
Manuscript received January 18, 2019; revised April 9, 2019; released
for publication July 8, 2019.

C. Contreras, J. Langford, L. Ammann, and J. Zweck are with the
Department of Mathematical Sciences, The University of Texas at
Dallas, Richardson, TX 75080, USA.
B. Marks is with The Johns Hopkins University Applied Physics
Laboratory, Laurel, MD 20723, USA.
This project was supported under the NSF Enriched Doctoral Train-
ing Program entitled “TeamTrainingMathematical Scientists Through
Industrial Collaborations,” DMS Award #1514808.

1557-6418/19/$17.00 © 2019 JAIF

Performance Improvement of
Measurement Association
Using a System with two 2D
Sensors and one 3D Sensor

CÉSAR CONTRERAS
JOHN LANGFORD
LARRY AMMANN
JOHN ZWECK
BRIANMARKS

A measurement-to-measurement data association problem is

formulated for a target tracking system consisting of one or two

2D sensors and a 3D sensor. Operating conditions are identified

under which performance is improved by using two 2D sensors and

a 3D sensor instead of one 2D sensor and a 3D sensor. To facilitate

this study, two algorithms are introduced to compute near-optimal

solutions of the corresponding three-way assignment problem: a

single-step algorithm based on two independent two-way assignment

problems, and a related iterative algorithm that explicitly enforces

a compatibility condition between measurements made by the 2D

sensors. Simulation studies show that the position estimates obtained

with the three-sensor system are much more accurate than those

obtained with a two-sensor system whenever there is large uncertainty

in the 3D sensor in the dimension orthogonal to the plane of the 2D

sensor in the two-sensor system. Moreover, whenever there is large

uncertainty in the measurements from the 3D sensor in the common

dimension of the 2D sensors, the percentage of correct matches with

the the iterative assignment algorithm for the three-sensor system is

significantly better than that with a two-sensor system. The degree to

which the methods and results can be extended to more realistic 3D

radar and 2D camera models is discussed and inferences for aerospace

and missile defense applications are drawn.

I. INTRODUCTION

Multitarget, multisensor tracking systems for
aerospace and missile defense applications are typi-
cally based on a network of radars [1], [2], [6], [11].
In computer vision and robotics, tracking systems are
often based on a network consisting of cameras or
radars or both. These systems are used to track the
movement of people and robots, for perception systems
in autonomous vehicles, and for surveillance applica-
tions [15], [18]–[20]. Therefore, an important problem
is to associate and fuse tracks generated by networks
of heterogeneous 2D and 3D sensors. The simplest
such data association problem is the measurement-to-
measurement association (M2MA) problem, which is
that of associating measurements from different sensors
to form composite measurements that can then be used
by a centralized tracking system to generate a single set
of tracks using data from several sensors [3], [4]. In this
paper, we adopt the approach of [4] and [6] in which
target states and measurements are represented as ran-
dom vectors. However, recently a Bayesian inference
approach to target tracking based on message passing
and the sum–product algorithm has also been shown to
be particularly effective [12].

We classify data association problems, such as the
M2MA problem, by the number of sensors in the sys-
tem and the dimensions of the Euclidean spaces of the
data recorded by the sensors. For example, we will clas-
sify a systemwith one 3D radar and two 2D cameras as a
322-sensor system, and a system with one 3D radar and
one 2D camera as a 32-sensor system.

Since target tracking with three sensors is signifi-
cantly more complex than with two sensors, it is im-
portant to identify situations in which the addition of
a third sensor results in more accurate estimates of the
target positions. Deb et al. [7] studied the M2MA prob-
lem for 322-, 222-, and 32-sensor systems using target
scenarios that simulated a squadron of fighter jets flying
in formation. They found that ghosting and resolution
problems due to specific geometric configurations of the
targets were a major source of position errors, but that
these were smaller for a 322-sensor than a 222-sensor
system.

Themain contribution of this paper is to identify sen-
sor operating conditions under which the performance
of a target tracking system can be improved by us-
ing a 322-sensor system rather than a 32-sensor system.
Specifically, in the context of M2MA, we study how the
percentage of correct assignments and the average target
position error depend on the angle between the planes
of the two 2D sensors and on the orientation of the co-
variance ellipsoid of the 3D sensor with respect to the
camera planes. By contrast, the results of Deb et al. [7]
were obtained with fixed sensor orientations. In Sec-
tion VI, we show that the percentage of correct as-
signments with a 322-sensor system is significantly bet-
ter than that with a 32-sensor system whenever the
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Fig. 1. The geometric configuration and coordinate systems for the
three-sensor system.

uncertainty in the measurements made by the 3D sen-
sor is large compared to that of the two 2D sensors
along the line of intersection of the planes of the two
2D sensors (i.e., along the x-axis in Fig. 1). We also
show that the root-mean-square error (RMSE) in the
estimated target positions is much smaller for the 322-
sensor system when the uncertainty in the 3D sensor
measurements is large in the dimension orthogonal to
the plane of the 2D sensor. In Section VII, we discuss
the implications of these results for aerospace and mis-
sile defense applications. In particular, our results sug-
gest that there can be a significant performance ad-
vantage to a target tracking system with two cameras
and a 3D radar as opposed to one camera and a 3D
radar.

The data association problems that arise in tar-
get tracking and sensor fusion can be formulated as
multidimensional assignment problems [16]. The prob-
lem of computing the most likely assignment of mea-
sured sensor data to a collection of unknown targets
involves optimizing a log-likelihood cost function sub-
ject to a collection of constraint equations that specify
the set of feasible assignments. The cost function de-
fined by Deb et al. [7] allows for realistic sensor mod-
els and includes spurious measurements and missed de-
tections.They formulated the resulting three-way assign-
ment problem as an integer linear program in which the
coefficients of the cost function are defined in terms of
unknown target positions. Since the number of coeffi-
cients is equal to the number of ways to select threemea-
surements, one from each sensor, the computation of the
coefficients involves solving a large number of nonlinear
least-squares problems for the target positions. Indeed,
Deb et al. found that up to 80% of the computational
time of the assignment algorithmwas taken upwith solv-
ing these least-squares problems.

Although multidimensional assignment problems
are NP-hard for N > 3 sensors, there are efficient

iterative algorithms to compute suboptimal solutions
based on greedy algorithms, simulated annealing, and
Lagrangian relaxation-based methods [14], [17]. For ex-
ample, in their work Deb et al. [7] employed a nearly
optimal three-way assignment algorithm grounded in
linear programming theory that trades off computa-
tional time for some loss of association accuracy. A key
step in their method is to incorporate one of the con-
straint equations into the cost function via Lagrange
multipliers and to solve the resulting two-way assign-
ment problem using Bertsekas’ auction algorithm [5]
or Munkres’ algorithm [13]. One advantage of this ap-
proach is that it provides upper and lower bounds
for the cost of the optimal solution. In a simulation
study, they found that the average gap between these
bounds can be reduced to less than 2%.Such Lagrangian
relaxation methods have been extended to N-way
assignments [8], [17].

Since we did not have access to an implementation of
a state-of-the-art assignment algorithm for the M2MA
problem [8], [17], to compare the performance of 322-
and 32-sensor systems we considered an idealized sit-
uation with simplified target-to-sensor transformations
and with no spurious measurements or missed detec-
tions. With these simplifying assumptions, we were able
to define a cost function whose coefficients do not de-
pend on unknown target positions, thus avoiding the
high computational cost of solving the nonlinear least-
squares problems in [7], [8], and [17].

