cos θ~V + ρ sinϕ~U.
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Define g : [−π/2, π/2] → [−π/2, π/2] by

g(ϕ) =


−π
2 if ϕ < −π/2 + α~U,B − ε,

π
π−2α~U,B

−εϕ if |ϕ| ≤ π/2− α~U,B − ε,
π
2 if ϕ > π/2− α~U,B + ε,

.

Let G(p,n(ρ, ϕ, θ)) = (p,n(1, g(ϕ), 0)) if ρ > 0, and G(p, 0) = (p, 0).

Recall f : TU → TR3 is defined by f(p, n) = G(ψ(p), n) for all (p, n) ∈ TU .
To effectively use f , we need Lemmas 3 and 4 below, which describe how sptN(T ) and

sptN(M) are positioned relative to each other in TR3. From these lemmas, we will be
able to establish f#D = E and compute ‖f − Id‖sptN(T ) and Λ. Recall that α~U,B is the
supremum over x ∈ T ∩ B of the angles between unit normal vectors to those faces whose
closure contains x and the unit normal vector to M at ψ(x). Also recall that if ∂T ∩B = ∅,
then α~T ,B = 0, and if ∂T ∩ B 6= ∅, then α~T ,B is the supremum over x ∈ ∂T ∩ B of the
angles between edges whose closure contains x and the tangent vector to ∂M at ψ(x). For
p ∈ intT ∩B, let Ap be the set of all unit vectors n that lie within an angular distance α~U,B
from one of the unit normal vectors ~U(ψ(p)) or −~U(ψ(p)). Geometrically, for p ∈ intT ∩B,
Ap is the union of the spherical caps centered at ±~U(ψ(p)) of angular radius α~U,B (see Figure
6(a)). For p ∈ ∂T ∩B, let Ap be the union of the set of all unit vectors n that lie within an
angular distance α~U,B from one of the unit normal vectors ~U(ψ(p)) or −~U(ψ(p)) and the set
{n(1, ϕ, θ) : |θ| < α~T ,B}. Geometrically, for p ∈ ∂T ∩B, Ap union of the same spherical caps

described above and a spherical wedge whose vertices are ~U(ψ(p)) and −~U(ψ(p)) and whose
boundary curves are a distance α~T ,B from the geodesic arc joining −~U(ψ(p)) to ~U(ψ(p)) via
~V (ψ(p)) (see Figure 6(b)). We claim that sptN(T ) ∩ TpR3 ⊆ Ap for all p ∈ T ∩B.

Figure 6: The set Ap for

Student Version of MATLAB

(a) p ∈ intT ,

Student Version of MATLAB

(b) p ∈ ∂T .
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Lemma 3. Suppose α~U,B < π/2. Let p ∈ intT ∩ B and recall Ap be the set of all points
(p, n) ∈ TpR3 such that n lies within an angular distance α~U,B from one of the unit normal

vectors ~U(ψ(p)) or −~U(ψ(p)). Then sptN(T ) ∩ TpR3 ⊆ Ap.

Proof. We shall first establish some geometric facts. By the definition of α~U,B, the unit
normal vectors to the faces of T containing p lie in Ap. Furthermore, geodesic arcs joining
the positive normal vectors to T together lie in the spherical cap containing ~U(ψ(p)) and the
geodesic arcs joining together negative normal vectors to T lie in the spherical cap containing
−~U(ψ(p)) (see Figure 6(a)). Now the cases where p lies on the interior of a face or interior
edge are easy. If p lies on the interior of a face of T , then sptN(T ) ∩ TpR3 consists of the
two normal vectors to the face containing p and both normal vectors lie in Ap. If p lies on
the interior of an edge of T , then sptN(T ) ∩ TpR3 consists of two geodesic arcs, one joining
two positive normal vectors to T and the other joining two negative normal vectors to T ,
and thus sptN(T ) ∩ TpR3 ⊆ Ap.

Finally consider the case where p is an interior vertex of T and consider the normal cycle
of T above p. We shall first show spt ∂Np(T ) ⊆ Ap. By Theorem 1,

∂Np(T ) = ∂(N(T )xπ−1(p)) =
∑

f⊂T a face

∂(N(f)xπ−1(p))−
∑

e⊂intT an edge

∂(N(e)xπ−1(p)).

We know ∂(N(e)xπ−1(p)) for an edge e incident at p is the great circle of vectors perpendicular
to e. Also ∂(N(f)xπ−1(p)) for a face f incident at p consists of two geodesic arcs joining the
positive and negative normal vectors to f and perpendicular to the edges incident at f (see
Figure 7). Thus ∂Np(T ) consists of geodesic arcs perpendicular to the edges of T incident
at p. If we consider the great circle Γ perpendicular to a particular edge e incident at p and
the faces f1 and f2 incident to e, then

(∂(N(f1)xπ−1(p)) + ∂(N(f2)xπ−1(p))− ∂(N(e)xπ−1(p)))xΓ

consists of two geodesic arcs, one joining two positive normal vectors to T and the other
joining two negative normal vectors to T (see Figure 7).

Hence ∂Np(T ) consists of geodesic arcs joining either two positive normal vectors to T
and the other joining two negative normal vectors to T . These geodesic arcs lie in Ap and
thus spt ∂Np(T ) ⊆ Ap.