Furthermore, to obtain near-optimal three-way as-
signments we used the simplified geometric configura-
tion of the sensors to devise two algorithms, each of
which reduces the 322-sensor assignment problem to
a sequence of 32-sensor problems that we solve us-
ing Munkres’ algorithm. We will refer to these algo-
rithms, which are described in Sections III and IV, as
the single-step four-dimensional (4D) algorithm and
the iterative five-dimensional (5D) algorithm.Although
we do not prove that the iterative 5D algorithm con-
verges to the optimal solution, we performed simulation
studies (not described here) verifying that the method
yields optimal assignments for small problems (≈10 tar-
gets) by comparing to results obtained by an exhaustive
search.

In Section VII, we will show that the simplified
target-to-sensor transformations we used are valid ap-
proximations of realistic radar and camera models for
applications in which the targets are located at a signifi-
cant distance from the sensors and are confined to a suf-
ficiently small region of the field of view. We will also
argue that the main conclusions obtained in Section VI
on the performance advantages of a 322-sensor system
over a 32-sensor system should remain valid if a state-
of-the-art method was used that incorporates spurious
measurements and missed detections.

In Section II,we introduce themodel we used for the
322-sensor association problem, and in Sections III and
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IVwe derive formulas for the cost function in the case of
orthogonal and nonorthogonal 2D sensor planes, respec-
tively. In SectionV,we derive a formula for the estimated
target positions. In SectionVI,we describe the numerical
simulations we performed to quantify the performance
of the methods we developed. In Section VII, we dis-
cuss the extent to which our methods and results can
be generalized to realistic 322-sensor systems. Finally, in
Section VIII, we present our conclusions.

II. SYSTEM MODEL

In this section, we describe the system models we
used to compare the performance of 322- and 32-sensor
systems.

We consider a target tracking scenario with three
sensors: two 2D sensors (A and B) and one 3D sen-
sor (C). We assume that all three sensors make N mea-
surements of the same N targets, and we assume that
there is no systematic bias in any of the sensors. How-
ever, mismatches can occur because of the inherent un-
certainty in the measurements made by each sensor.
We modeled the 2D sensors using parallel projections
rather than themore realistic perspective projections of-
ten used to model cameras. In addition, we assume that
the 3D sensor uses the identity transformation to map
each target to a measurement in a 3D rectangular co-
ordinate system, rather than employing a more realistic
radar model based on the transformation from XYZ to
RUV space, as is described, for example, in [9]. In Sec-
tion VII,we will explain why these simplifiedmodels are
reasonable.

In Fig. 1, we show a schematic diagram of the geo-
metric configuration of the three sensors. The planes of
the two 2D sensors intersect in a line, L, and we let θ

denote the angle between these two planes.We define a
coordinate system, (x, y, z), adapted to Sensors A and B
as follows. We choose the origin of the coordinate sys-
tem to be a point on L, the x-axis to be along the line
L, the y-axis to be perpendicular to the x-axis and in the
plane of SensorA, and the z-axis to be orthogonal to the
xy-plane.

We generate the N targets in the (x, y, z) coordinate
system, and suppose that each sensor records the mea-
sured positions of each target in a coordinate system
adapted to that sensor. Without any loss of generality,
we choose the coordinate systems (xA, yA) adapted to
SensorA, (xB,wB) adapted to SensorB, and (xC, yC, zC)
adapted to SensorC such that

[
xA yA

] = [
x y

]

= [
x y z

]⎡⎣1 0
0 1
0 0

⎤
⎦

= [
x y z

]
MA

(1)

[
xB wB

] = [
x cos(θ )y+ sin(θ )z

]

= [
x y z

]⎡⎣1 0
0 cos θ

0 sin θ

⎤
⎦ (2)

= [
x y z

]
MB,

and [
xC yC zC

] = [
x y z

]
R, (3)

for some 3×3 orientation-preserving orthogonal matrix
R. The projection matrices, MA and MB, in (1) and (2)
map the 3D vector

[
x y z

]
to the planes of Sensors A

and B.
We assume that the errors in the positions measured

by Sensors A, B, and C are independent Gaussian ran-
dom vectors with covariance matrices �A, �B, and �̃C,
where �A and �B are 2 × 2 matrices and �̃C is a 3 × 3
matrix.We assume that these variances are known from
sensor calibration measurements, and are given in the
coordinate system adapted to each sensor.For simplicity,
henceforth we suppose that the measurements made by
Sensor C have been transformed from (xC, yC, zC) to
(x, y, z) coordinates via (3) and that the covariance ma-
trix �̃C has been transformed to �C = R�̃CRT .

The notational conventions we use are summarized
in Table I. In addition, we use the following notation for
submatrices of an N × M matrix A. Let i = (i1, . . . , iK)
and j = ( j1, . . . , jL) be vectors of row and column
indices of A, respectively. Then, let A[i, j] denote the
K×L submatrix ofA consisting of the rows and columns
indexed by i and j, respectively. Also, let A[∗, j] =
A[(1, . . . ,N), j] and A[i, ∗] = A[i, (1, . . . ,M)].

Let
[
X Y Z

]
denote the N × 3 matrix of the

true positions of the N targets in the coordinate system
(x, y, z) adapted to Sensors A and B. Let Aerr and Berr

denote the N × 2 matrices of position errors for Sen-
sors A and B, respectively, and letCerr denote the N × 3
matrix of position errors for Sensor C. The rows of Aerr

are independent and identically distributed (i.i.d.) multi-
variate normal distributions with mean zero and covari-
ance matrix �A, Aerr[n, ∗] ∼ MN(0, �A), and similarly
for Sensors B andC. Then, the positions of theN targets
as measured by Sensors A,B, andC are given by[

X̂A ŶA
] = [

XA YA
] +Aerr ∈ RN×2 (4)

[
X̂B ŴB

] = [
XB WB

] + Berr ∈ RN×2 (5)

[
X̂C ŶC ẐC

] = [
XC YC ZC

] +Cerr ∈ RN×3 (6)

respectively. The matrix
[
XA YA

]
in (4) is obtained via

an unknown permutation, πA, of the rows of the matrix[
X Y Z

]
using the projection defined in (1). Similarly,

the matrix
[
XB WB

]
in (5) is obtained via an unknown

permutation, πB, of the rows of the matrix
[
X Y Z

]
using the projection defined in (2). These permutations
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TABLE I
Notational Conventions Used in This Paper

Variable Meaning

(xA, yA), (xB, wB), (xC, yC, zC) Coordinate systems adapted to Sensors A,B, andC
[X,Y,Z] N × 3 matrix of true target positions

[XA,YA], [XB,WB], [XC,YC,ZC] N ×K matrices of permuted true target positions for Sensors A,B (K = 2), andC (K = 3)
�A,�B,�C K ×K covariance matrices for Sensors A,B, andC
Aerr,Berr,Cerr N ×K matrices of position errors for Sensors A,B, andC

[X̂A, ŶA], [X̂B,ŴB], [X̂C, ŶC, ẐC] N ×K matrices of permuted measured target positions for Sensors A,B, andC

model the fact that the three sensors do not record the
data from the N targets in the same order.

Let SN denote the set of all permutations of N
symbols. With each permutation, π ∈ SN , we can as-
sociate an N × N matrix, also denoted by π , with
the property that left multiplication of a matrix by
π permutes the rows of that matrix. Specifically, the
permutation matrix corresponding to the permutation,
π (1, 2, . . . ,N) = (π (1), π (2), . . . , π (N)), is given by

π =

⎡
⎢⎢⎢⎣
eπ (1)
eπ (2)
...

eπ (n)

⎤
⎥⎥⎥⎦ (7)

where the row vector e j is the jth standard basis vector.
Therefore, by (4) and (5),[

X̂A ŶA
] = πA

[
X Y

] +Aerr (8)

[
X̂B ŴB

] = πB
[
X W

] + Berr (9)

whereW = π−1
B WB is N × 1.

Our goal is to determine the permutations, πA and
πB, that associate each of the N targets recorded by
Sensors A and B, respectively, with those recorded by
Sensor C. We formulate this association problem as a
combinatorial optimization problem that involves the
minimization of a cost function

� : SN × SN → [0,∞) (10)

where �(π̂A, π̂B) represents the cost of using permuta-
tions π̂A and π̂B to associate data from Sensors A and B
with those from SensorC, respectively.

In the following sections,we will define the cost func-
tion, �, in terms of a Mahalanobis distance using the re-
quirement that, in the absence ofmeasurement error, the
orthogonal projections of the target positions measured
by SensorC onto the planes of Sensors A and B should
match the target positions measured by Sensors A and
B, respectively. Specifically, the permutations πA and πB
should be chosen so that

π−1
A

[
XA YA

] = [
XC YC ZC

]
MA (11)

π−1
B

[
XB WB

] = [
XC YC ZC

]
MB. (12)

III. COST FUNCTION FOR ORTHOGONAL SENSOR
PLANES

To simplify the discussion, we first consider the spe-
cial case that the planes of Sensors A and B are orthog-
onal (θ = π/2). In the presence of measurement error,
by (4) and (6), the difference in the positions measured
by Sensors A andC is

π−1
A

[
X̂A ŶA

] − [
X̂C ŶC

]
= (

π−1
A πA

[
X Y

] + π−1
A Aerr

)
− ([

X Y
] +Cerr[∗, (1, 2)]

)
= Aerr −Cerr[∗, (1, 2)]

(13)

since the rows of Aerr are i.i.d. random variables

π−1
A Aerr

(d)= πAAerr
(d)= Aerr

where
(d)= denotes equality in distribution. Similarly,

π−1
B

[
X̂B ŴB

]− [
X̂C ẐC

] = Berr −Cerr[∗, (1, 3)]. (14)

Let DN×4(πA, πB) be the N × 4 data matrix

DN×4(πA, πB) = [
D1 D2 D3 D4

]
where

D1 = π−1
A X̂A − X̂C

D2 = π−1
A ŶA − ŶC

D3 = π−1
B X̂B − X̂C

D4 = π−1
B ŴB − ẐC.

By (13) and (14), the vector �x(πA, πB) ∈ R4N

obtained by concatenating the columns of the matrix
DN×4(πA, πB) is multivariate normally distributed with
mean zero and a 4N × 4N covariance matrix, �̃4D, that
is determined by �A, �B, and �C. Our goal then is to
determine the permutations (π̂A, π̂B) that maximize the
likelihood function

L((πA, πB)|�x) = exp
[−�x(πA, πB)T �̃−1

4D�x(πA, πB)
]
(15)

which is equivalent to minimizing the Mahalanobis
distance

�(πA, πB) = �x(πA, πB)T �̃−1
4D�x(πA, πB). (16)
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The advantage of defining DN×4 using differences of
measurements is that the unknown positions of the tar-
gets are removed, simplifying the computation of the
cost function �.

Since SN × SN has (N!)2 elements, an exhaustive
search for the global minimum of � is intractable for
N � 10. On the other hand, the simpler problem
of associating measurements made by two sensors can
be formulated as an optimization problem on SN for
which O(N3)-algorithms, such as Munkres’ algorithm,
exist [13]. To obtain an efficient, approximate solu-
tion to the 322-sensor assignment problem, we devised
two algorithms that use Munkres’ algorithm to solve
two-way assignment subproblems.We refer to these two
algorithms as the 4D and 5D algorithms.

Before describing these algorithms, we derive an al-
ternate formula for the Mahalanobis distance, �, in (16).
Recall that the definition of � was motivated by the re-
quirements, (8) and (9), that the projections of the mea-
sured data from Sensor C onto the planes of Sensors A
and B should be aligned with the data obtained from
Sensors A and B. We observe from (8) and (9) that,
in the absence of measurement error, the compatibility
condition

π−1
A XA = π−1

B XB (17)

must also hold for the optimal choice of permutations.
This condition will be used in the 5D algorithm to
further constrain the search for the optimal pair of
permutations.

By (4) and (5), we observe that in the presence of
measurement error the difference in the x-coordinate of
the measured positions of Sensors A and B is

π−1
A X̂A − π−1

B X̂B = Aerr[∗, 1] − Berr[∗, 1]. (18)

Then, we define an N × 5 data matrix by

DN×5(πA, πB) = [
DN×4(πA, πB) D5

]
(19)

where

D5 = π−1
A X̂A − π−1

B X̂B.

Let �̃5D be the 5N × 5N covariance matrix associated
with the data inDN×5. SinceD5 = D1−D3 for any set of
measurements, the covariance matrix �̃5D is not positive
definite but rather has rank 4N.A calculation shows that
�̃5D is the 5 × 5 block matrix whose (k, l)-block is the
N ×N matrix

(�̃5D)kl = (�5D)kl IN×N (20)

where IN×N is the N × N identity matrix and �5D is the
5 × 5 matrix given by

�5D =

⎡
⎢⎣

�AC CACBC CACAB

CT
ACBC �BC CBCAB

CT
ACAB CT

BCAB �AB

⎤
⎥⎦ (21)

whose entries are the matrices

�AC = �A + �C[(1, 2), (1, 2)]

�BC = �B + �C[(1, 3), (1, 3)]

�AB = �A[1, 1] + �B[1, 1]

CACBC =
[
�C[1, 1] �C[1, 3]
�C[1, 2] �C[2, 3]

]

CACAB = �A[∗, 1]

CBCAB = −�B[∗, 1].