Let SpR3 denote the space of all unit vectors in TpR3. By the Constancy Theorem,
spt(Np(T )− c[SpR3 \ Ap]) ⊆ Ap for some integer c. We claim c = 0. Fix a vector n ∈ SpR3

such that n • ~U(ψ(p)) = 0. Let η be a 2-form on SpR3 supported on a small neighborhood
of n with 〈[SpR3], η〉 = 1. Then c = 〈Np(T ), η〉. If the support of η is sufficiently small, then
by Theorem 1,

c =
∑

f⊂T a face

〈N(f)xπ−1(p), η〉 −
∑

e⊂intT an edge

〈N(e)xπ−1(p), η〉+ 〈N(p), η〉

= #{f ⊂ T : (p, n) ∈ sptN(f)} −#{e ⊂ T : (p, n) ∈ sptN(e)}+ 1. (17)

We know (p, n) lies in the support of the normal cycle of a face or edge incident to p if and
only if the face or edge is a subset of H = {q ∈ R3 : q •n ≤ 0} [10]. Let Star(p, T ) denote the
union of {p} and the interiors of all faces and edges incident to p. Then (17) is equivalent
to the statement that c equals the Euler characteristic of Star(p, T ) ∩ H. Parameterize
R3 using polar coordinates (r, θ, z), letting p be the origin, n be (1, 0, 0), and ~U(ψ(p)) be
(0, 0, 1). Since α~U,B < π/2, it follows that ~u • ~U(ψ(p)) > 0 for any positive normal vector
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Figure 7: Consider the circle Γ of vector perpendicular to an edge. For each face incident to the
edge, the portion of the normal cycle of the face lying in Γ is a geodesic arc between the unit
normal vectors to the face (see (a)). The portion of the normal cycle of the edge lying in Γ is a
current associated with all of Γ. Summing these together, we obtain the portion of N(T ) lying in
Γ (see (b)), which consists of geodesic arcs joining to positive unit normal vectors to T and joining
to negative unit normal vectors to T .

(a) (b)

~u to a face of T incident at p. Thus the θ-coordinate of a unit speed parameterization
of ∂ Star(p, T ) is a monotone function (see Figure 8). So the projection of Star(p, T ) onto
the place given by z = 0 is a one-to-one map whose range is an open neighborhood of p
that is topologically equivalent to a disk. Hence Star(p, T ) ∩ H is topologically equivalent
to {(r, θ, 0) : 0 ≤ r < 1} ∩ H, which has Euler characteristic zero. Therefore c = 0 and
sptNp(T ) ⊆ Ap.

Lemma 4. Suppose α~U,B < π/2 and α~T ,B < π/2. Further suppose that ~v • Dψ(~v) ≥ 0
for all vectors ~v ∈ TxR3 and for almost all points x in a neighborhood of ∂T in T . Let
p ∈ ∂T ∩B and recall that Ap is the union of the set of all unit vectors n that lie within an
angular distance α~U,B from one of the unit normal vectors ~U(ψ(p)) or −~U(ψ(p)) and the set
{n(1, ϕ, θ) : |θ| < α~T ,B} (see Figure 6(b)). Then sptN(T ) ∩ TpR3 ⊆ Ap.

Proof. We shall use a similar proof as before. If p lies on the interior of an edge e of ∂T ,
sptN(T ) ∩ TpR3 is a geodesic arc between the positive and negative normal vectors to the
face f incident to e passing through the unit vector −~V perpendicular to e and tangent to
f . By the defintions of α~U,B and α~T ,B, the normal vector to f and −~V lie in Ap and thus
the geodesic arc lies in Ap, i.e. sptN(T ) ∩ TpR3 ⊆ Ap.

Suppose p is a vertex of T and consider the normal cycle of T above p. We shall first show
sptNp(T ) ⊆ Ap. As before, ∂Np(T ) consists of geodesic arcs perpendicular to the edges of T
incident at p. All but two of these geodesic arcs join the positive normal vectors to T with
each other and the negative normal vectors to T together. The remaining two geodesic arcs
are perpendicular to the boundary edges of T incident at p, joining the unit normal vectors
to the face f incident to e and passing through the unit vector −~V perpendicular to e and
tangent to f . All these geodesic arcs lie in Ap, so spt ∂Np(T ) ⊆ Ap.

By the Constancy Theorem, spt(Np(T ) − c[SpR3 \ Ap]) ⊆ Ap for some integer c, which

35



Figure 8: Let ~u be a unit normal vector to a face of T incident to p. If ~u • ~U(ψ(p)) > 0, then θ is
increasing. Otherwise, θ is constant or decreasing.

we claim to be zero. Consider n = ~T (ψ(p)). We compute

c = #{f ⊂ T a face : (p, n) ∈ sptN(f)} −#{e ⊂ intT an edge : (p, n) ∈ sptN(e)}. (18)

The point (p, n) lies in the support of the normal cycle of a face or edge incident to p if and
only if the face or edge is a subset of H = {q ∈ R3 : q • n ≤ 0}. Let Star(p, T ) denote the
union of the interior of all faces and interior edges incident to p. Then (18) is equivalent to
the statement that c equals the Euler characteristic of Star(p, T ) ∩H.

Parameterize R3 using polar coordinates (r, θ, z), letting p be the origin, n be (1, 0, 0),
and ~U(ψ(p)) be (0, 0, 1). As before, the θ coordinate of a unit speed parameterization of
∂ Star(p, T ) is a monotone function. Suppose that the θ coordinate of ∂ Star(p, T ) increases
from θ1 to θ2. We want to show that θ2− θ1 < 2π. However, this is not immediately obvious
since ∂ Star(p, T ) is not a closed curve as in the case that p ∈ intM . In fact, we may have a
situation as Figure 9 where the θ-coordinate for a parameterization of ∂ Star(p, T ) increases
by 3π between the two endpoints of ∂ Star(p, T ). If we follow this proof for the situation
in Figure 9, we find that c = 1. So to prove that c = 0, we must use the condition that
~v •Dψ(~v) ≥ 0 for all vectors ~v ∈ TxR3 and for almost all points x in a tubular neighborhood
of ∂T . By the definition of α~T ,B, we may let −α~T ,B < θ1 < α~T ,B and (2m + 1)π − α~T ,B <

θ2 < (2m + 1)π + α~T ,B for some integer m ≥ 0. For every ε > 0, there is a δ > 0 such
that if ‖y − ψ(p)‖ < δ for y ∈ M , then the θ coordinate of y lies on (−ε, π + ε). Consider
x ∈ Star(p, T ) such that ‖ψ(x)− ψ(p)‖ < δ. Then

(x− p) • (ψ(x)− ψ(p)) =
∫
`
(x− p) •Dψ

(
x−p
‖x−p‖

)
ds ≥ 0,

where ` is the line segment from p to x. Thus the angle between x − p and ψ(x) − ψ(p) is
at most π/2. Hence we may regard the θ coordinate of Star(p, T ) as increasing from at least
−π/2− ε to at most 3π/2+ ε. Thus θ2− θ1 < 2π+2ε. Since ε > 0 is arbitrary, θ2− θ1 < 2π.
Since

2mπ < (2m+ 1)π − 2α~T ,B ≤ θ2 − θ1 ≤ 2π,
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m = 0. Hence θ2− θ1 < (2m+1)π− 2α = π+2α < 2π. Under the projection onto the plane
given by z = 0, Star(p, T ) ∩H is topologically equivalent to {(r, θ, 0) : 0 < r < 1, θ1 < θ <
θ2} ∩H, which has Euler characteristic zero. Therefore c = 0 and sptNp(T ) ⊆ Ap.

Figure 9: Lemma 4 fails for the following triangulated surface, which is homeomorphic to a half
of a circular disk with rounded corners.

Since G is not continuous on all of TR3|M , it is not obvious that f is continuous on sptD.
However, G is continuous on an open neighborhood of {(ψ(p), n) : p ∈ T ∩ B,n ∈ Ap} in
TR3|M . Since sptD ⊂ {(p, n) : p ∈ T ∩ B,n ∈ Ap} by Lemmas 3 and 4, f is continuous
on an open neighborhood of sptD. Since ψ is Lipschitz and G has bounded derivatives
almost everywhere (see Lemma 7), f is also Lipschitz on an open neighborhood of sptD.
Thus we may apply the homotopy formula for currents. Recall D = N(T )xπ−1(B), E =
N(M)xπ−1(ψ(B)), and

F[D − f#D] ≤ ‖f − Id‖sptN(T ) max{1,Λ2}(M[D] + M[∂D]) (19)

where Λ is the Lipschitz constant for f . Thus to obtain our bound on F[D − E], we must
show f#D = E and compute ‖f − Id‖sptN(T ) and Λ.

Lemma 5. f#D = E.

Proof. First suppose sptE ∩ π−1(intM) 6= ∅. Recall that for all (p, n) ∈ TR3, f(p, n) =
(ψ(p), u) for some unit vector u. Also recall that f maps positive (and negative) normal
vectors to the faces of T to the positive (and negative) normal vectors to M . It follows from
the definition of f and Lemmas 3 and 4 that f(sptD∩TpR3) = sptE ∩Tψ(p)R3 for all p ∈ T ;
if p ∈ intT , then f(sptD ∩ TpR3) is the set of unit vectors perpendicular to M at ψ(p), and
if p ∈ ∂T , then f(sptD ∩ TpR3) is the geodesic arc from −~U(ψ(p)) to −~V (ψ(p)) to ~U(ψ(p)).
Similarly, f(spt ∂D ∩ TpR3) = spt ∂E ∩ Tψ(p)R3 for all p ∈ T . Hence, spt f#D ⊆ sptE and
spt ∂f#D ⊆ spt ∂E. So by the Constancy Theorem, f#(Dxπ−1(intT )) = cExπ−1(intM) for
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some c ∈ R. Define the 2-form ωA by ω(p,n) = (u, 0)∧ (v, 0) if (u, v, n) is a positively oriented
orthonormal frame. One can show that i∗+ω

A = −i∗−ωA = dA, where dA is the area form on
M . Hence,

c =
〈f#D,ω

A〉
〈E,ωA〉

=
〈ψ#([T ]xπ−1(B)), dA〉
〈[M ]xπ−1(ψ(B)), dA〉

.

Since ψ is a homeomorphism, ψ#([T ]xπ−1(B)) = [M ]xπ−1(ψ(B)) and thus c = 1.
If instead E is supported on the boundary of M , let Z be an open subset of T such that

the intersection of the closure of Z and ∂T is empty. Then

f#D = f#(N(T )xπ−1(B)) = f#(N(T )xπ−1(Z ∪B))− f#(N(T )xπ−1(Z))
= N(M)xπ−1(ψ(Z ∪B))−N(M)xπ−1(ψ(Z)) = N(M)xπ−1(ψ(B)) = E.

Therefore, f#D = E for all nonempty, regular Borel sets B ⊆ T .

Lemma 6. ‖f − Id‖sptD ≤ max{δM,B, α~U,B + α~T ,B + ε}.

Proof. Let G = (Gp, Gn) for functions Gp, Gn : TU → R3. For (p, n) ∈ sptD,

‖f(p, n)− (p, n)‖TR3 = ‖G(ψ(p), n)− (p, n)‖TR3 = max{‖ψ(p)− p‖, ‖Gn(ψ(p), n)− n‖}.

We know ‖ψ(p)− p‖ ≤ δM,B. If p ∈ intT , then n ∈ Ap by Lemma 3 and thus ‖Gn(ψ(p), n)−
n‖ ≤ α~U,B by the definition of Ap. If p ∈ ∂T , then n ∈ Ap by Lemma 4. Let n = n(1, ϕ, θ)
in spherical coordinates. If ϕ > π

2 − α~U,B − ε, then n lies within the spherical cap of vectors

within an arclength distance α~U,B of ~U(ψ(p)) = Gn(ψ(p), n), so ‖Gn(ψ(p), n)−n‖ < α~U,B+ε.
Similarly, if ϕ < −π

2 + α~U,B + ε, then n lies within the spherical cap of vectors within an

arclength distance of −~U(ψ(p)) = Gn(ψ(p), n), so ‖Gn(ψ(p), n)− n‖ < α~U,B + ε. Otherwise,
n lies the spherical sector {n(1, ϕ, θ) : |θ| < α~T ,B}, in which case

‖Gn(ψ(p), n)− n‖ =

∥∥∥∥∥n
(

1,
π/2

π/2− α~U,B − ε
ϕ, 0

)
− n(1, ϕ, θ)

∥∥∥∥∥
≤

∥∥∥∥∥n
(

1,
π/2

π/2− α~U,B − ε
ϕ, 0

)
− n(1, ϕ, 0)

∥∥∥∥∥+ ‖n(1, ϕ, 0)− n(1, ϕ, θ)‖

≤

(
π/2

π/2− α~U,B − ε
− 1

)
ϕ+ θ

≤
α~U,B + ε

π/2− α~U,B − ε
(π/2− α~U,B − ε) + α~T ,B

= α~U,B + ε+ α~T ,B.