Since �5D is singular, we can use the Moore–Penrose
pseudoinverse of �5D to define the distribution of each
row of D. Let

�5D = VEVT

denote the eigendecomposition of �5D, arranged so that
the last eigenvalue inE is 0 and the first four are positive.
LetV4 denote the first four columns ofV and let E4 de-
note the submatrix consisting of the first four rows and
columns of E. Then, the Moore–Penrose pseudoinverse
of �5D is

�−
5D = V4E−1

4 VT
4 .

Therefore, the log-likelihood function in (16) for param-
eters π̂A and π̂B can also be expressed as

l(π̂A, π̂B) =
n∑
i=1

Di(π̂A, π̂B)V4E−1
4 VT

4 D
T
i (π̂A, π̂B) (22)

where Di(π̂A, π̂B) denotes the ith row of DN×5(π̂A, π̂B).
The problem of simultaneously finding permutations

π̂A and π̂B that minimize the association cost is not a
standard association problem since � : SN × SN → R
rather than � : SN → R. Instead, we can treat the
problem as two separate association problems by using
columns 1 and 2 of DN×5 to associate the targets mea-
sured by A with those from C and using columns 3 and
4 of DN×5 to associate the measurements from B with
those from C. Specifically, the first association subprob-
lem is obtained by extracting columns 1 and 2 fromDN×5

to obtain the N × 3 data matrix

D(AC)(π̂A) = [
π̂AX̂A − X̂C, π̂AŶA − ŶC

]
(23)

which only depends on π̂A.The cost function for this sub-
problem is defined by

�AC(π̂A) =
n∑
i=1

D(AC)
i �−1

ACD
(AC)T
i . (24)

Similarly, the second subproblem, which is to associate
the data from B with those fromC, is determined by the
data matrix

D(BC)(π̂B) = [
π̂−1
B X̂B − X̂C, π̂−1

B ŴB − ẐC
]

(25)

and the corresponding cost function

�BC(π̂B) =
n∑
i=1

D(BC)
i �−1

BCD
(BC)T
i . (26)
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This approach is the essence of the 4D algorithm for
the 322-sensor association problem,which involves solv-
ing two independent matching problems: an A-to-C and
a B-to-C match, from which an A-to-B match can be in-
ferred. The 4D algorithm can be summarized as follows:

#initialize
π̂B = argmin(lBC(π̂B))
π̂A = argmin(lAC(π̂A))
end

In the 5D algorithm, we explicitly impose the ad-
ditional consistency condition encoded in column 5 of
DN×5 that represents the differences in the observed po-
sitions betweenA andB in their shared dimension.With
this iterative algorithm, we first use a current estimate
for the A-to-C match and optimize the B-to-C match.
The Mahalanobis distance objective function for this
B-to-Cmatch involves a 3N×3N covariance matrix that
incorporates the additional A–B consistency condition.
In the second stage of each iteration, we switch the roles
ofA and B and optimize theA-to-Cmatch.Given a rea-
sonable initial guess for the A-to-C match, only a few
iterations are typically required for the algorithm to con-
verge.

In detail, the 5D algorithm is given as follows. Sup-
pose we have available an initial permutation, π̂ (0)

B , for
Sensor B and wish to associate the measurements made
by Sensor A with those made by Sensor C given π̂

(0)
B .

This data association problem can be based on columns
1, 2, and 5 of (21) with π̂

(0)
B fixed

D(ABC)(π̂A|π̂ (0)
B

) = [D1, D2, D5] . (27)

The covariance matrix for D(ABC) is the submatrix con-
sisting of rows and columns 1, 2, and 5 of (21)

�ABC = �5D[(1, 2, 5), (1, 2, 5)]. (28)

The matrix �ABC is nonsingular and the objective func-
tion for π̂A given π̂

(0)
B is given by

�ABC
(
π̂A|π̂ (0)

B

) =
n∑
i=1

D(ABC)
i �−1

ABC

(
D(ABC)
i

)T
. (29)

Let π̂ (0)
A denote the permutation that minimizes this cost

function. Since �ABC : SN → R, an approximation to
π̂

(0)
A can be obtained using a two-way assignment algo-

rithm [10], [13]. Once we have an estimate for π̂
(0)
A , we

can then refine the initial estimate of πB using columns
3, 4, and 5 of (21)

D(BAC)(π̂B|π̂ (0)
A

) = [D3, D4, D5] . (30)

The covariance matrix forD(BAC) is

�BAC = �5D[(3, 4, 5), (3, 4, 5)]. (31)

The matrix �BAC is nonsingular and, as above, the cost
function for the new estimate π̂B is

�BAC
(
π̂B|π̂ (0)

A

) =
n∑
i=1

D(BAC)
i �−1

BAC

(
D(BAC)
i

)T
. (32)

Now let π̂
(1)
B denote the permutation that minimizes this

cost function. The process of solving these alternating
two-way assignment problems can be repeated using the
updated estimates from the previous step,continuing un-
til the estimates remain unchanged.

It remains to define an initial estimate for πB. This
can be obtained using columns 3 and 4 of DN×5

D(BC)(π̂B) = [
π̂BX̂B − X̂C, π̂BŴB − ẐC

]
(33)

to assign the data fromB to those fromCwithoutA. The
cost function for this problem is

�BC(π̂B) =
n∑
i=1

D(BC)
i �−1

BC

(
D(BC)
i

)T
. (34)

The resulting 5D algorithm can be expressed as follows:

#initialize
π̂

(0)
B = argmin(lBC(π̂B))

π̂
(0)
A = argmin(lABC(π̂A|π̂ (0)

B ))

#iterate
for i in 1 : maxiter
{

π̂
(i)
B = argmin(lBAC(π̂B|π̂ (i−1)

A ))
π̂

(i)
A = argmin(lABC(π̂A|π̂ (i−1)

B ))
if π̂

(i)
A == π̂

(i−1)
A and π̂

(i)
B == π̂

(i−1)
B

break
}

IV. COST FUNCTION FOR NONORTHOGONAL
SENSOR PLANES

Wenow consider themore realistic situation inwhich
the sensor planesA andB are not orthogonal, (θ �= π/2).
In this case, the N × 5 data matrix is given by

D = [
D1 D2 D3 D4 D5

]
(35)

where

D1 = π̂−1
A X̂A − X̂C

D2 = π̂−1
A ŶA − ŶC

D3 = π̂−1
B X̂B − X̂C

D4 = π̂−1
B ŴB − cos(θ )ŶC − sin(θ )ẐC

D5 = π̂−1
A X̂A − π̂−1

B X̂B.

Notice that the only column that is different from the
case of orthogonal sensor planes is D4, which corre-
sponds to the orthogonal projection of the measure-
ments made by SensorC onto the tilted plane of Sensor
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B. The associated N × 5 error matrix is given by

E = [
E1 E2 E3 E4 E5

]
(36)

where

E1 = Aerr[∗, 1] −Cerr[∗, 1]

E2 = Aerr[∗, 2] −Cerr[∗, 2]

E3 = Berr[∗, 1] −Cerr[∗, 1]

E4 = Berr[∗, 2] − cos(θ )Cerr[∗, 2] − sin(θ )Cerr[∗, 3]

E5 = Aerr[∗, 1] − Berr[∗, 1].

Since columns 1, 2, and 5 of (35) are the same as in the
nonorthogonal case, the covariance matrix �ABC is the
same as before. On the other hand, �BAC is now given
by

�BAC =
⎡
⎣ �BC(1) �BC(1, 2) −�B[1, 1]

�BC(1, 2) �BC(2) −�B[2, 1]
−�B[1, 1] −�B[2, 1] �AB(1)

⎤
⎦ (37)

where

�BC(1) = �B[1, 1] + �C[1, 1]

�BC(1, 2) = �B[1, 2] +Cθ�C[1, 2] + Sθ�C[1, 3]

�BC(2) = �B[2, 2] +C2
θ�C[2, 2] + �θ�C[2, 3]

+ S2θ�C[3, 3]

withCθ = cos θ , Sθ = sin θ , and �θ = 2SθCθ .

V. ESTIMATION OF TARGET POSITIONS

Once the target assignments have beenmade, the tar-
get positions can be estimated using a weighted combi-
nation of the positions measured by each sensor in each
coordinate,where the weights are inversely proportional
to the standard deviations of the sensor position errors.
For simplicity, in this section we assume that the sensor
planes are orthogonal and the covariance matrices �A,
�B, and �C are diagonal. In principle, it is possible to re-
lax these simplifying assumptions. Let

P̂ = (X̂A, ŶA, X̂B,ŴB, X̂C, ŶC, ẐC)T (38)

denote the positions of an arbitrary target as measured
by each sensor after assignments have been made for A
and B and let

σAX , σAY , σBX , σBW , σCX , σCY , σCZ (39)

denote the standard deviations of the position errors in
the respective coordinates. Then, the estimated target
positions are given by

X̂ = wXAX̂A + wXBX̂B + wXCX̂C

Ŷ = wYAŶA + wYCŶC

Ẑ = wZBŴB + wZCẐC

(40)

where wXA = σ−1
AX/δX , the other weights are defined

similarly, and

δX = (
σ−1
AX + σ−1

BX + σ−1
CX

)
δY = (

σ−1
AY + σ−1

CY

)
δZ = (

σ−1
BW + σ−1

CZ

)
.

Note that a sensor with higher relative variability will
have lower weight associated with its observed positions.

VI. RESULTS

In this section, we present the results of numerical
simulations designed to compare the performance of a
32-sensor system, in which target matching is performed
between pairs of measurements using Munkres’ algo-
rithm, to that of a 322-sensor system, in which target
matching is performed between triples of measurements
using the 5D algorithm. We also compare the perfor-
mance of the 4D and 5D algorithms for a 322-sensor
system. First, we study the percentage of correct assign-
ments with the different methods for six choices of the
covariance matrix of Sensor C in the special case that
the planes of the two 2D sensors are orthogonal. Sec-
ond, we investigate how the percentage of correct as-
signments for the 322-sensor system with the 5D algo-
rithm depends on the angle, θ , between the planes of
the two 2D sensors, and also on the orientation of the
3D sensor relative to that of the two 2D sensors. Third,
we compare the RMSE in the estimated target positions
obtained using a 32-sensor system, a 322-sensor system
with the 4D algorithm, and a 322-sensor system with the
5D algorithm. Finally, we present results that illustrate
how the execution time of the 5D algorithm depends on
both the number of targets and the average separation
between the targets.

A. Target and Sensor Simulation Scenarios

To evaluate how the performance of the 32- and 322-
sensor system M2MA algorithms depends on the aver-
age separation between the targets,we generated data by
simulating a collection of N targets with randomly dis-
tributed constant velocities that originate from the same
location, and move apart like a cluster of exploding fire-
works. The velocity, vn, of the nth target is given by

vn = vg + vnun (41)

where vg is a common group velocity and vnun is the drift
velocity of the nth target relative to the group. Here, vn
is the drift speed and un is a unit drift-direction vector.
The drift speeds, vn, are chosen from a gamma distribu-
tion with mean, μd, and standard deviation, σd, and the
drift directions are sampled from a uniform distribution
on the unit sphere. We ran the simulation of the target
trajectories for a total time T with time steps of size 	t.
We generated data in two target simulation scenarios, I
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TABLE II
Parameters Used to Generate Targets in Simulation Scenarios I and II

Parameter Meaning Scenario I Scenario II

N Number of targets 50 50
vg Group velocity of targets (1, 1,

√
2) m/s 100 (1, 1,

√
2) m/s

μd Mean speed for target drift 1 m/s 100 m/s
σd Standard deviation of speed for target drift 0.25 m/s 20 m/s
T Total target simulation time 1.4 s 1.4 s
	t Time step for target simulation 0.02 s 0.02 s

Table III
Sensor Parameters Used in the Simulations

Parameter Meaning Values

�A, �B Sensor covariance matrices I2×2
Sensor covariance matrices (cigars) diag[16, 1, 1], diag[1, 16, 1], diag[1, 1, 16]

�C
Sensor covariance matrices (pancakes) diag[1, 16, 16], diag[16, 1, 16], diag[16, 16, 1]

θ Angle between sensor planes A and B 0◦, 10◦, 60◦, 90◦
φ Rotation angle of SensorC 0◦, 30◦, 60◦, 90◦

and II. The parameter values for these two scenarios are
shown in Table II.

After each time step, the target positions were or-
thogonally projected onto the planes of the two 2D sen-
sors. The measurement uncertainty of Sensors A and B
was modeled by adding Gaussian white noise to these
target positions with mean zero and covariance matri-
ces �A and �B, respectively. To simulate measurements
from Sensor C, we added Gaussian white noise with
mean zero and covariance matrix �C to the computed
target positions. We replicated each target trajectory
simulationM = 1000 times, each with a different choice
of the random parameters, vn, un, and different noise re-
alizations in each sensor. The performance results we
present below were obtained by averaging over theseM
replications.

The parameter values we used to specify the geomet-
ric configurations and measurement uncertainties of the
sensors are summarized in Table III. For the results in
Sections VI-B, VI-C, and VI-E, the planes of the two
2D sensors were orthogonal (θ = 90◦). However, in
Section VI-D we also present results for nonorthogonal
sensor planes using the values of θ given in Table III. For
the two 2D sensors, the covariance ellipsoid was chosen
to be the unit sphere. We considered both cigar-shaped
and pancake-shaped covariance ellipsoids for the 3D
sensor. With cigar-shaped ellipsoids, the length of the
major axis was 4 and the other two axes were of length 1.
With pancake-shaped ellipsoids, the length of the minor
axis was 1 and the other two axes were of length 4. Un-
less otherwise noted, the covariance matrix, �C, of the
3D sensor was chosen to be diagonal. However, at the
end of Section VI-D, we present results for a nondiag-
onal covariance matrix obtained by rotating the matrix
diag[16, 1, 1] about the y-axis by the angles, φ, shown in

the last row of Table III. To illustrate how the choice of
covariance matrix is related to the measurement uncer-
tainty of a realistic 3D radar, we observe that a radar
that has a limited field of view, points in the z-direction,
and has high range resolution and low angular resolu-
tion corresponds to a 3D sensor with a pancake-shaped
covariance ellipsoid with �C = diag[α, α, β], where
α � β.

In Fig. 2a, we show the projection onto the xz-plane
of the actual trajectories of the 50 targets for one ran-
dom realization of the target trajectories in Scenario I.
The target tracks diverge more from each other in Sce-
nario II than in Scenario I. In Fig. 2b,we show the projec-
tion onto the xz-plane of these trajectories as measured
by Sensor C in the case that �C = diag[16, 1, 1], and in
Fig. 2c we show the targets in the xz-plane at the final
time as measured by Sensors B and C. For this result,
the planes of the 2D sensors were orthogonal.

At each time step,we computed the average distance
between pairs of targets. Since �A = �B = Id, we
plot the performance of each algorithm as a function of
the normalized average separation between the targets,
where the normalization factor is the square root of the
trace of �C.

B. Data Association With 32- and 322-Sensor Systems

In Fig. 3,we compare the performance of a 32-sensor
system, consisting of sensors X and C (X = A or B),
to that of the 322-sensor system by plotting the per-
centage of correct two-way assignments for the X -to-
C match as a function of the normalized average sepa-
ration between the targets. These results were obtained
in Scenario II in the case that the planes of Sensors A
and B were orthogonal, and for the six choices of co-
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variance matrix, �C, shown in Table III. The results for
the three cigar-shaped covariance ellipsoids are shown
in the top row of Fig. 3, and those for the pancake-
shaped ellipsoids are shown in the bottom row. In each
subfigure, we compare the results obtained using the
two 32-sensor systems to the 322-sensor system. For
the 32-sensor systems, we used Munkres’ algorithm to
solve the assignment problem, which we refer to as
the 2D algorithm in Fig. 3. Although the 5D algorithm
produces three-way A-to-B-to-C matches, to make fair
comparisons to the 32-sensor systems we only consider
the percentages of correct two-way A-to-C and B-to-C
assignments.