Therefore, ‖f(p, n)− (p, n)‖TR3 ≤ max{δM,B, α~U,B + α~T ,B + ε}.

Whereever f is differentiable, we have

Df = DG

(
Dψ 0
0 I

)
.

Since ‖Dψ‖ ≤ λ and ‖I‖ = 1, Λ = ‖DG‖max{λ, 1}.
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Lemma 7. Let (p, n) ∈ D with p ∈ ψ(B). If p ∈ intM , then ‖DG‖ = max{1, ‖h‖}. If
p ∈ ∂M and G is differentiable at (p, n), then

‖DG‖ ≤ max

{
1, ‖h‖, 2

√
‖κg‖2 + 2‖h‖2 +

π

π − 2α~U,B − ε

}
.

Proof. Recall the Gauss map G : M → TR3|M is defined by G(q) = (q, ~U(q)). By [9],
‖DG‖ = max{1, ‖h‖}. If p ∈ intM and n • ~U(ψ(p)) > 0, then locally G = G ◦ π where
π : TR3 → R3 is defined by π(q,~v) = q. Thus ‖DG‖ = max{1, ‖h‖}. Similarly, if p ∈ intM
and n • ~U(ψ(p)) < 0, ‖DG‖ = max{1, ‖h‖}.

Suppose p ∈ ∂M and n = n(1, ϕ, θ) in spherical coordinates. As before, if |ϕ| > π/2 −
α~U,B, then ‖DG‖ = max{1, ‖h‖}. If |ϕ| = π/2− α~U,B, then G is not differentiable at (p, n).
If |ϕ| < π/2 − α~U,B, (p, n) has a neighborhood in D that is contained in TR3|∂M . Let

(~T , ~V , ~U) be the Darboux frame along ∂M . By differentiating with respect to the frame field
((~T , 0), (~V , 0), (0, ∂n∂ρ ), (0, ∂n∂ϕ), (0, 1

cosϕ
∂n
∂θ )) on TR3|∂M and expressing the vectors in terms of

the frame field ((~T , 0), (~V , 0), (0, ~T ), (0, ~V ), (0, ~U)) on TR3|∂M , we compute

DG =
(

I 0
(An̂|Bn̂) C

)
where

A =

 0 κg h(~T , ~T )
−κg 0 h(~T , ~V )

−h(~T , ~T ) −h(~T , ~V ) 0

 , B =

 0 0 h(~T , ~V )
0 0 h(~V , ~V )

−h(~T , ~V ) −h(~V , ~V ) 0

 ,

n̂ =

 0
cos(g(θ))
sin(g(θ))

 , and C =

 0 0 0
0 − sin(g(θ))g′(θ) 0
0 cos(g(θ))g′(θ) 0

 .

Recall we may write any vector on TR3|∂M as (~v, ~w) for ~v ∈ T (∂M) and ~w ∈ TR3. Thus

‖DG‖ = max {1, sup{‖(An̂|Bn̂) · ~v + C ~w‖ : ‖~v‖ = ‖~w‖ = 1} ≤ max {1, ‖A‖+ ‖B‖+ ‖C‖}

The norm of A is maximum absolute value of its eigenvalues. We compute

det(A− λI) = −λ3 − (κ2
g + h(~T , ~T )2 + h(~T , ~V )2)λ,

so the eigenvalues of A are zero and ±i
√
κ2
g + h(~T , ~T )2 + h(~T , ~V )2. Hence

‖A‖ =
√
κ2
g + h(~T , ~T )2 + h(~T , ~V )2.

Similarly, ‖B‖ =
√
h(~T , ~V )2 + h(~V , ~V )2. We compute that ‖C‖ = ‖g′‖∞ = π

π−2α~U,B
−ε . Since

‖C‖ ≥ 1,

‖DG‖ ≤ ‖A‖+ ‖B‖+ ‖C‖ ≤ 2
√
‖κg‖2 + 2‖h‖2 + π

π−2α~U,B
−ε

at p ∈ ∂M .
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Letting f#D = E and substituting ‖G− Id‖sptN(T ) and Λ = ‖DG‖D∩π−1(ψ(B)) max{1, λ}
into (19) yields

F[D − E] ≤ sup{δB, α~U,B + α~T ,B + ε} (max{1, λ}

max

{
1, ‖h‖M∩ψ(B), 2

√
‖κg‖2

∂M∩ψ(B) + 2‖h‖2
∂M∩ψ(B) +

πσ∂M∩ψ(B)

π − 2α~U,B − ε

})2

(
M[N(T )xπ−1(B)] + M[∂(N(T )xπ−1(B))]

)
.

Since ε > 0 is arbitrary,

F[D − E] ≤ sup{δB, α~U,B + α~T ,B} (max{1, λ}

max

{
1, ‖h‖M∩ψ(B), 2

√
‖κg‖2

∂M∩ψ(B) + 2‖h‖2
∂M∩ψ(B) +

πσ∂M∩ψ(B)

π − 2α~U,B

})2

(
M[N(T )xπ−1(B)] + M[∂(N(T )xπ−1(B))]

)
. (20)

7.7 Computing norms of curvature forms

Lemma 8. Let ωG be the Gauss curvature 2-form. Then ‖ωG‖ = 1 and ‖dωG‖ = 3. Hence
C(φG) = 3.

Proof. We write (p, n) ∈ TR3 as p = (p1, p2, p3) and n = (n1, n2, n3). Let (~u1, ~u2, n) be a
positively oriented frame. By the Lagrange identity [12, p. 212], for vectors ~v = (~v1, ~v2), ~w =
(~w1, ~w2) on TR3,

ωG(~v, ~w) =
∣∣∣∣ ~u1 • ~v2 ~u2 • ~v2
~u1 • ~w2 ~u2 • ~w2

∣∣∣∣ = (~u1 × ~u2) • (~v2 × ~w2)

= n • (~v2 × ~w2) = (n1dn2 ∧ dn3 + n2dn3 ∧ dn1 + n3dn1 ∧ dn2)(~v, ~w).