We begin with two preliminary observations. First,
due to the inherent symmetry, for the 2D algorithm the
percentage of correct B-to-C matches in Fig. 3b is sta-
tistically identical to the percentage of correct A-to-C
matches in Fig. 3c. However, for the 5D algorithm, the
A-to-C performance curve in Fig. 3b is slightly differ-
ent from the B-to-C performance curve in Fig. 3c since
this iterative algorithm is not invariant to the y-to-z
coordinate switch. (The first iteration always involves
a B-to-C match.) Second, in Fig. 3b, the performance
of both algorithms is significantly better for the B-to-
C match than for the A-to-C match since when �C =
diag[1, 16, 1], the projection of �C onto the plane of
Sensor A is diag[1, 16], whereas the projection onto the
plane of Sensor B is diag[1, 1].

Next,we compare the percentage of correct two-way
matches for the 2D and 5D algorithms. In Fig. 3, we
observe that the performance of the two algorithms is
comparable whenever the (1,1) entry of �C is compa-
rable to that of �A and �B (see Fig. 3b–d). The reason
is that when the uncertainty in the A–C and B–C data
in their common x-dimension is comparable to the un-
certainty in the A–B data, there is no advantage to be
gained by applying the A-to-B consistency check in the
5D algorithm. On the other hand, when the (1,1) entry
of �C is significantly larger than that of �A and �B, the

performance is generally much better with the 5D algo-
rithm (see Fig. 3a, e, and f).

C. 322-Sensor System: 4D Versus 5D Algorithm

In this subsection, we compare the performance of
the 4D and 5D algorithms for the 322-sensor system.
In Fig. 4, we plot the percentage of correct three-way
A-to-B-to-Cmatches as a function of the normalized av-
erage separation between the targets. By a correct as-
signment for the A-to-B-to-C match, we mean that the
A-to-C and B-to-C (and hence the A-to-B) matches are
all correct. As in Fig. 3, these results were obtained in
Scenario II in the case that the planes of Sensors A and
B were orthogonal, θ = 90◦.

First,we discuss how the percentage of correct three-
waymatches for the 4D algorithm depends on the choice
of �C. In Fig. 4a and b, we see that when the normal-
ized average separation is 10, the percentage of cor-
rect assignments is 75% with �C = diag[1, 16, 1] but
only 65% with �C = diag[16, 1, 1]. The reason for
the poorer performance when the uncertainty in the
Sensor C measurements is larger on the x-axis is that
this axis is common to both 2D sensors. Consequently,
the large uncertainty in the SensorC data remains when
the data are projected onto the xy-plane of SensorA and
onto the xz-plane of Sensor B. On the other hand, when
�C = diag[1, 16, 1] the large uncertainty in the SensorC
data only remains when the data are projected onto one
of these two planes, leading to better performance of the
4D algorithm in this case.

We now compare the percentage of correct three-
way matches with the 4D and 5D algorithms. For the
same reasons as in the discussion of Fig. 3, the 5D algo-
rithm significantly outperforms the 4D algorithm when
the (1,1) entry of�C is significantly larger than that of�A

and �B, while the performance of the two algorithms is
comparable in the other three cases. The reason the 5D
algorithm outperforms the 4D algorithm in some cases is
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Fig. 2. (a) Projection into the x–z plane of the actual trajectories of 50 moving targets for one random realization of the target trajectory
simulation in Scenario I. (b) Projection into the x–z plane of the trajectories of the same 50 moving targets as observed by SensorC after the
addition of Gaussian white noise with covariance matrix �C = diag[16, 1, 1]. (c) Measured targets in the x–z plane as observed by Sensor B
together with the projection into the x–z plane of the measured targets as observed by SensorC. The planes of the two 2D sensors were

orthogonal (θ = 90◦) and the measurements were taken at the final time.
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Fig. 3. Percentage of correct assignments for two-way matches as a function of the normalized average separation between the targets in
Scenario II with orthogonal 2D sensor planes (θ = 90◦) and φ = 0◦. The results shown are for the A-to-C match using the 5D algorithm (red
lines with crosses), the A-to-C match using Munkres’ algorithm (blue lines with circles), the B-to-C match using the 5D algorithm (green

dashed lines with stars), and the B-to-C match using Munkres’ algorithm (black dashed lines with diamonds). The results with cigar-shaped
covariance ellipsoids for SensorC are shown in the top row, and those with pancake-shaped ellipsoids are shown in the bottom row.
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Fig. 4. Percentage of correct assignments for the three-way A-to-B-to-C match as a function of the normalized average separation between
the targets in Scenario II with orthogonal 2D sensor planes (θ = 90◦) and φ = 0◦. The results shown were obtained using the 5D algorithm

(red line with crosses) and the 4D algorithm (blue line with circles). The results with cigar-shaped covariance ellipsoids for SensorC are shown
in the top row, and those with pancake-shaped ellipsoids are shown in the bottom row.
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that the application of theA–B consistency check in col-
umn 5 ofDN×5 rules out some incorrectA-to-Bmatches
made by the 4D algorithm.As a consequence, during the
iteration process the 5D algorithm also corrects for some
of the matching errors made by the poorer performing
of the A-to-C and B-to-C matches.

D. Relative Sensor Orientation Effects for 322-Sensor

Having identified situations in which the perfor-
mance with the 5D algorithm is significantly better than
that with the other two methods, we now focus on how
the percentage of correct three-way matches with the
5D algorithm depends on the relative orientation of the
three sensors. We begin by studying how the 5D al-
gorithm performs as the angle, θ , between the planes
of the 2D sensors decreases from θ = 90◦ to θ =
0◦. These results were obtained with target simulation
Scenario II. As θ → 0◦, the plane of Sensor B converges
to that of Sensor A and neither of the 2D sensors has
the ability to distinguish between two targets with the
same (x, y)-value but different z-values. Although this
observation suggests that the percentage of correct as-
signments should decrease as θ → 0◦, we will show that
inmany cases this decrease is slight.Moreover, in certain
situations the performance is actually significantly better
when the 2D sensor planes are parallel than when they
are perpendicular, due to the suppression of noise from
SensorC that is orthogonal to the common plane of the
2D sensors.

In Fig. 5a and d, the percentage of correct three-way
matches with the 5D algorithm is insensitive to the an-
gle,θ ,between the planes of SensorsA andB.The reason
for this performance insensitivity is that the covariance
ellipsoid for Sensor C has a circular cross section in the
yz-plane, and so the projection of �C onto the plane of
Sensor B is independent of θ . Consequently, the perfor-
mance of theB-to-Cmatch (not shown) is completely in-
dependent of θ . Nevertheless, we do not expect the per-
centage of correct three-way matches with the 5D algo-
rithm to be totally independent of θ , since the relative
alignment of the two 2D sensors changes as θ changes.

The scenario in Fig.5f, for which�C = diag[16, 16, 1],
closely corresponds to a 322-sensor system in which all
three sensors are mounted on a single platform with the
2D sensors pointing in similar directions (so that the
A-to-B match solves the stereopsis problem), with the
3D sensor being a radar with good range accuracy, and
with the 2D sensors having better angular measurement
accuracy than the radar. In Fig. 5b and f, the percentage
of correct three-way matches decreases more as θ → 0◦

than in Fig. 5a and d since in these cases the area of the
covariance ellipse of the projection of �C onto the plane
of Sensor B increases as θ → 0◦. As a consequence,
the performance of the B-to-C match (not shown) de-
grades as θ → 0◦. When θ = 0◦, the performance is
worse when �C = diag[16, 16, 1] than with the other
five covariance matrices, since the covariance ellipse of
the projection of �C onto the xy-plane is largest in this
case.
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(f) ΣC = diag[16, 16, 1]

Fig. 5. Percentage of correct assignments for the A-to-B-to-C match using the 5D algorithm as a function of the normalized average distance
between the targets in Scenario II with φ = 0◦. The different curves show the results for different values of the angle, θ , between the planes of
the two 2D sensor. The results with cigar-shaped covariance ellipsoids for SensorC are shown in the top row, and those with pancake-shaped

ellipsoids are shown in the bottom row.
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In Fig. 5c and e, we see that rather than decreasing,
the percentage of correct three-way matches increases
significantly as θ → 0◦. The reason for this behavior is
that when θ is small the large uncertainty of the Sen-
sorCmeasurements in the z-dimension is (almost) com-
pletely suppressed when the SensorC data are (almost)
orthogonally projected onto the planes of both Sensors
A and B. Since the uncertainty in the z-dimension is rel-
atively large and affects all the measurements made by
Sensor C, its suppression plays a much larger role in in-
creasing the performance than the very minor reduction
in performance that occurs whenever two targets with
similar (x, y)-coordinates but different z-coordinates
cannot be distinguished by nearly horizontal 2D
sensors.

In Fig. 6a, we show the results we obtained when �C

is not diagonal. These results were obtained with tar-
get simulation Scenario II and θ = 90◦. Specifically,
we chose �C to be a rotation about the y-axis by an
angle, φ, of the matrix diag[16, 1, 1]. For these simula-
tions, we chose φ = 0◦, 30◦, 60◦, and 90◦, as in Table III,
so that when φ = 0◦, �C = diag[16, 1, 1], and when
φ = 90◦, �C = diag[1, 1, 16]. These results reproduce
the expected decrease in the percentage of correct three-
way matches that we see when comparing the θ = 90◦

plots in Fig. 5a and b, and therefore serve to verify the
correctness of the theory we developed for nondiagonal
covariance matrices.

E. Target Position Estimates

For each replication,we computed the estimated tar-
get positions using (40) for three different assignment
methods: Munkres’ algorithm using data from one 2D
sensor (A) and the 3D sensor, and the 4D and 5D algo-
rithms. In Fig. 7, we plot the normalized RMSE in the
estimated target positions as a function of the normal-
ized average separation for the three assignment meth-
ods. The RMSE is the square root of the trace of the
covariance matrix of the estimated target positions. In
Fig. 7, both the RMSE and the average separation be-
tween the targets are normalized by the square root of
the trace of the covariance matrix of SensorC. Since this

normalization factor equals the RMSE of the target po-
sitions as measured by Sensor C alone, when the nor-
malized RMSE is less than 1 the RMSE performance
of the algorithm is better than the RMSE performance
with SensorC alone. These results were obtained in tar-
get simulation Scenario I with θ = 90◦ and φ = 0◦.
(The targets are less well separated in Scenario I than in
Scenario II.)

In Fig. 7a, we show the results with �C =
diag[16, 1, 1]. The initial rapid rise of the RMSE oc-
curs simply because the distance between the targets
increases, thereby increasing the RMSE for any choice
of assignment. However, once the target separation ex-
ceeds the uncertainty in the Sensor C data, i.e., once
the normalized average separation is greater than 1,
the performance of all three algorithms is better than
the performance of Sensor C alone, and all three of
the RMSE curves decrease as the target separation in-
creases. Therefore, whenever the target separation ex-
ceeds the uncertainty in the SensorCmeasurements, it is
advantageous to use a 32- or 322-sensor system instead
of a 3D sensor alone, provided that the uncertainty of
the 2D sensor measurements is small compared to that
of the 3D sensor.When the average separation distance
is greater than 2, the performance is worst with the two-
sensor assignment method and best with the 5D algo-
rithm.On the other hand, when the normalized average
separation is less than 1, the 5D algorithm does not per-
form as well as the other two methods. This result holds
for essentially the same reasons we gave for the poorer
performance of the 5D algorithm for the A-to-C match
in Fig. 3e.

Finally, in Fig.7c,we see that with�C = diag[1, 1, 16],
the RMSE obtained using the two-sensor method re-
mains large irrespective of the average separation be-
tween the targets, since the z-coordinate of the estimated
target position in (40) is based only on the estimate, ẐC,
which has large uncertainty, σCZ = 4. This result demon-
strates that there can be a significant advantage to using
a second 2D sensor, especially in situations where there
is a large uncertainty in the measurements made by Sen-
sorC in the dimension that is orthogonal to the plane of
the first 2D sensor.
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Fig. 6. (a) Percentage of correct assignments for the 5D algorithm as a function of the normalized average separation between the targets in
Scenario II with orthogonal 2D sensor planes (θ = 90◦). The different curves show the results for covariance matrices,�C, obtained by rotating
the matrix diag[16, 1, 1] about the y-axis through different angles, φ. (b) Average execution time in milliseconds for N = 25, 50, and 100 targets.
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(c) ΣC = diag[1, 1, 16]
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(d) ΣC = diag[1, 16, 16]

0 1 2 3
Normalized Average Separation

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 R
M

S
 E

rr
or

2 Sensors
4D Algorithm
5D Algorithm

(e) ΣC = diag[16, 1, 16]
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Fig. 7. Normalized RMSE in the estimated target positions as a function of normalized average distance between targets in Scenario I with
θ = 90◦ and φ = 0◦. The results shown are for position estimates obtained after matching data from two sensors,A andC, using Munkres’

algorithm (blue line with crosses), from all three sensors using the 4D algorithm (red lines with circles), and from all three sensors using the 5D
algorithm (black lines with diamonds). The results with cigar-shaped covariance ellipsoids for SensorC are shown in the top row, and those

with pancake-shaped ellipsoids are shown in the bottom row.

F. Execution Time of Algorithms

In Fig. 6b, we show how the execution time of the
5D algorithm scales as the number of targets and the
normalized average separation between the targets are
varied. For this study, we implemented the algorithm in
MATLAB on a MacBook Pro laptop with a 2.5 GHz
Intel Core I5 processor.The three curves in the plot were
obtained using N = 25, 50, and 100 targets. Each curve
shows the average execution time (in milliseconds) of
the 5D algorithm as a function of the normalized av-
erage separation between the targets. The increase in
the computational time as the normalized average sep-
aration decreases is due to the fact that Munkres’ al-
gorithm requires more iterations to obtain a two-way
match when the targets are more closely spaced. Indeed,
we found that the number of iterations of the 5D algo-
rithm is largely independent of the normalized average
separation. The mean of the ratio of the average exe-
cution times of the 5D and 4D algorithms, taken over
all values of the average separation, was 2.1 for 25 tar-
gets, 2.3 for 50 targets, and 3.2 for 100 targets. Since
the 4D algorithm involves two applications of Munkres’
algorithm, for 50 targets it is therefore about 4.6 times
as expensive to obtain an assignment for the 322-sensor
system using the 5D algorithm as it is for the 32-sensor
system using Munkres’ algorithm.