Since the norms of ~v2 and ~w2 are at most one, |ωG(~v, ~w)| ≤ 1 with equality precisely when
(~v2, ~w2, n) form an orthonormal frame. We compute

dωG = d(n1dn2 ∧ dn3 + n2dn3 ∧ dn1 + n3dn1 ∧ dn2)
= dn1 ∧ dn2 ∧ dn3 + dn2 ∧ dn3 ∧ dn1 + dn3 ∧ dn1 ∧ dn2

= 3dn1 ∧ dn2 ∧ dn3.

Hence ‖dωG‖ = 3.

Lemma 9. Let ωH be the mean curvature 2-form. Then ‖ωH‖ = 2 and ‖dωH‖ = 6.

Proof. Let (~u1, ~u2, n) be a positively oriented frame. By the Lagrange identity [12, p. 212],
for vectors ~v = (~v1, ~v2), ~w = (~w1, ~w2) on TR3,

ωH(~v, ~w) =
∣∣∣∣ ~u1 • ~v1 ~u2 • ~v2
~u1 • ~w1 ~u2 • ~w2

∣∣∣∣+ ∣∣∣∣ ~u1 • ~v2 ~u2 • ~v1
~u1 • ~w2 ~u2 • ~w1

∣∣∣∣
=

∣∣∣∣ ~u1 • ~v1 ~u2 • ~v1
~u1 • ~w2 ~u2 • ~w2

∣∣∣∣+ ∣∣∣∣ ~u1 • ~v2 ~u2 • ~v2
~u1 • ~w1 ~u2 • ~w1

∣∣∣∣
= (~u1 × ~u2) • (~v1 × ~w2) + (~u1 × ~u2) • (~v2 × ~w1) = n • (~v1 × ~w2 + ~v2 × ~w1)
= (n1(dp2 ∧ dn3 + dn2 ∧ dp3) + n2(dp3 ∧ dn1 + dn3 ∧ dp1) +

n3(dp1 ∧ dn2 + dn1 ∧ dp2))(~v, ~w).
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Since the norms of ~v1, ~v2, ~w1, and ~w2 are all at most one, |ωH(~v, ~w)| ≤ 2 with equality
precisely when (~v1, ~w2, n) and (~v2, ~w1, n) both form orthonormal frames. We compute

dωH

= d[n1(dp2 ∧ dn3 + dn2 ∧ dp3) + n2(dp3 ∧ dn1 + dn3 ∧ dp1) + n3(dp1 ∧ dn2 + dn1 ∧ dp2)]
= 2dp1 ∧ dn2 ∧ dn3 + 2dp2 ∧ dn3 ∧ dn1 + 2dp3 ∧ dn1 ∧ dn2.

Hence ‖dωH‖ ≤ 6. Since for any positively oriented orthonormal frame (~e1, ~e2, ~e3),

dωH((~e1, ~e1), (~e2, ~e2), (~e3, ~e3)) = 6,

‖dωH‖ = 6.

Lemma 10. Consider the mean curvature vector form nωH(p,n) = (n1ω
H
(p,n), n2ω

H
(p,n), n3ω

H
(p,n)).

For i = 1, 2, 3, ‖niωH‖ = 2 and ‖d(niωH)‖ ≤ 8. Hence C(φH~U ) ≤ 12.

Proof. Clearly since |ni| ≤ 1 with equality when ni = ±1 and nj = 0 for j 6= i, ‖niωH‖ =
‖ωH‖ = 2. Recall ‖η1 ∧ η2‖ ≤ 3‖η1‖‖η2‖ for any 1-form η1 and 2-form η2 [2]. We compute

‖d(niωH)‖ = ‖dni ∧ ωH + nidω
H‖ ≤ 3‖dni‖‖ωH‖+ |ni|‖dωH‖ = 3 · 1 · 2 + 1 · 6 = 12.

Recall from the statement of Theorem 13 and Section 7.4 that

|φ(B)− φ(ψ(B))| ≤ 1
2C(φ)F[D − E],

where

C(φG) = max{‖ωG‖, ‖dωG‖},

C(φH~U =
√

3 max{‖n1ω
H‖, ‖d(n1ω

H)‖}.

In this section, we computed C(φG) = 3 and C(φH~U ) = 12
√

3. These computations combined
with (20) complete the proof of Theorem 13.

7.8 Concrete example for ψ

We begin with a proof of Lemma 1: Given a smooth surface M with boundary, there is an
open set UM ⊆ R3 containing M on which we can define the map prM : UM →M such that
prM (x) is the unique closest point on M to x ∈ UM . Also, there is an open set U∂M ⊆ R3

containing ∂M on which we can define the map pr∂M : U∂M → ∂M such that pr∂M (x) is the
unique closest point on ∂M to x ∈ U∂M .

Proof. We shall proof that pr∂M is well-defined on an open neighborhood of ∂M . The proof
that prM is well-defined is similar.

Since ∂M is a compact set, given x ∈ R3 there exists at least one point on ∂M that is
closest to x. Let z be one of the closest points to x on ∂M . Let α be a local parameterization
of ∂M such that z = α(0). Since t = 0 is a minimum for ‖α(t)− x‖,

0 = d
dt‖α(t)− x‖2|t=0 = 2(α(0)− x) • α′(0),
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so x lies on a line perpendicular to ∂M through z = α(0). Thus there is a closed ball Bx
centered at x that is tangent to ∂M at z (see figure 10). Suppose x is within a distance
1/‖κ‖∂M of ∂M , where κ is the curvature of ∂M . Then any point on ∂M within an arc
length distance 1/‖κ‖∂M of α(0) along α is not contained in Bx because the curvature of
∂M is bounded above by ‖κ‖∂M . In other words, z is the unique closest point to x in a
neighborhood of z on ∂M . However, there is the global issue that ∂M that there could be
two points that are far apart along ∂M which are equally close to x due to how ∂M curves.

For u ∈ ∂M , let Γu be the set of points on ∂M whose arc length distance from u is greater
than 1/‖κ‖∂M . We want to show that if x is sufficiently close to ∂M , then all the points on
Γz are farther away from x than z. Define f : ∂M → R so that f(u) is the distance from u
to Γu. If x is closer to z that f(z)/2, then x is closer to z than any point on Γz. However, z
could be any point on ∂M , so we need a lower bound on f(z) that is independent of the point
z ∈ ∂M . We will show such a lower bound exists by showing f is contiuous as a function
on ∂M and thus attains its minimum value. Let 0 < ε < 1/‖κ‖∂M and suppose v ∈ ∂M is
within a distance ε along ∂M of u. Then v is within a distance f(u) + ε of any point w ∈ Γu
that is closest to u. Since u and v are within an arclength distance ε along ∂M , Γu intersects
Γv except on a small curve of length at most ε. So while w may not lie in Γv, there exists a
point in Γv within a distance ε of w. Thus f(v) < f(u)+2ε. By symmetry, f(u) < f(v)+2ε,
so ‖f(u) − f(v)‖ < 2ε whenever u and v are within an arclength distance ε. Therefore f is
continuous and attains its minimum. Since for each u ∈ ∂M , u does not belong to the closed
set Γu, f > 0. Let fmin > 0 be the minimum value of f .

Figure 10: Given a point x near ∂M , we can find a closest point z on ∂M . We can draw a circle
Bx that is centered at x and tangent to ∂M at z. If we restrict x so that d(x, ∂M) < r for r > 0
sufficiently small, the ball B(z, 2r) contains Bx and also contains only points on ∂M that are
close to z in arc length distance. Of the points in ∂M ∩ B(z, 2r), only z is in the closure of Bx.
Therefore z is the unique closest point to x on ∂M .

 

B(z,2r) 

Bx 

∂M 

x 

z 

Now let U∂M = {x ∈ R3 : d(x,M) < r} where r = min{1/‖κ‖∂M , fmin/2}. We claim if
x ∈ U∂M , there is a unique closest point to x on ∂M . Let x ∈ U∂M and fix a point z ∈ ∂M
that is closest to x. Since x is within a distance r of z and the radius of Bx is less than r,
Bx ⊆ B(z, 2r) (see figure 10). Since r ≤ fmin/2, B(z, 2r) ∩ ∂M contains only the portion of
∂M within an arc length distance 1/‖κ‖∂M from z. Thus the only point in Bx ∩ ∂M is z
(see figure 10). Therefore z is the unique closest point to x.
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Now we will compute δB = ‖ψ − Id‖T∩B and λ = supx∈U ‖Dψ‖. Recall δ∂M,B =
supx∈B d(x, ∂M) and δM,B = supx∈B d(x,M).

Lemma 11. δB ≤ 2δ∂M,B + δM,B

Proof. For x ∈ T ∩B,

‖ψ(x)− x‖ = ‖prM (b(x))− x‖ ≤ ‖ prM (b(x))− b(x)‖+ ‖b(x)− x‖.

If d(x, ∂M) ≥ r, then b(x) = x. Suppose d(x, ∂M) < r. Let y be the point on the line segment
from x to pr∂M (x) such that d(y, ∂M) = d(ξ(x), ∂M). Then x = s(x)y + (1− s(x))ζ(x) for
some linear function s such that s(y) = 1 and s(ζ(x)) = 0. But w(y) = 1 and w(ζ(x)) = 0,
so s = w. Thus x = w(x)y + (1− w(x))ζ(x). Recall b(x) = w(x) pr∂M (x) + (1− w(x))ζ(x).
So

‖b(x)− x‖ = ‖w(x)(pr∂M (x)− y)‖ ≤ |w(x)|d(ξ(x),pr∂M (x)) ≤ δ∂M,B.

Thus for x ∈ M , d(b(x),M) ≤ ‖b(x) − x‖ + d(x,M) ≤ δ∂M,B + δM,B, so ‖prM (b(x)) −
b(x)‖ ≤ δ∂M,B + δM,B. Hence ‖ψ(x) − x‖ ≤ 2δ∂M,B + δM,B for all x ∈ T . In other words,
δB = ‖ψ − Id‖T∩B ≤ 2δ∂M,B + δM,B.

We know ‖Dψ‖ ≤ ‖D prM ‖‖Db‖, thus we need to compute ‖D prM ‖ and ‖Db‖ in order
to compute ‖Dψ‖. We will first compute D pr∂M , which we will use to compute ‖D prM ‖
and ‖Db‖. Let (~T , ~N, ~B) be the Frenet frame on ∂M , i.e. the frame field such that ~T is
tangent to ∂M , ~T ′ = κ ~N for some function ~N , and ~B = ~T × ~N . Recall κ is called the
curvature of ∂M and ~N ′ = −τ ~B.

Lemma 12. Let θ be the angle between pr∂M (x)− x and ~N(pr∂M (x)). For all vectors ~v,

D pr∂M (~v) =
1

1− d(x, ∂M)κ cos θ
(~T (pr∂M (x)) • ~v)~T (pr∂M (x)).

Proof. Since pr∂M is constant on planes perpendicular to ∂M , D pr∂M (~v) = 0 for any vector
~v perpendicular to ∂M . Thus it suffices to show that

D pr∂M (~T (pr∂M (x))) =
1

1− d(x, ∂M)κ cos θ
~T (pr∂M (x)).

Let γ : R → ∂M be a unit speed parameterization of ∂M and let

β = γ + d(x, ∂M)( ~N ◦ γ) cos θ + d(x, ∂M)( ~B ◦ γ) sin θ.

Note that β is a curve that passes through x. To simplify notation, we shall write ~T to mean
~T ◦ γ and similarly for ~N and ~B. We compute γ′ = ~T and

β′ = ~T + d(x, ∂M)(−κ~T + τ ~B) cos θ − d(x, ∂M)τ ~N sin θ.

Since pr∂M (β(s)) = γ(s) for all s, D pr∂M (β′(s)) = γ′(s). Thus

(1− d(x, ∂M)κ cos θ)D pr∂M (~T ) = ~T ⇒ D pr∂M (~T ) =
1

1− d(x, ∂M)κ cos θ
~T .
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Remark. We can replace the Frenet frame with a Darboux frame (~T , ~V , ~U), in which case
we compute

D pr∂M (~T ) =
1

1− d(x, ∂M)(κg cos θ + h(~T , ~T ) sin θ)
~T .