VII. DISCUSSION

In the previous sections, we used idealized sensor
models to investigate how the performance of 322- and
32-sensor systems depends on the relative alignment of
the 2D sensors and on the orientation of the covariance
matrix of the 3D sensor. In this section, we first discuss
the extent to which the theory we developed can be
generalized to more realistic 3D radar and 2D camera
models. Then, we summarize the main results from Sec-
tion VI and interpret them in the context of more real-
istic systems.

Let x = (x1, x2, x3) denote the position of a target in
R

3. In place of Sensor A, we consider a camera located
at the origin ofR

3 pointing in the x3-direction.Wemodel
camerameasurements using a perspective projection as

(ŵ1, ŵ2) = ŵ = ψ2D(x) + u = α

(
x1
x3

,
x2
x3

)
+ (u1,u2)

(42)
where α is the focal length and u ∼ MN(0, �2×2). In
place of Sensor C, we consider a 3D radar located at
y ∈ R

3 that makes measurements [16]

ẑ = ψ3D(x − y) + v (43)

where ψ3D is the rectangular to spherical coordinate
transformation and v ∼ MN(0, �3×3). As in (11), we
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transform the 3D radar measurement to the measure-
ment plane of the camera via

ξ̂ = �(̂z) (44)

where � = ψ2D ◦ ψ−1
3D is the transformation from the

space of radar measurements to the camera plane.
Since the main advantage of a third sensor is to re-

solve cluttered scenes [7], it is reasonable to assume that
the targets are confined to a sufficiently small region,R,
of R

3. Then

ξ̂ ≈ ψ2D(x − y) + Txv (45)

where Tx is the 2 × 3 matrix of the linearization of � at
ψ3D(x − y). If x denotes a nominal center for R, which
can be determined from radar measurements, then
Tx ≈ Tx, which is independent of the particular target.
As in (13), we take the difference of the measurements
(42) and (45) in the camera plane to obtain

ξ̂ − ŵ ≈ ψ2D(x − y) − ψ2D(x) + Txv − u. (46)

For aerospace and defense applications, we may assume
that R is at a large distance from the camera, so that
x3 = x3 + 	x3, with 	x3 � x3. Therefore,

(w1,w2) = ψ2D(x1, x2, x3) ≈ α

x3
(x1, x2) (47)

and so as in (13), we can eliminate the unknown target
location, x, to obtain

ξ̂ − ŵ ≈ −(y1, y2) + Txv − u. (48)

Similarly, in place of the compatibility condition (18) for
Sensors A and B, we have that

x3
αA

ŵA
1 − x2

αB
ŵB

1 = x3
αA

uA1 − x2
αB

uB1 . (49)

Using (48) and (49) and a formula for Tx, we can then
compute replacements for the covariance matrices, �4D

in (15) and �5D in (21). In this manner, the 4D and 5D
algorithms can be extended to the scenario described
above in which the targets are confined to a sufficiently
small region far from the sensors. Moreover, the results
in Section VI can also be applied to this scenario. These
results can be summarized as follows.

First, in Section VI-B we showed that whenever the
measurement uncertainty of the 3D sensor is large com-
pared to that of the 2D sensors along the common axis
of the planes of the 2D sensors, the percentage of correct
two-way matches for the 322-sensor system with the 5D
algorithm is significantly better than that of a 32-sensor
systemwith the 2D algorithm.Under the same operating
conditions, the percentage of correct three-way matches
for the 322-sensor system with the 5D algorithm is sig-
nificantly better than that with the 4D algorithm. With
other relative sensor orientations, the percentage of cor-
rect matches was mostly independent of the choice of
algorithm.

Second, with the aid of the bottom row of Fig. 5 we
can make some conclusions about the performance of a

322-sensor system that includes a 3D radar with higher
range resolution than angular resolution. Here, we also
suppose that the 2D cameras have better angular reso-
lution than the radar, and that the targets are confined
to a small region, R, as above. In this context, we re-
fer to the vector x − y as the pointing direction of the
radar. By the pointing direction of a camera, we mean
the normal vector to the camera plane.We first consider
a scenario in which all three sensors are mounted on
the same platform with one of the cameras pointing in
the same direction as the radar. In this scenario, the per-
centage of correct three-way matches decreases as the
pointing direction of the second camera is lined up with
that of the first (see Fig. 5f). On the other hand, for the
scenario in Fig. 5d, the percentage of correct three-way
matches is largely independent of the angle, θ , between
the pointing directions of the cameras, and is moreover
somewhat greater than for the scenarios in Fig. 5e and
f. The covariance matrix that yields the largest percent-
age of correct three-way matches, i.e., that in Fig. 5d, is
given by �C = diag[1, 16, 16]. This orientation of Sensor
C corresponds to a scenario in which the radar is point-
ing along the +x-axis, perpendicular to the pointing di-
rections of both cameras. Since all three sensors are ob-
serving the same small region,R, this configuration can
only be achieved if the sensors are viewing the targets
from different locations.

Finally, for the above scenario in which the pointing
direction of the radar is perpendicular to the pointing di-
rections of the cameras, the results in Fig. 7d and e show
that the RMSE in the estimated target positions is unac-
ceptably large for a 32-sensor system. This is so because
the large uncertainty in the radar measurements in the
pointing direction of the camera cannot be resolved by
the camera measurement.However,with the addition of
the second camera, the RMSE performance is greatly
improved.

Because we compare sensor measurements to sensor
measurements rather than sensor measurements to un-
known target locations, it is unlikely that the algorithms
we developed can be extended to deal with missed de-
tections as in [7] and [16].Nevertheless, if we were to use
the approach of [7], the above conclusions should still
hold with an unknown number of targets, missed detec-
tions, and spurious measurements. Indeed, we would ex-
pect the performance gains for the 322-sensor to be even
greater in this situation and/or when employing the La-
grangian relaxation assignment algorithm [17] in place
of the 5D algorithm.

VIII. CONCLUSION

We used idealized sensor models and a special-
purpose assignment algorithm for the M2MA problem
to investigate the potential advantages of target track-
ing based on a 322-sensor system rather than a 32-sensor
system. Depending on the relative alignment of the 2D
sensors and the orientation of the covariance ellipsoid
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of the 3D sensor, we found that position estimates ob-
tained with the 322-sensor system can be much more ac-
curate than those obtained with a 32-sensor system. Fur-
thermore, we identified cases in which the percentage of
correct assignments was significantly larger for the 322-
sensor with the 5D algorithm than for the 32-sensor with
Munkres’ algorithm. Finally, we discussed applications
of our results to specific scenarios based on realistic 3D
radar and 2D camera models.

The overarching conclusion from our simulation
study is that the performance of a 32- or 322-sensor sys-
tem in which the covariance ellipsoid of the 3D sensor
sensor is sufficiently aspherical can exhibit a strong de-
pendence on the relative directions from which the sen-
sors view the scene.Moreover, provided that the sensors
are appropriately aligned, there can be a significant per-
formance advantage to a target tracking systemwith two
cameras and a radar as opposed to one camera and a
radar.
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