Lemma 13. At a point p ∈ UM ,

‖D prM ‖ ≤ max
{

1
1− r‖h‖

,
1

1− r‖κ‖

}
,

where r ≤ min {1/‖h‖M , 1/‖κ‖∂M} is the radius of the tubular neighborhood UM of T .

Proof. Consider the positively oriented, orthonormal frame field (~e1, ~e2, ~U) on UM where at
x ∈ UM , ~e1, ~e2 are the principal directions of M at prM (x) with principal curvatures κ1,
κ2, respectively, and ~U is the unit normal vector to M at prM (x). Then at x ∈ UM with
prM (x) ∈ intM [9],

D prM =


1

1+d(x,M)κ1
0 0

0 1
1+d(x,M)κ2

0
0 0 0


and at x ∈ UM with prM (x) ∈ ∂M , D prM = D pr∂M , which is given by Lemma 12. Note
that prM can only be defined if d(x,M) ≤ r < 1/|κi| for i = 1, 2 [9], so 1

1+d(x,M)κi
is defined

and positive for i = 1, 2. Hence

‖D prM ‖ ≤ max
{

1
1− r‖h‖

,
1

1− r‖κ‖

}
.

We will now compute Db. Recall that for x ∈ U∂M , ξ(x) is the unique point such that
pr∂M (ξ(x)) = pr∂M (x), ζ(x) = pr∂M (x) + r

d(x,∂M)(x − pr∂M (x)) (see Figure 5), w(x) =
r−d(x,∂M)
r−d(ξ(x),∂M) , and

b(x) =


pr∂M (x) if d(x, ∂M) < d(ξ(x), ∂M),
w(x) pr∂M (x) + (1− w(x))ζ(x) if d(ξ(x), ∂M) < d(x, ∂M) < r,
x if d(x, ∂M) > r.

.

At a point x ∈ UM with d(ξ(x), ∂M) < d(x, ∂M) < r, let (E1, E2, E3) be the positively
oriented, orthonormal frame field on U∂M where at x ∈ U∂M , ~E1 is tangent to the circle
containing x centered at pr∂M (x) and perpendicular to ∂M , ~E2 equals the tangent vector to
∂M at pr∂M (x), and ~E3 is parallel to the vector from pr∂M (x) to x. This frame field has two
important properties: ~E3 is the gradient of the map x 7→ d(x, ∂M) and ~E1[w] = 0 since w is
constant on circles in planes perpendicular to ∂M .

Lemma 14. Suppose x ∈ UM with d(ξ(x), ∂M) < d(x, ∂M) < r. Then the matrix represen-
tation of Db in terms of the frame field ( ~E1, ~E2, ~E3) is

Db =
(
Db( ~E1) Db( ~E2) Db( ~E3)

)
=

 W 0 0
0 (1−W ) 1

1−d(x,∂M)κ cos θ +W 0
0 − ~E2[w]r − ~E3[w]r

 ,

where W (x) = (1− w(x)) r
d(x,∂M) .
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Proof. To prove Lemma , obvserve that for all ~v ∈ TxR3,

Db(~v) = ~v[w](pr∂M (x)− ζ(x)) + w(x)D pr∂M (~v) + (1− w(x))Dζ(~v).

Recall that ~E3 is the gradient of the map x 7→ d(x, ∂M). We compute

Dζ(~v) = D pr∂M (~v)− r

(d(x, ∂M))2
~v[d(x, ∂M)](x− pr∂M (x)) +

r

d(x, ∂M)
(~v −D pr∂M (~v))

= D pr∂M (~v)− r

(d(x, ∂M))2
( ~E3 • ~v)d(x, ∂M) ~E3 +

r

d(x, ∂M)
(~v −D pr∂M (~v))

=
(

1− r

d(x, ∂M)

)
D pr∂M (~v)− r

d(x, ∂M)
( ~E3 • ~v) ~E3 +

r

d(x, ∂M)
~v.

Thus

(1− w(x))Dζ(~v) = (1− w(x)−W (x))D pr∂M (~v)−W (x)( ~E3 • ~v) ~E3 +W (x)~v.

Note that pr∂M (x)− ζ(x) = −r ~E3. Hence

Db(~v) = ~v[w]r ~E3 + w(x)D pr∂M (~v) + (1− w(x)−W (x))D pr∂M (~v)
−W (x)( ~E3 • ~v) ~E3 +W (x)~v

= −~v[w]r ~E3 + (1−W (x))D pr∂M (~v)−W (x)( ~E3 • ~v) ~E3 +W (x)~v.

Recall that D pr∂M ( ~E1) = D pr∂M ( ~E3) = 0 and D pr∂M ( ~E2) = 1
1−d(x,∂M)κ cos θ

~E2 by Lemma

12 and that ~E1[w] = 0. Therefore

Db( ~E1) = W (x) ~E1,

Db( ~E2) = − ~E2[w]r ~E3 + (1−W (x))
1

1− d(x, ∂M)κ cos θ
~E2 +W (x) ~E2,

Db( ~E3) = − ~E3[w]r ~E3 −W (x) ~E3 +W (x) ~E3 = − ~E3[w]r ~E3.

Corollary 3. At any point x ∈ U∂M where b is differentiable,

‖Db‖ ≤ r

r − δ∂M,∂T
secα~T ,∂T + max

{
1

1− r‖κ‖∂M
,

r

r − δ∂M,∂T

}
.

Before we can prove Corollary 3, we must obtain explicit bounds on W , ~E2[w], and ~E3[w].

Lemma 15. If d(ξ(x), ∂M) < d(x, ∂M) < r, then 0 < W (x) < 1.

Proof. Recall that W (x) = (1− w(x)) r
d(x,∂M) where w(x) = r−d(x,∂M)

r−d(ξ(x),∂M) . We compute

W (x) = (1− w(x))
r

d(x, ∂M)
=
d(x, ∂M)− d(ξ(x), ∂M)

r − d(ξ(x), ∂M)
r

d(x, ∂M)

=
r

r − d(ξ(x), ∂M)

(
1− d(ξ(x), ∂M)

d(x, ∂M)

)
,

so W (x) increases as d(x, ∂M) increases. Since W (x) = 0 when d(x, ∂M) = d(ξ(x), ∂M) and
W (x) = 1 when d(x, ∂M) = r, 0 < W (x) < 1 whenever d(ξ(x), ∂M) < d(x, ∂M) < r.
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Lemma 16. At any point x ∈ U∂M such that ξ(x) is not a vertex of ∂T ,

| ~E2[w]| ≤
secα~T ,∂T

r − d(ξ(x), ∂M)
,

~E3[w] =
1

r − d(ξ(x), ∂M)
.

Proof. Recall

w(x) =
r − d(x, ∂M)
r − d(ξ(x), ∂M)

.

Since ~E3 is the gradient of x 7→ d(x, ∂M), ~E2[d(x, ∂M)] = 0 and ~E2[d(ξ(x), ∂M)] = ~E3 •
Dξ( ~E2) by the Chain Rule. Thus,

~E2[w] =
−1

r − d(ξ(x), ∂M)
~E2[d(x, ∂M)] +

r − d(x, ∂M)
(r − d(ξ(x), ∂M))2

~E2[d(ξ(x), ∂M)]

=
r − d(x, ∂M)

(r − d(ξ(x), ∂M))2
~E3 •Dξ(E2).

Now we must compute Dξ(E2). Let e be the edge of ∂T containing ξ(x) and let ~e be the unit
tangent vector to e. Since ξ(x) is not a vertex, ξ(y) ∈ e for all points y near x. Therefore
Dξ( ~E2) is a multiple of ~e. We know pr∂M ◦ξ = pr∂M on U∂M , so by Lemma 12,

1
1− d(x, ∂M)κ cos θ

~E2 = D pr∂M ( ~E2)

= D pr∂M (Dξ( ~E2)) =
1

1− d(x, ∂M)κ cos θ
( ~E2 •Dξ( ~E2)) ~E2.

Hence ~E2 •Dξ(E2) = 1. Thus

Dξ(E2) =
1

~E2 • ~e
~e ⇒ ~E3 •Dξ(E2) =

~E3 • ~e
~E2 • ~e

.

Since the angle between ~E2, which is tangent to ∂M , and ~e, which is tangent to ∂T , is at
most α~T ,B < π/2, ~E2 • ~e ≥ cosα~T ,B. Since ~E3 and ~e are unit vectors, | ~E3 • ~e| ≤ 1. Thus
~E3 •Dξ(E2) ≤ secα~T ,∂T . Therefore,

| ~E2[w]| =

∣∣∣∣∣ r − d(x, ∂M)
(r − d(ξ(x), ∂M))2

~E3 • ~e
~E2 • ~e

∣∣∣∣∣ ≤ r − d(x, ∂M)
(r − d(ξ(x), ∂M))2

secα~T ,∂T

= w(x)
1

r − d(ξ(x), ∂M)
secα~T ,∂T ≤

secα~T ,∂T
r − d(ξ(x), ∂M)

.

Similarly, we compute

~E3[w] =
−1

r − d(ξ(x), ∂M)
~E3 • ~E3 +

r − d(x, ∂M)
(r − d(ξ(x), ∂M))2

~E3 •Dξ( ~E3) =
−1

r − d(ξ(x), ∂M)
,

since ξ(x) is constant along lines in U∂M that are perpendicular to ∂M .

We will now prove Lemma 3.
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Proof. At a point x ∈ UM with d(x, ∂M) < d(ξ(x), ∂M),

‖Db‖ = ‖D pr∂M ‖ ≤ 1
1− δ∂M,∂T ‖κ‖∂M

by Lemma 12. At x ∈ UM with d(x, ∂M) > r, ‖Db‖ = ‖I‖ = 1. Each of these bounds are
consistent with Lemma 3.

Consider x ∈ UM with d(ξ(x), ∂M) < d(x, ∂M) < r. Recall

Db =

 W 0 0
0 (1−W ) 1

1−d(x,∂M)κ cos θ +W 0
0 − ~E2[w]r − ~E3[w]r

 .

We can write

Db =
(
W 0
0 A+B

)
where A =

(
0 0

− ~E2[w]r 0

)
and

B =

(
(1−W ) 1

1−d(x,∂M)κ cos θ +W 0
0 − ~E3[w]r

)
.

By the properties of matrix norms [6, p. 283],

‖Db‖ ≤ max{‖W‖, ‖A+B‖} ≤ max{1, ‖A‖+ ‖B‖}.

We compute

‖A‖ =
∥∥∥∥( 0 0

− ~E2[w]r 0

)∥∥∥∥ ≤ secα~T ,∂T
r − d(ξ(x), ∂M)

r

≤ r

r − δ∂M,∂T
secα~T ,∂T ,

‖B‖ =

∥∥∥∥∥
(

(1−W ) 1
1−d(x,∂M)κ cos θ +W 0

0 − ~E3[w]r

)∥∥∥∥∥
≤ max

{
1

1− d(x, ∂M)‖κ‖∂M
,

1
r − d(ξ(x), ∂M)

r

}
≤ max

{
1

1− r‖κ‖∂M
,

r

r − δ∂M,∂T

}
.

Hence

‖A‖+ ‖B‖ ≤ r

r − δ∂M,∂T
secα~T ,∂T + max

{
1

1− r‖κ‖∂M
,

r

r − δ∂M,∂T

}
.

Since the above bound on ‖A‖+‖B‖ is greater than 1, ‖Db‖ is bounded above by this bound
on ‖A‖+ ‖B‖.

In conclusion, Theorem 13 applies to ψ = prM ◦b with

δB ≤ 2δ∂M,B + δM,B,

λ ≤ ‖D prM ‖‖Db‖

≤ max
{

1
1− r‖h‖M

,
1

1− r‖κ‖∂M

}
·
(

r

r − δ∂M,∂T
secα~T ,∂T + max

{
1

1− r‖κ‖∂M
,

r

r − δ∂M,∂T

})
.
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